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Abstract—The random telegraph noise (RTN) is becoming
more serious in advanced technologies. Due to the unpredictabil-
ity of the physical phenomenon, RTN is a good randomness
source for true random number generators (TRNG). In this
paper, we build fundamental randomness models for TRNGs
based on single trap- and multiple traps-induced RTN. We the-
oretically derive the autocorrelation coefficient, bias, and bit
rate for RTN-based TRNGs. Two representative RTN-based
TRNG schemes are simulated to verify the proposed random-
ness models. An oscillator-based TRNG is also studied based
on the theoretical randomness model of multiple traps-induced
RTN. We also provide basic guidelines for designing RTN-based
TRNGs.

Index Terms—Random telegraph noise (RTN), randomness
modeling, true random number generator (TRNG).

I. INTRODUCTION

THE RANDOM telegraph noise (RTN) is a growing relia-
bility issue in advanced integrated circuit (IC) technolo-

gies. RTN causes random fluctuations in electrical parameters
such as the threshold voltage (Vth) and the source-drain cur-
rent (Ids). Recent studies have shown that at the 22 nm node,
the RTN-induced Vth fluctuation can be larger than 70 mV,
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so RTN becomes a major noise source [1], [2]. RTN signifi-
cantly affects the reliability of modern ICs. However, on the
other hand, since the physical phenomenon of RTN is unpre-
dictable, RTN potentially provides an excellent randomness
source for creating true random number generators (TRNG).
TRNG is an essential foundation in lots of cryptographic
algorithms. Using pseudo random numbers will cause a big
vulnerability because of the predictability. On the contrary, if
the randomness source is unpredictable, like RTN, the gener-
ated random numbers will also be unpredictable. This is why
TRNGs are essentially demanded for security.

A TRNG is typically composed of three major mod-
ules: 1) entropy source; 2) harvester; and 3) postprocessing.
The entropy source provides raw random signals which are
extracted from unpredictable physical phenomena. Raw sig-
nals are usually analog and biased. The harvester converts the
raw signals to a digital bit stream. The post-processing is used
to reduce bias to balance the probabilities of zeros and ones
in the output.

A wide range of physical phenomena can be adopted
to act as the entropy source, such as device noises, clock
jitter, metastability, and chaos. It is claimed that some con-
ventional entropy sources cannot offer high randomness,
such as the clock jitter [3]. On the other hand, reliabil-
ity mechanisms-based TRNGs are claimed to provide higher
randomness [4], [5]. As a growing reliability mechanism,
RTN offers much larger random fluctuations than well-known
device noises, providing an excellent entropy source for
TRNGs. In this paper, we will investigate the methodology
of utilizing RTN as an entropy source in TRNGs. The pur-
pose is to build fundamental randomness models for RTN and
give basic guidelines to RTN-based TRNG design. To achieve
this goal, we build systematic models to evaluate the random-
ness of RTN in theory. We also give basic methodologies to
eliminate the autocorrelation and ensure high randomness for
TRNGs based on both single trap- and multiple traps-induced
RTN. Advantages of RTN-based TRNGs are emphasized by
comparisons with conventional noise- and clock jitter-based
TRNGs.

The rest of this paper is organized as follows. We review
the related work and present our motivation in Section II.
Statistical modeling and simulation methodology of RTN are
introduced in Section III. In Sections IV and V, we present
randomness models for single trap- and multiple traps-induced
RTN, respectively. In Section VI, we study an oscillator-based
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TRNG using the proposed models. In Section VII, we com-
pare RTN-based TRNGs with conventional noise- and clock
jitter-based TRNGs. Finally, Section VIII concludes this paper.

II. RELATED WORK AND MOTIVATION

In this section, we first briefly review some related work,
and then present the motivation of this paper, followed by a
summarized description of the proposed models.

A. Randomness Modeling of Noise

Kirton and Uren [6] gave a fundamental introduction on the
physical origin and statistical characteristics of RTN based on
the trap switching theory. Several studies built theoretical mod-
els for the jitter and phase noise in ring oscillators (ROs) by
modeling the white noise and (1/f ) noise [7]–[9]. White noise
was theoretically modeled to generate random numbers in [10].

For RTN, although many studies have derived statistical
models based on measured data [11]–[15], they focus on mod-
eling the physical phenomenon of RTN. Currently, there is no
research that gives a systematic study on randomness modeling
of RTN.

B. Existing TRNG Designs

According to the entropy source, there are several types of
TRNGs. Entropy sources adopted by popular TRNGs include
noises [16], [17], clock jitter in free-running ROs [18], [19],
metastability [20], and chaos [21]. The breakdown mech-
anism of metal-oxide-semiconductor field-effect transistors
(MOSFET) has also been studied to generate random num-
bers [4]. The only two RTN-based TRNGs are proposed
in [5] and [22].

Almost all of these publications only provide implementa-
tions without any theory base on the randomness, naturally
raising a question: is the randomness of such implemen-
tations really high enough? For example, the jitter-to-mean
period ratio is at the magnitude of 10−4 in free-running
ROs [18], such that the RO period must be very long to make
a big jitter to create TRNGs. It is claimed that conventional
noise- and metastability-based TRNGs cannot provide high
randomness, due to the low magnitude of randomness or mis-
match of devices [3]. In addition, whether a hard-to-describe
chaotic system really behaves in a physically random fashion
is unclear [3].

C. Motivation

As can be seen from the above, most of the existing
TRNG designs lack for a theoretical derivation of the ran-
domness. Utilizing RTN as a randomness source in TRNGs
has two prominent advantages. As a growing reliability issue,
RTN offers significantly large random fluctuations in advanced
technologies, so that the fluctuations can be easily extracted
and converted to random bits. In addition, more bits can be
generated from each sampling due to the large fluctuation mag-
nitude. We will further analyze the advantages of RTN-based
TRNGs in Section VII. The physical phenomenon of RTN has
been well modeled, but the randomness of RTN has never been

Fig. 1. Origin of RTN: the capture/emission process of traps.

systematically studied. This paper will build fundamental ran-
domness models for RTN to provide a theoretical foundation
for designing RTN-based TRNGs. We will focus on analyzing
the autocorrelation coefficient, bias, and bit rate of RTN-based
TRNGs. Among them, making a zero bias is the minimum
requirement for random bits. However, only reducing the bias
cannot guarantee the randomness. For example, a sequence
{1, 0, 1, 0, 1, 0, 1, 0, . . .} has no bias but it is not random at
all. Therefore, the autocorrelation which has a large impact on
the randomness is also analyzed. A near-zero autocorrelation
indicates that the next bit is difficult to predict when the previ-
ous bit is known. Bit rate is an important performance metric.
Although there are other metrics or methods which can also be
adopted to evaluate the randomness, such as the information
entropy and the test suite provided by the National Institute
of Standards and Technology (NIST) [23], they are high-level
scores without tight connections with the physical character-
istics of random bits. We choose autocorrelation, bias, and bit
rate because they have clear physical meanings and crucial
influences on the randomness and performance of TRNGs.

