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Abstract—In this paper, we propose a novel spatial varia-
tion modeling method based on hidden Markov tree (HMT)
for nanoscale integrated circuits, which could efficiently improve
the accuracy of full-wafer/chip spatial variations recovery at
extremely low measurement cost. Applying this method, HMT
is introduced to set up a statistical model for coefficients after
exploring the underlying correlated representation of the spa-
tial variation in the frequency domain. Accordingly, two key
inherent properties of the modeling coefficients, i.e., correla-
tions and sparse presentations in the frequency domain, can be
captured exactly and the modeling accuracy can be improved
evidently. Then, maximum-a-posteriori estimation is applied to
formulate the original problem as a convex optimization that
could be solved efficiently and robustly. Numerical results based
on industrial data demonstrate that the proposed method can
achieve superior accuracy over other existing approaches includ-
ing orthogonal matching pursuit, l1-norm regularization, and
reweighted l1-norm regularization.

Index Terms—Compressive sensing, hidden Markov
tree (HMT), process variation, virtual probe (VP).

I. INTRODUCTION

AS THE integrated circuits (ICs) scale to nanoscale
feature size, process variation has become the major

roadblock for circuit design, especially at advanced tech-
nology nodes [1]. The increasing fluctuations posed by
IC manufacturing process lead to significant performance
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variations and substantial yield loss [2]. Therefore, yield
improvement has been considered as one of the most
urgent tasks for today’s IC design. Toward this goal, vari-
ous techniques have been developed, e.g., statistical timing
analysis [3]–[6] and post-silicon tuning [7]–[9], to minimize
performance variability and enhance parametric yield. The effi-
ciency of all these techniques relies heavily upon the accuracy
of the underlying statistical model (e.g., probability distribu-
tion and correlation) that characterizes the process variation of
interest.

Spatial variation modeling and characterization, however, is
not a trivial task. Silicon wafers and chips must be carefully
characterized with multiple test structures (e.g., ring oscil-
lators (ROs)) deployed in wafer scribe lines and/or within
product chips [10]. The traditional variation modeling meth-
ods often require a large number of test structures to monitor
the spatial variation of interest. For instance, today’s advanced
microprocessor chip typically contains hundreds of on-chip
ROs [11] to monitor process variations. Physically measuring
all these test structures through a limited number of I/O pins is
extremely time-consuming [12]. In addition, wafer probe test
may even physically damage the wafer/chip due to mechani-
cal stress [12]. The significant overhead in silicon area, testing
time, and chip reliability leads to continuously growing mod-
eling cost, as more and more test structures must be used to
capture the increasingly complicated spatial variation pattern
due to technology scaling [13].

Conventionally, the number of required test structures
for spatial variation modeling is determined by the well-
known Nyquist–Shannon sampling theory. However, a large
amount of redundant data could be generated since the
Nyquist–Shannon sampling theory assumes that all the fre-
quency components below the maximum frequency may
exist. Recently, several statistical methods, such as virtual
probe (VP) [14]–[22] and Gaussian process [23]–[26], have
been developed in the literature to capture the spatial variation
pattern with low-measurement cost. Taking VP as an exam-
ple, it exploits the fact that spatial variation often has a sparse
presentation in the frequency domain based on discrete cosine
transform (DCT). Namely, a large number of the DCT coeffi-
cients are close to zero. By taking advantage of such a sparse
structure, VP is able to minimize the required measurement
data based on compressive sensing [27]–[30].

In this paper, we aim to further improve the accuracy of
VP by revisiting its fundamental assumption on frequency-
domain sparsity. To explore the underlying sparse structure,
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VP statistically models the DCT coefficients as a zero-mean
Laplace distribution where the DCT coefficients at different
frequencies are considered to be mutually independent. In
this way, the correlation among different DCT coefficients
is completely ignored. However, as will be demonstrated by
the industrial data in Section III, the low-frequency and high-
frequency DCT coefficients are strongly correlated in the sense
that if the low-frequency coefficients are close to zero, the cor-
responding high-frequency coefficients are likely to be zero
as well.

To appropriately capture the correlation information and,
hence, improve the accuracy of VP, we propose an effi-
cient statistical model based on hidden Markov tree (HMT).
Specifically, we model each DCT coefficient as a mixture dis-
tribution with a hidden state variable. Markovian dependency
is used to describe the correlation between these hidden state
variables based on a probabilistic tree (i.e., the HMT) [32].
Next, maximum-a-posteriori (MAP) estimation is used to opti-
mally solve the unknown DCT coefficients and reconstruct the
spatial variation pattern.

The idea of HMT has been developed for signal
processing [32]. In this paper, we further adopt this power-
ful technique for spatial variation modeling of ICs. As will be
demonstrated by the industrial examples in Section V, the pro-
posed HMT method achieves up to 40% error reduction over
other conventional approaches including orthogonal match-
ing pursuit (OMP) [