D. Key Points of the Proposed Models

For TRNGs based on single trap-induced RTN, we will
show how to select the sampling frequency to ensure a small
autocorrelation. The maximum sampling frequency is con-
strained by the time constants of the trap. The bias can be
eliminated by post-processing like the von Neumann correc-
tor [24]. For TRNGs based on multiple traps-induced RTN, the
sampling frequency can be close to the switching frequency of
the fastest trap. We will show how to design a bit truncation
scheme to eliminate the bias and the high autocorrelation.

III. STATISTICAL MODELING AND SIMULATION

METHODOLOGY OF RTN

In this section, we introduce existing statistical models and
our simulation methodology of RTN.

A. Statistical Modeling of RTN

1) Physics of RTN: RTN can be explained by the random
capture/emission process of charge carriers caused by oxide
traps [25], as shown in Fig. 1. A trap in the oxide can occa-
sionally capture a charge carrier from the channel, and the
captured carrier can be emitted back to the channel after a
period of time. The duration time of the captured and emit-
ted states are denoted as τe (time before emission) and τc
(time before capture), respectively, as marked in Fig. 2(a). In
the time domain, Vth shows a binary fluctuation caused by
a single trap. In the frequency domain, the power spectrum
density (PSD) of the RTN-induced Vth fluctuation shows a
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Fig. 2. RTN behavior in the (a) time and (b) frequency domains.

Lorentzian shaped spectrum with a slope of (1/f 2) [6], as
shown in Fig. 2(b).

2) Time Constants: The switching process of an individual
trap obeys a Poisson process [6]. As a result, the duration
time of the captured and emitted states follow exponential
distributions with mean values τ̄c and τ̄e, respectively [12]:

f (τc) = 1

τ̄c
e− τc

τ̄c f (τe) = 1

τ̄e
e− τe

τ̄e (1)

where τ̄c and τ̄e are called the capture and emission
time constants, respectively. They have a wide range from
microsecond to millisecond when sampling a number of
traps [11], [12]. Time constants of numerous traps can be
approximated modeled by uniform distributions in the loga-
rithmic scale [6], [12], [26]

log10(τ̄c) ∼ U(Ac, Bc), log10(τ̄e) ∼ U(Ae, Be) (2)

where U(A, B) denotes the uniform distribution in the inter-
val (A, B). Equation (2) is a statistical model for a number
of traps. For each individual trap, its τ̄c and τ̄e are strongly
correlated [12]. Although an analytical relation between τ̄c
and τ̄e has been given in [6] and [11], it relies on some
low-level parameters which are difficult to obtain and model.
For convenience, the model can be simplified to

τ̄e

τ̄c
= 10m, m ∼ U

(
m̄ − σm

2
, m̄ + σm

2

)
(3)

where m̄ and σm are fitting parameters. m̄ is linear to the bias
voltage Vgs which indicates that τ̄c and τ̄e are approximately
exponential to Vgs [11]. Using σm = 2 can generally fit the
silicon data presented in [12]. The randomness of m denotes
the statistical characteristics of trap positions and energies.

The above model is applicable in the case of a constant
bias condition. Actually, τ̄c and τ̄e both depend on the bias
condition. When a transistor undergoes periodically alternate
two states (ST1 and ST2) with a fixed duty cycle, the periodic
behavior of RTN can be described by an equivalent stationary
RTN with two equivalent time constants [13]

1

τ̄
(equ)
c

= α

τ̄
(ST1)
c

+ 1 − α

τ̄
(ST2)
c

,
1

τ̄
(equ)
e

= α

τ̄
(ST1)
e

+ 1 − α

τ̄
(ST2)
e

(4)

where α is the duty cycle. τ
(equ)
c and τ

(equ)
c are fixed if α is

fixed. Consequently, the model with fixed time constants can
also be used in the case of a cyclostationary state.

3) Number of Traps: For numerous transistors, the num-
ber of detectable traps in each transistor statistically obeys a
Poisson distribution [14]

P(Nt = k) = 〈N〉ke−〈N〉

k!
(5)

Fig. 3. SPICE-based simulation flow for RTN.

where Nt is the number of detectable traps in a transistor t, and
〈N〉 is the mean value of the Poisson distribution. pMOSFETs
have more traps than nMOSFETs [14]. 〈N〉 increases with the
shrinking of the feature size [27].

4) Vth Amplitude: The RTN-induced Vth fluctuation of
numerous traps statistically obey an exponential distribu-
tion [15]

f (�Vth,i) = 1

〈�Vth〉e
− �Vth,i

〈�Vth〉 (6)

where �Vth, i is the Vth fluctuation caused by a trap i, and
〈�Vth〉 is the mean value of the exponential distribution.
〈�Vth〉 increases with the shrinking of the feature size [15].
In this paper, we set 〈�Vth〉 according to the 22 and 32 nm
silicon data presented in [2] and [28]. The total Vth fluctuation
of a transistor t is the superposition of the effects of all the
individual traps in the transistor [29]

�Vth =
Nt∑

i=1

(
�Vth,i × Si

)
(7)

where Si ∈ {0, 1} indicates the state of the ith trap in the
transistor (0 for the emitted state and 1 for the captured state).

B. Simulation Methodology

Since currently there is no available circuit simulator which
can natively support RTN, we build an in-house simulator
for RTN estimation. Our simulator is a standard simula-
tion program with IC emphasis (SPICE)-based tool [30] with
the BSIM4 [31] model integrated. We follow the approach
proposed in [29] to integrate the RTN models presented in
Section III-A into the simulator. The simulation flow is shown
in Fig. 3, where shaded blocks are RTN-related.

Before transient simulation, the RTN profile is given or
randomly generated using the following three steps.

1) The number of traps in each transistor Nt is given, or
generated by (5), where 〈N〉 is given.

2) The Vth fluctuation of each trap �Vth,i is given, or
generated by (6), where 〈�Vth〉 is given.

3) The capture time constant of each trap τ̄c,i is given, or
generated by (2), where the range is given. The emission
time constant of each trap τ̄e,i is given, or generated
by (3), where m̄ is given.

Note that each trap has its own time constants and Vth ampli-
tude [29]. As shown in Fig. 3, each trap i keeps a parameter
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Fig. 4. Simulated and theoretical PSDs of Ids fluctuation caused by single-
trap induced RTN.

tnext,i which indicates when it will change its state Si. During
transient simulation, once the time point t reaches tnext,i, trap i
changes its state Si, and then tnext,i is updated by the duration
time of the next state, which obeys an exponential distribution.
In simulation, the duration time of the next state is randomly
generated by the following approach [29]:

τc = − ln(RND(0,1)) × τ̄c, τe = − ln(RND(0,1)) × τ̄e (8)

where RND(0,1) denotes a uniformly distributed random num-
ber in the interval (0, 1). The RTN-induced �Vth of each
transistor is calculated by (7) and added to the original Vth
of each transistor, and then the BSIM4 model evaluation is
performed based on the updated Vth. To avoid missing any
state change during transient simulation, the time point t is
always not larger than the minimum value of all the tnext,i’s.

The accuracy of our simulator have been verified by com-
paring waveforms with commercial tools. Here, we verify the
simulated PSD of single trap-induced RTN. In this test, we
use the 22 nm high-performance predictive technology model
(PTM) [32] in our netlists. A circuit with a single nMOSFET
(the width is 50 nm) which has a single trap-induced RTN
effect is simulated. The nMOSFET is stressed by a fixed bias
condition of Vgs = 0.6 V and drives a load resistance of 10 k�.
We use a fixed RTN profile in this test: τ̄c = τ̄e = 0.5 ms,
�Vth = 20 mV, and Nt = 1. Fig. 4 shows the simulated
PSD of Ids and the theoretical Lorentzian PSD which is
given by [6]

S( f ) = 4(�Ids)
2τ 2

0

τ̄c + τ̄e
· 1

1 + (2π f τ0)
2

(9)

where

1

τ0
= 1

τ̄c
+ 1

τ̄e
. (10)

�Ids ≈ 2.1 μA is obtained from the simulated Ids waveform.
Fig. 4 proves that the simulated PSD is well consistent with
the theoretical Lorentzian spectrum.

IV. MODELING SINGLE TRAP-INDUCED RTN

In this section, we first derive a theoretical randomness
model for single trap-induced RTN, and then analyze the per-
formance of a representative TRNG scheme based on single
trap-induced RTN.

Since the fluctuation caused by single trap-induced RTN has
only two discrete values, the simplest way to generate random
numbers is to convert the fluctuation into binary bits by a peri-
odically sampled comparator, just like the approach proposed
in [5]. Fig. 5 shows a representative scheme for this method.

Fig. 5. Representative scheme for generating random numbers from single
trap-induced RTN.

An amplifier may be used if the RTN-induced fluctuation is
not large enough. Actually the implementation can be flexible
and the binary bits can be converted from other parameters
which are affected by RTN. Other implementations based on
the same theory are equivalent to the representative scheme.

A. Randomness Modeling

1) Autocorrelation: Let X be the state of a trap. X = 0/1
indicates the emitted/captured state. The probabilities of the
two states in a stationary state are given by

P(X = 1) = P1 = τ̄e

τ̄c + τ̄e
, P(X = 0) = P0 = τ̄c

τ̄c + τ̄e
. (11)

Considering two time points s and s + t, the transition prob-
abilities of a trap, which are also the prediction probability
P(Xs+t|Xs), are given by [33]

P(Xs+t = 1|Xs = 1) = P11 = P1 + P0e
− t

τ0

P(Xs+t = 0|Xs = 1) = P10 = P0 − P0e
− t

τ0

P(Xs+t = 0|Xs = 0) = P00 = P0 + P1e
− t

τ0

P(Xs+t = 1|Xs = 0) = P01 = P1 − P1e
− t

τ0 (12)

where Pij means the probability of ending at state j after
an elapsed time t, when starting from state i. In practice,
t is the sampling period ts = (1/fs), where fs is the sam-
pling frequency. According to (12), when ts is long enough
(e.g., ts > 3τ0), the prediction probabilities are close to the
stationary state probabilities P0 and P1, which means that
knowing the previous state does not provide useful information
for predicting the next state.

Let �A be the RTN-induced fluctuation (e.g., �Vth).
Without loss of generality, we assume that �A is zero-mean.
The autocorrelation function of the RTN-induced fluctuation
is expressed as

C(s, s + ts) = E
(
XsXs+ts

) = (�A)2
(

P2
0P1P11 − P0P2

1P10

−P2
0P1P01 + P2

1P0P00

)

= (�A)2 τ0

τ̄e + τ̄c
e
− ts

τ0 . (13)

The autocorrelation function only depends on the duration time
ts so it can be written as C(ts). The first-order autocorrelation
coefficient is given by

ρ(ts) = C(ts)

C(0)
= e

− ts
τ0 . (14)

Increasing ts can decrease the autocorrelation, which is con-
sistent with the prediction probabilities as shown in (12).
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To ensure high randomness, ts should be high enough.
For example, if ts ≥ 3τ0, the autocorrelation coefficient is
less than 5%. The autocorrelation may be partly eliminated
by applying some postprocessing methods, so the sampling
frequency can be higher.

According to (11), P0 = P1 if and only if τ̄c = τ̄e, which
is impossible in actual devices. As a result, postprocessing
is always required. In this paper, we will take the popular
von Neumann corrector [24] as an example to derive the
autocorrelation, bias, and bit rate. The von Neumann cor-
rector outputs “0” or “1” if two successive input bits are
“01” or “10,” but discards “00” and “11.” After applying the
von Neumann corrector, the autocorrelation coefficient can be
approximated by

ρvN(ts) ≈ 1

− 2

e
− ts

τ0

+ 4 + 3
2P0P1−1

, ts > 1.5τ0. (15)

The derivation is complicated so we put it in Appendix A. The
autocorrelation after the von Neumann corrector is applied is
less than the original value given by (14). For example, if
fs = (1/3τ0), (15) gives an autocorrelation of about 2.5%.

Till now, by deriving the autocorrelation coefficient, we have
proved that when using a proper sampling frequency, the auto-
correlation can be quite small such that the next bit cannot be
predicted when the previous bit is known. This proves the
randomness of single trap-induced RTN. Equation (15) can be
used to estimate the proper sampling frequency when the von
Neumann corrector is used.

2) Bias: Let the probabilities of ones and zeros are 0.5+b
and 0.5 − b, respectively, where b is the bias, that is

b = τ̄e − τ̄c

2(τ̄c + τ̄e)
. (16)

The bias after the von Neumann corrector is applied is
expressed as

bvN = P(output “1”|has output) − 0.5

= P1P10

P1P10 + P0P01
− 0.5 ≡ 0. (17)

As can be seen, the bias is completely eliminated, regardless
of the sampling frequency and the original bias.

3) Bit Rate: For the von Neumann corrector, the ratio of
the output bit rate to the sampling frequency equals half of
the probability of observing “10” or “01,” which is given by

RvN

fs
= 1

2
(P0P01 + P1P10) = τ0

τ̄c + τ̄e

(
1 − e

− ts
τ0

)

=
(

1

4
− b2

)
(1 − ρ(ts)) <

1

4
(18)

where RvN is the bit rate of the von Neumann corrector. RvN
depends on both the original bias and the autocorrelation. In
any case, the bit rate is less than (1/4) of the sampling fre-
quency. τ̄c = τ̄e (i.e., b = 0) yields the maximum bit rate.
Applying the first-order Taylor expansion to (18) yields

RvN <
1

4ts

(
1 − e

− ts
τ0

)
≈ 1

4ts

ts
τ0

= 1

4τ0
. (19)

Equation (19) gives the maximum ideal bit rate that the von
Neumann corrector can achieve. It is achieved only when

τ̄c = τ̄e and fs is high enough. However, using a high fs leads
to a high autocorrelation, so the maximum ideal bit rate cannot
be achieved in practice.

B. Randomness Source Selection

As mentioned in Section III-A, RTN has a big uncertainty
and the time constants have a wide range. It is difficult to
make a specific transistor behave as what we expect. A feasible
solution is to select an adequate transistor from a large tran-
sistor array [5]. We should select a transistor with exactly one
observable trap, small time constants, and significant �Vth.
To derive the probability of finding an adequate transistor, we
first need the probability density function (PDF) of τ0.

According to (2), the PDF of τ̄c is expressed as

pdf(τ̄c) = 1

τ̄c ln τc,max
τc,min

, τc,min ≤ τ̄c ≤ τc,max (20)

where τc,max and τc,min are the maximum and minimum values
of τ̄c, respectively. Although τ̄e is generated according to (3)
with a small randomness on m, for simplicity in deriving the
model, here we assume that m is fixed so τ̄e is linear with τ̄c.
Consequently, τ0 is also linear with τ̄c

τ0 = 10m

10m + 1
τ̄c = βτ̄c. (21)

Then the PDF of τ0 is expressed as

pdf(τ0) = 1

τ0 ln τ0,max
τ0,min

, τ0,min ≤ τ0 ≤ τ0,max (22)

where τ0,max = βτc,max and τ0,min = βτc,min.
Assuming that we have N transistors in total, the prob-

ability of finding at least one transistor, such that it has
exactly one trap, τ0 ∈ [τ0,min, δτ0,min], and �Vth ≥ γ 〈�Vth〉,
is expressed as

P = 1 −
(

1 − ln δ

ln τ0,max
τ0,min

〈Nt〉e−〈Nt〉e−γ

)N

(23)

where N can be solved from (23) when P is given. For exam-
ple, if δ = 2, (τ0,max/τ0,min) = 104, γ = 2, and 〈Nt〉 = 0.8,
then using N ≥ 1884 can ensure a probability of larger than
0.999.

C. Numerical Results

To verify the proposed randomness model of single trap-
induced RTN, the TRNG scheme as shown in Fig. 5 is
simulated using the 22 nm PTM [32]. The nMOSFET is
affected by a single trap. We use a fixed RTN profile in this
test: Nt = 1, τ0 = 10 μs, and �Vth = 40 mV. We will ana-
lyze the performance under different τ̄c and τ̄e [(10) is always
satisfied]. We adopt the concept of the approximate entropy
(ApEn) [34] to evaluate the generated random numbers with
the von Neumann corrector applied. All the results reported
in this section are the mean values of five runs.

Fig. 6 shows the simulated ApEn, under different (τ̄e/τ̄c)

and fs. Note that the maximum ideal ApEn is ln(2) ≈
0.69315. As can be seen, ApEn is higher than 0.69 only when
fs = 20 and 45 kHz. Increasing fs greatly decreases ApEn.
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Fig. 6. ApEn of random numbers generated from single trap-induced RTN.

Fig. 7. Simulated and theoretical autocorrelation coefficients.

Fig. 8. Evaluated π by the MC method.

ApEn almost keeps constant when (τ̄e/τ̄c) varies, revealing
that the randomness is mainly determined by τ0 and fs. The
simulated biases (not shown) are at the magnitude from 10−5

to 10−3 under different (τ̄e/τ̄c), which means that the out-
put bits are well balanced after applying the von Neumann
corrector.

Fig. 7 shows the theoretical and simulated autocorrela-
tion coefficients. The theoretical autocorrelation is predicted
by (15). The simulated results are well consistent with the
predictions when fs = 20 and 45 kHz. However, when
fs > (1/1.5τ0) (e.g., fs = 100 kHz), the approximation of (15)
leads to some errors (see Appendix A for an explanation). The
generated random numbers are used to evaluate the value of π

by the Monte Carlo (MC) method, as shown in Fig. 8. Results
obtained by fs = 20 and 45 kHz are acceptable. However,
when fs = 100 kHz, the results have big errors. According
to the simulated ApEn, autocorrelation and MC π values,
fs = (1/2.2τ0) is the maximum acceptable sampling frequency,
corresponding to an autocorrelation of about 5%.

Fig. 9 shows the simulated and theoretical bit rates. The
theoretical bit rates are predicted by (18). The simulated bit
rates are well consistent with the predictions. As predicted
by (18), the bit rate is always less than ( fs/4). The bit rate
decreases significantly when (τ̄e/τ̄c) is far away from 1.0.

D. Summary

In this section, we have analyzed the autocorrelation coef-
ficient, bias, and bit rate of a representative TRNG scheme
based on single trap-induced RTN. As predicted by the pro-
posed model and verified by the numerical results, using a

Fig. 9. Output bit rates of the von Neumann corrector.

Fig. 10. Representative scheme for generating random numbers from multiple
traps-induced RTN.

too high sampling frequency greatly decreases the random-
ness of the output bits. In practice, the maximum sampling
frequency is approximately (1/2.2τ0), and the corresponding
output bit rate is about (0.4/(τ̄c + τ̄e)). Selecting a trap with
almost equal τ̄c and τ̄e maximizes the output bit rate. A large
transistor array should be constructed to ensure that we can
always find an adequate transistor to act as the randomness
source.

V. MODELING MULTIPLE TRAPS-INDUCED RTN

In this section, we first derive a theoretical randomness
model for multiple traps-induced RTN, and then analyze the
performance of a representative TRNG scheme based on
multiple traps-induced RTN.

A simple idea to generate random numbers from multiple
traps-induced RTN is to combine several individual circuits
as shown in Fig. 5 in parallel such that multiple bits can be
generated in one sampling. However, these are two practical
problems. First, the time constants of many traps have a wide
range so it is difficult to synchronize all the circuits using a
unified sampling frequency. Second, the number of observ-
able traps in each transistor is random, so some transistors do
not show any fluctuation and some may show more-than-two-
level fluctuations. In the single trap case, the two problems do
not appear because we can select an adequate transistor from
a large transistor array. Consequently, the effects of all the
individual traps should be combined together to act as a sin-
gle randomness source. Statistical laws and stochastic process
theories will ensure that the overall RTN effect of numerous
traps obeys a certain statistical rule.

Fig. 10 shows a representative scheme for generating ran-
dom numbers from multiple traps-induced RTN. A number
of transistors in which each is affected by multiple traps-
induced RTN make up a transistor array. The transistor array
can be regarded as a variable resistance affected by RTN.
Although the fluctuation caused by each individual trap has
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only two discrete levels, the superposed fluctuation will have
many discrete levels so it will look like a continuous sig-
nal. The superposed fluctuation is amplified and converted
to digital words. The converted digital words have bias and
autocorrelation, so the von Neumann corrector may also be
applied, leading to a low bit rate. Considering the fact that in
the converted digital words, high-order bits change slow and
low-order bits change fast, low-order bits trend to be more
random. This is a special feature of TRNGs based on multiple
traps-induced RTN. In this section, we will investigate that by
truncating a few high-order bits from the digital words, the
remaining bits will have near-zero autocorrelation and bias.
We will also show that the bit truncation scheme has a higher
bit rate than the von Neumann corrector for TRNGs based on
multiple traps-induced RTN.

A. Superposition of Multiple Lorentzian PSDs

We will first derive the PSD caused by multiple traps-
induced RTN based on the statistical RTN model in
Section III-A. The PSD of multiple traps-induced RTN is a
superposition of PSDs of all the individual traps. By substi-
tuting (21) into (9), the Lorentzian PSD can be rewritten into
the following form, with two random variables (�A and τ0):

S( f ) = 4β(1 − β)(�A)2 τ0

1 + (2π f τ0)
2
. (24)

Assuming that there are N traps in total, the superposition of
all the individual PSDs is expressed as

SN( f ) =
N∑

i=1

4β(1 − β)(�Ai)
2 τ0,i

1 + (2π f τ0,i)
2

(25)

where �Ai is the RTN-induced fluctuation. Note that each trap
has its own amplitude and time constants which is mentioned
in Section III-B. Actually, N is also a random variable. Since
the summation of multiple independent Poisson distributions is
still a Poisson distribution, N also obeys a Poisson distribution.
For a large N, the summation in (25) can be converted into an
integral

SN( f ) = 4β(1 − β) ×
∞∫

0

(�A)2pdf(�A)d�A

×
τ0,max∫

τ0,min

τ0

1 + (2π f τ0)
2

pdf(τ0)dτ0 (26)

where pdf(�A) depends on the implementation. The integral
of

∫ ∞
0 (�A)2pdf(�A)d�A is always a constant (denoted as A)

regardless of the detailed pdf(�A). Consequently, (26) can be
converted into a closed form

SN( f ) = 4β(1 − β)A

ln τ0,max
τ0,min

τ0,max∫

τ0,min

1

1 + (2π f τ0)
2

dτ0

= 2β(1 − β)A

π f ln τ0,max
τ0,min

[
arctan(2π f τ0,max)

− arctan
(
2π f τ0,min

)]
. (27)

Equation (27) can be approximated by applying the first-order
Taylor expansion to arctan according to the value of f [35]

SN( f ) ≈

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β(1 − β)A

π2f 2 ln
τ0,max

τ0,min

(
1

τ0,min
− 1

τ0,max

)
, f � 1

2πτ0,min

β(1 − β)A

f ln
τ0,max

τ0,min

,
1

2πτ0,max
 f  1

2πτ0,min

4β(1 − β)A
(
τ0,max − τ0,min

)

ln
τ0,max

τ0,min

, f  1

2πτ0,max
.

(28)

Considering that N is also a random variable, the superposed
PSD has exactly the same form as (28) with the only differ-
ence on the amplitude A, since (28) is independent with N.
For convenience, we still use (28) to express the superposed
PSD. The superposed PSD shows three different shaped spec-
trums [i.e., white, (1/f ), and (1/f 2)]. Among them, the (1/f )
spectrum occupies a wide frequency range if τ0,max � τ0,min.

B. Randomness Modeling

1) Autocorrelation: The autocorrelation function can be
calculated from the PSD based on the Wiener–Khinchin
theorem [36], that is

C(t) =
∞∫

0

SN( f ) cos(2π ft)df . (29)

By applying the autocorrelation function of the band-limited
(1/f ) spectrum [37] and ignoring the (1/f 2) part which is very
small, the autocorrelation function is approximated by

C(t) ≈ Aβ(1 − β)

ln τ0,max
τ0,min

(
2

π
+ ln

τ0,max

t

)
, τ0,min ≤ t ≤ τ0,max.

(30)

We also have

C(0) =
∞∫

0

SN( f )df = β(1 − β)A

(
4

π ln τ0,max
τ0,min

+ 1

)
. (31)

Then the autocorrelation coefficient is expressed as

ρ(ts) = C(ts)

C(0)
≈ 1

2
+ ln

√
τ0,minτ0,max

ts
4
π

+ ln τ0,max
τ0,min

, τ0,min ≤ ts ≤ τ0,max.

(32)

When ts is close to τ0,min, the autocorrelation is close to
1.0 (if τ0,max � τ0,min). Although (32) is not applicable for
ts < τ0,min, it is no doubt that the autocorrelation is approxi-
mately 1.0 in this case, because the sampling is faster than the
fastest trap and two successive samplings tend to get identical
values. To make the autocorrelation small, ts should be close
to τ0,max, which means that the sampling frequency should
match the slowest trap, leading to a very low bit rate. We will
show that, after truncating a few high-order bits from the con-
verted digital words, the autocorrelation of the remaining bits
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can be significantly eliminated and the bias is also close to
zero, such that ts is not required to be close to τ0,max.

Let U, D, and T be the amplified fluctuation, the converted
digital words, and the words after truncation, respectively.
According to the central limit theorem, the overall RTN effect
caused by numerous traps can be modeled by a Gaussian
process. As a result, the fluctuation U follows a normal dis-
tribution. Let φU(μU, σU; x) be the PDF of U, where μU and
σU are the mean value and the standard deviation, respec-
tively. Amplification does not affect the autocorrelation, so the
autocorrelation coefficient of U equals ρ(ts) which is given
by (32). U is converted to digital words D via an analog-to-
digital converter (ADC) which encodes n bits (i.e., the output
range is from 0 to 2n − 1). The ratio of (τ̄e/τ̄c) can affect μU
and σU . However, for a theoretical analysis, we assume that
the full-scale range of the ADC matches μU ± 3σU . Actually,
this can be achieved by adjusting the amplifier. We ignore the
fluctuation out of the μU ± 3σU range since its probability is
negligible (i.e., 0.0027). The autocorrelation coefficient of D
is also ρ(ts). To eliminate the autocorrelation of D, n−k high-
order bits of D are truncated and k low-order bits are kept. In
what follows, we will derive the autocorrelation coefficient,
bias, and bit rate of T .

First, we have the following probability for D:

P(D = i) = P(iQ − 3σU ≤ X ≤ (i + 1)Q − 3σU)

=
(i+1)Q−3σU∫

iQ−3σU

φU(μU, σU; x)dx, 0 ≤ i ≤ 2n − 1 (33)

where Q = (6σU/2n) is the quantized level of the ADC. Since
T = i if and only if the digital value expressed by the k low-
order bits of D equals i, the probability of observing T = i is
expressed as

P(T = i) =
2n−k−1∑

z=0

P
(

D = i + z2k
)
, 0 ≤ i ≤ 2k − 1. (34)

Since the integral of a normal distribution PDF has no analyti-
cal solution, (34) can be only estimated by numerical methods.
We have found that if n − k ≥ 2, all the P(T = i)’s are almost
equal, that is

P(T = i) ≈ 1

2k
, 0 ≤ i ≤ 2k − 1, k ≤ n − 2. (35)

The maximum relative error of this approximation is less than
0.65%. An explanation of (35) is provided in Appendix B.

Considering two successive sampling time points s and s+ts,
the joint probability of observing Ds = i and Ds+ts = j is
given by

P(Ds = i ∩ Ds+ts = j)

=
(i+1)Q−3σU∫

iQ−3σU

( j+1)Q−3σU∫

jQ−3σU

φ2(μU, σU, ρU(ts); x, y)dxdy

0 ≤ i, j ≤ 2n − 1 (36)

where φ2(μU, σU, ρU(ts); x, y) is the joint PDF of a bivariate
normal distribution with an autocorrelation coefficient ρU(ts)

which is given by (32). The joint probability of observing
Ts = i and Ts+ts = j is given by

P(Ts = i ∩ Ts+ts = j)

=
2n−k−1∑

z1=0

2n−k−1∑
z2=0

P
(

Ds = i + z12k ∩ Ds+ts = j + z22k
)

0 ≤ i, j ≤ 2k − 1. (37)

The autocorrelation coefficient of T is expressed as

ρT(ts) =
∑2k−1

i=0
∑2k−1

j=0 ijP
(
Ts = i ∩ Ts+ts = j

) − μ2
T

σ 2
T

(38)

where μT and σT are the mean value and standard deviation
of T , which can be easily calculated based on (35).

Since (36) involves a double integral of the joint PDF
of a bivariate normal distribution, (38) has no closed form.
Equation (38) can be estimated by numerical methods, and
then k can be selected such that ρT(ts) is small enough. We
have derived a heuristic and effective method to directly calcu-
late the optimal k such that ρT(ts) is negligible. The derivation
is complicated so we put it in Appendix C. The optimal k is
given by the following closed form:

k =

⎢⎢⎢⎢⎢⎢⎢⎣
n − log2

6√
(ρU(ts) − 1) ln

(
2πε

√
1 − ρ2

U(ts)

)

⎥⎥⎥⎥⎥⎥⎥⎦
(39)

where ε is a near-zero threshold to control the accuracy. We
use ε = 10−6 in this paper. According to the explanation in
Appendix C, if k is selected based on (39), ρT(ts) ≈ 0.

2) Bias: The bias of T is expressed as

bT = 1

k

2k−1∑
i=0

ones(i)P(T = i) − 1

2
(40)

where ones(i) is the number of ones in the binary representa-
tion of integer i. Based on that the maximum relative error of
the approximation of (35) is less than 0.65% (if k ≤ n − 2),
we have

|bT | <
1

k

2k−1∑
i=0

[
ones(i) × 0.0065

2k

]
= 0.00325. (41)

Equation (41) reveals that, although D is not uniformly
distributed, the bias of T is close to zero after truncation.

3) Bit Rate: The output bit rate after truncation is simply
expressed as kfs. According to (32) and (39), increasing fs will
decrease k. fs can be increased by 10×, 100×, etc., while k
is decreased by only a few bits. Consequently, to maximize
the bit rate, fs should be as high as possible and close to
(1/τ0,min). If the von Neumann corrector is applied instead of
bit truncation, the bit rate is lower than (1/4)nfs. Calculation
based on (39) reveals that, even if ρU(ts) = 0.95, k < (n/4)

holds only when n < 4, leading to an impractical result k < 1.
This reveals that the bit truncation scheme has a higher bit rate
than the von Neumann corrector in practice.
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Fig. 11. Distribution sampled from the fluctuation caused by multiple traps-
induced RTN, and the fitted normal distribution.

Fig. 12. Simulated and theoretical PSDs of multiple traps-induced RTN.

Fig. 13. Theoretical [by (32)] and simulated autocorrelation coefficients
(before and after truncation).

C. Numerical Results

The representative TRNG scheme as shown in Fig. 10
with a 5 × 10 transistor array is simulated. The 22 nm
PTM [32] is used. The widths of all the transistors are 50 nm.
Vg of all the pMOSFETs and the nMOSFET are 0 and
0.8 V, respectively. We use the following RTN parameters for
pMOSFETs: 〈Nt〉 = 2, 〈�Vth〉 = 20 mV, τ0,max = 10 ms, and
τ0,min = 1μ s. The RTN profile is randomly generated accord-
ing to these parameters. The resolution of the ADC is n = 8.
Since the purpose of this test is to verify the proposed ran-
domness model, we assume that the amplifier can be adjusted
such that μU ± 3σU matches the full-scale range of the ADC.
As a result, the ratio of (τ̄e/τ̄c) which can affect μU and σU
will have little impact on the final output. We use τ̄e = τ̄c in
this experiment. Vd of the nMOSFET is utilized as the ran-
domness source. Fig. 11 shows an example (different runs give
different examples) of the simulated distribution and the fit-
ted normal distribution of Vd of the nMOSFET, in which the
simulated distribution is converted from an 100-bin histogram.
The fluctuation cased by multiple traps-induced RTN shows a
nearly perfect normal distribution. Fig. 12 shows the simulated
and theoretical PSDs of Vd of the nMOSFET. The theoreti-
cal PSD is calculated by (28), where A ≈ 1.202 × 10−4V2 is
calculated from simulation. The simulated PSD is generally
consistent with the theoretical PSD with a small difference.
The difference mainly comes from the approximation of (28).

TABLE I
SIMULATION RESULTS OF THE TRNG BASED ON

MULTIPLE TRAPS-INDUCED RTN

Fig. 13 shows the theoretical and simulated autocorrelation
coefficients, under different sampling frequencies and k. The
theoretical autocorrelation is predicted by (32). The simulated
autocorrelation before truncation is consistent with the predic-
tions. The bit truncation scheme significantly eliminates the
autocorrelation. The optimal k values estimated by (39) are
marked as bold and red on the labels of the x-axis. When
fs ≤ (1/τ0,min), the optimal k ensures that the autocorrelation
after truncation is less than 5%. However, when fs = 5 MHz
which is larger than (1/τ0,min), the autocorrelation is larger
than 5% even if only 1 bit is kept.

Table I shows the simulated ApEn, MC π values, bias, and
bit rate. The ApEn results further reveal that the optimal k
values calculated by (39) are correct. For the MC π value,
a significant error is observed when fs = 5 MHz due to the
high autocorrelation. The biases of these cases are all at the
magnitude of 10−4, revealing that the bit truncation scheme
can ensure a near-zero bias. According to these results, it can
be concluded that when fs ≤ (1/τ0,min), we can select an
optimal k by (39) such that the autocorrelation is small enough
to generate high-quality random numbers.

For the bit rate, clearly, among all of these cases, the
maximum bit rate such that the randomness is guaranteed is
achieved when fs = 1 MHz and k = 5, which gives a bit
rate of 5 Mbit/s. In this case, if the von Neumann corrector
is applied instead of bit truncation, the bit rate is 1.92 Mbit/s,
which is much lower than that of bit truncation.

D. Summary

In this section, we have derived a theoretical randomness
model for multiple-traps induced RTN. We have demonstrated
an interesting conclusion. When generating random numbers
from multiple traps-induced RTN, the sampling frequency can
be close to the switching frequency of the fastest trap. The
high autocorrelation can be almost completely eliminated by
truncating a few high-order bits from the converted digital
words. The bias after truncation is also close to zero. We have
provided a closed form to decide the optimal truncation.

VI. CASE STUDY: OSCILLATOR-BASED TRNG

In this section, we study an RO-based TRNG scheme and
present how to determine key parameters for this TRNG, based
on the proposed randomness models.
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Fig. 14. RO-based TRNG based on multiple traps-induced RTN.

TABLE II
PARAMETERS USED IN THE RO-BASED TRNG

A. Overview

The TRNG scheme which contains a 25-stage inverter-based
RO is shown in Fig. 14. Each stage has a load capacitance.
Due to the RTN effect, the RO period will be random. A
K-bit counter is used to count the rising edges of a high-
frequency clock. The output of the RO clocks k (k ≤ K)
D-type flip-flops (DFF). The inputs of the k DFFs are con-
nected to the k low-order bits of the counter, and the K − k
high-order bits of the counter are discarded. Clearly, the digi-
tal output of the counter is sampled at the end of each period
of the RO output, so the RO period is converted to digital
numbers. Due to the randomness in the RO period, the out-
put of the k DFFs is also random. Actually, the theory of
this scheme is the same as the representative TRNG based on
multiple traps-induced RTN. The RO period is the randomness
source which is affected by multiple traps-induced RTN, and
the counter and the DFFs can be regarded as an ADC. We
will explain how to determine k for this scheme in the next
section.

B. Numerical Results

We test the RO-based TRNG at two technology nodes using
the 22 and 32 nm PTM [32]. Parameters used in this test are
listed in Table II. The widths of nMOSFETs and pMOSFETs
are 80 and 40 nm, respectively. The load capacitance of each
stage of the RO is 5 pF. The counter runs at 2 GHz. The width
of the counter K is 20. Please note that K is not equivalent
to the resolution of the ADC n as shown in Fig. 10. We will
show how to calculate the equivalent n for this scheme in the
following.

Fig. 15 shows the simulated distributions of the RO period
and the fitted normal distributions, under different (τ̄e/τ̄c). The
RO period shows approximate normal distributions. The ratio
of (τ̄e/τ̄c) can affect the mean value and variance of the dis-
tribution. Since (τ̄e/τ̄c) depends on many low-level factors
and the manufacture process, it is difficult to know the exact
(τ̄e/τ̄c) by theoretical analysis. We consider three different val-
ues of (τ̄e/τ̄c) in this test. The standard deviations of the three
cases at the 22 nm node are 28, 50, and 35 ns, respectively.
For the 32 nm node, they are 18, 27, and 16 ns, respectively.

Fig. 15. Simulated distributions of the RO period, and the fitted normal
distributions. (a) 22 nm. (b) 32 nm.

TABLE III
SIMULATION RESULTS OF THE RO-BASED TRNG

Obviously, τ̄c = τ̄e yields the maximum variance of the RO
period.

Now we show how to calculate the equivalent n and k in the
RO-based TRNG, based on the proposed randomness model
for multiple traps-induced RTN. The equivalent n is deter-
mined such that [0, 2n−1] can cover most (i.e., 99.73%) of the
digital outputs before truncation. Take the case of (τ̄e/τ̄c) =
0.1 at the 22 nm node as an example. When the counter runs
at 2 GHz, n ≈ log2((28×10−9)×(2×109)×6) = 8.4. The RO
period is equivalent to the sampling period. According to (32),
the autocorrelation of the RO period is about 80%. According
to (39), we get k = 6, which means that we need six DFFs to
sample the output of the counter. k values calculated by (39)
are shown in Table III.

Table III shows the simulation results at the two technology
nodes under different (τ̄e/τ̄c) ratios. These results reveal that
the generated random numbers of these cases are all of high
quality and good randomness. The bit rate at the 32 nm node
is lower than at the 22 nm node, mainly due to the smaller
variance in the RO period at the 32 nm node.

C. Randomness Test

The NIST test suite [23] is adopted to evaluate the ran-
domness of the generated random numbers. For each case, we
generate 500 random bit sequences by 500 independent simu-
lations (each simulates a time interval of 50 ms), and then feed
them into the NIST test suite. Table IV lists the pass rates of
the reported p-values. A p-value larger than 0.01 indicates that
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TABLE IV
PASS RATES (%) OBTAINED FROM 500 RUNS OF NIST

Fig. 16. Histograms of p-values obtained from 500 runs of the
ApproximateEntropy test in NIST (the x-axis is the p-value and the y-axis
is the count). (a) τ̄e/τ̄c = 1.0 (22 nm). (b) τ̄e/τ̄c = 10.0 (22 nm).
(c) τ̄e/τ̄c = 0.1 (22 nm). (d) τ̄e/τ̄c = 1.0 (32 nm). (e) τ̄e/τ̄c = 10.0 (32 nm).
(f) τ̄e/τ̄c = 0.1 (32 nm).

the test is passed. High pass rates are observed from Table IV,
indicating good randomness of the generated random numbers.
The distribution of p-values can also be utilized to evaluate the
randomness of random numbers [23]. In theory, the distribu-
tion should be uniform. Fig. 16 shows histograms of p-values
obtained from the ApproximateEntropy test (the block length
is 5) in the NIST test suite. The six subfigures show approxi-
mate uniform distributions, indicating high randomness of the
generated random numbers, as well.

VII. COMPARISON

In conventional noise-based TRNGs [16], [17], device
noises are periodically sampled, amplified, and compared with
a reference voltage to generate random bits. Since the thermal
noise and (1/f ) noise are both tiny (typical magnitudes are
from nV to μV) [38], strong amplifiers are required. On the
contrary, RTN offers significant fluctuations in advanced tech-
nologies. Measured data have shown that �Vth caused by a
single trap can be larger than 70 mV at the 22 nm node [1].
Such a large fluctuation can be easily converted to digital

TABLE V
SUMMARY OF THE PROPOSED RANDOMNESS MODELS

bits without suffering from variations, e.g., signal coupling
problems.

Conventional jitter-based TRNGs [19] typically use a slow
and jittery clock to sample a fast clock. Due to the jitter of
the slow clock, the fast clock is sampled at random positions
so that random bits are generated. To achieve high random-
ness, the jitter must be larger than the period of the fast
clock. However, measured data have shown that the jitter-to-
mean period is at the magnitude of only 10−4 at the 0.18μm
node [18], which is very small. Actually, the variation of the
RO period cased by RTN can also be regarded as a “jitter.” As
shown in Fig. 15, the jitter-to-mean period caused by RTN is
at the magnitude of 10−2, such a big jitter allows that multiple
bits can be generated from one sampling, resulting in a higher
bit rate.

In summary, compared with conventional noise- and jitter-
based TRNGs, the advantages of RTN-based TRNGs mainly
come from the large fluctuations in advanced technologies. In
addition, several studies have shown the increasing RTN effect
due to the shrinking of the feature size [15], [27], [39], so RTN
is becoming more significant. In practice, the RO jitter should
be caused by all possible randomness sources, including RTN,
(1/f ) noise, and white noise. However, measured data have
shown that at the 22 nm node, RTN is the major noise source
and much more important than (1/f ) noise [2]. This conclu-
sion reveals that the RO jitter at advanced technology nodes
is mainly caused by RTN.

VIII. CONCLUSION

In this paper, we have derived fundamental randomness
models for RTN-based TRNGs. We have given theoretical
models for the autocorrelation coefficient, bias, and bit rate
of TRNGs based on both single trap- and multiple traps-
induced RTN. We have given theoretical methodologies to
determine key parameters for designing RTN-based TRNGs,
such as the sampling frequency and the number of trun-
cated bits. Table V briefly summarizes the most important
points of the proposed randomness models. The proposed
models have been verified by numerical simulations. An RO-
based TRNG at two technology nodes is studied based on
the model of multiple traps-induced RTN. The proposed ran-
domness models will be verified by fabricated chips in our
future work.
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APPENDIX A
DERIVATION OF (15)

Let {Xn} be the sampled binary sequence, and {Yn} be an
intermediate sequence

Yn =
{

X2n, if X2n �= X2n+1

2, if X2n = X2n+1.
(42)

If all the 2s in {Yn} are discarded, we get a new sequence
{Zn}, which is the output of the von Neumann corrector for
{Xn}. When fs < (1/1.5τ0), the second-order autocorrelation
coefficient between Xn and Xn+2 is less than 5%, so {Xn} can
be approximately regarded as a Markov chain, and thus, we
have the following probabilities for {Yn}:
P(Yn+1 = 1 ∩ Yn = 1) ≈ P1P10P01P10

�= y11

P(Yn+1 = 2 ∩ Yn = 1) ≈ P1P10(P00P00 + P01P11)
�= y21

P(Yn+1 = 1|Yn = 2) ≈ P10(P0P00P01 + P1P11P11)

P0P00 + P1P11

�= y1|2
P(Yn+1 = 2|Yn = 2)

≈ P0P00(P00P00 + P01P11) + P1P11(P10P00 + P11P11)

P0P00 + P1P11
�= y2|2. (43)

Clearly, “11” in {Zn} is generated from “11,” “121,” “1221,”
· · · in {Yn}. However, the probabilities of observing “11” in
{Zn} and observing “11,” “121,” “1221,” · · · in {Yn} are dif-
ferent, because the lengths of {Yn} and {Zn} are different. The
difference of the probabilities equals the ratio of their lengths,
which can be obtained from (18). Consequently, we have

P(Zn+1 = 1 ∩ Zn = 1)

≈ fs
2RvN

(
y11 + y1|2y21 + y1|2y2|2y21 + y1|2y2|2y2|2y21 + · · ·)

= fs
2RvN

(
y11 + y1|2y21

1 − y2|2

)
. (44)

According to (17), the probabilities of ones and zeros in {Zn}
are balanced, and thus, the mean value and the variance of {Zn}
are 0.5 and 0.25, respectively. The autocorrelation coefficient
of {Zn} is expressed as

ρvN(ts)

= P(Zn+1 = 1 ∩ Zn = 1) − 0.5 × 0.5

0.25

≈ 2

⎡
⎢⎣1 − 1 − 2P0P1 + 3P0P1e

− ts
τ0 − P0P1e

− 3ts
τ0

2 − 4P0P1 − e
− ts

τ0 (1 − 8P0P1) + e
− 2ts

τ0 (1 − 4P0P1)

⎤
⎥⎦ − 1.

(45)

The terms with respect to e−(2ts/τ0) and e−(3ts/τ0) can be
ignored since they are quite small, and then we can simply
get (15).

APPENDIX B
EXPLANATION OF (35)

We first consider (34). The physical meaning of (34) is
illustrated in Fig. 17. The 2-D region constructed by the
PDF of the normal distribution φU(μU, σU; x) and the interval
[μU−3σU, μU+3σU] of the x-axis is divided into 2n−k groups.

Fig. 17. Illustration of (34) and the derivation of (35).

All the groups have the same length (6σU/2n−k) on the x-axis.
Each group is further divided into 2k grids. All the grids have
the same length (6σU/2n) on the x-axis. Each grid has a coor-
dinate from 0 to 2n − 1. Let s(i) be the area of grid i. It is
clear that s(i) = P(D = i), so we have

P(T = i) =
2n−k−1∑

z=0

s
(

i + z2k
)
, 0 ≤ i ≤ 2k − 1. (46)

Due to the symmetry of the PDF, we have

P(T = i) =
2n−k−1−1∑

z=0

[
s
(

i + z2k
)

+ s
(
(z + 1)2k − 1 − i

)]

0 ≤ i ≤ 2k − 1. (47)

It is easy to check that

P(T = i) ≡ P
(

T = 2k − 1 − i
)
, 0 ≤ i ≤ 2k−1 − 1. (48)

So we only need to consider the difference between half of all
the P(T = i)’s. The difference between P(T = i) and P(T = j)
is expressed as

P(T = i) − P(T = j)

=
2n−k−1−1∑

z=0

⎡
⎣

s
(
i + z2k

) − s
(

j + z2k
)

+ s
(
(z + 1)2k − 1 − i

)
− s

(
(z + 1)2k − 1 − j

)

⎤
⎦

0 ≤ i �= j ≤ 2k−1 − 1. (49)

The four area terms on the right side of (49) are in the same
group for the same z. If n−k is big enough, the length of each
group will be small enough, such that the PDF curve within
each group can be approximated by a straight line with little
error, as shown in Fig. 17. If the approximation has no error,
the algebraic sum of the four area terms is exactly 0, and thus,
P(T = i) = P(T = j) [for 0 ≤ i, j ≤ 2k − 1]. Of course, the
PDF curve within each group is not an exact straight line, so
we have P(T = i) ≈ P(T = j) in practice. Since the integral
of a normal distribution PDF has no closed form, numerical
experiments have verified that when n − k = 2, the maximum
relative error of the approximation as shown in (35) is about
0.65%. According to the above explanation, increasing n − k
(i.e., decreasing k) makes the approximation more accurate so
the error is smaller.

APPENDIX C
HEURISTIC DERIVATION OF (39)

We first consider the physical meaning of (37). Like
the 2-D case shown in Appendix B, the 3-D region
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Fig. 18. Illustration of (37) and the derivation of (39).

constructed by the PDF of the bivariate normal dis-
tribution φ2(μU, σU, ρU(ts); x, y) and the square region
[μU − 3σU, μU + 3σU] × [μU − 3σU, μU + 3σU] on the xy
plane is divided into 2n−k × 2n−k groups. The bottom of each
group is a square and the length of one side is (6σU/2n−k).
Fig. 18 shows the four nearest groups to the central point
(μU, μU). Each group is further divided into 2k × 2k grids.
The bottom of each grid is also a square and the length of
one side is (6σU/2n). Each grid has a local coordinate (i, j)
(0 ≤ i, j ≤ 2k − 1) in its group. If the contour of the PDF
φ2(μU, σU, ρU(ts); x, y) is projected onto the xy plane, it will
show an ellipse, as shown in Fig. 18. The equation of the
projected ellipse is given by

(x − μU)2 + (y − μU)2 − 2ρU(ts)(x − μU)(y − μU)

= −2σ 2
U

(
1 − ρ2

U(ts)
)

ln

(
2πε

√
1 − ρ2

U(ts)

)
(50)

where ε is the relative height of the contour. ε should be
near zero to get accurate results. A bigger ρU(ts) leads to
a higher eccentricity of the ellipse, i.e., the ellipse looks nar-
rower. Clearly, P(Ts = i ∩ Ts+ts = j) (37) equals the total
volume of all the grids whose local coordinates are (i, j)
(0 ≤ i, j ≤ 2k − 1). We can ignore all the grids out of the
ellipse, since the cumulative probability out of the ellipse is
quite small if ε ≈ 0.

Like the 2-D case explained in Appendix B, the PDF
surface within each grid can be approximated by a plane,
such that all P(Ts = i ∩ Ts+ts = j)’s are almost equal
with an exception when the ellipse cannot cover sufficient
grids. It can be analyzed from Fig. 18 that, if the ellipse
cannot fully cover the two shaded groups, the volumes of
the shaded grids in the ellipse cannot be balanced even if
the approximation by planes is accurate enough, leading to
a big difference between P(Ts = i ∩ Ts+ts = j)’s. If this
happens, the autocorrelation coefficient of T will be high
according to (38). Consequently, the optimal k to ensure a
low autocorrelation coefficient should be selected such that
the ellipse can just fully cover the two shaded groups, i.e.,

the two points (μU + (6σU/2n−k), μU − (6σU/2n−k)) and
(μU −(6σU/2n−k), μU +(6σU/2n−k)) are both on the curve of
the ellipse. Substituting either point into (50) will yield (39).
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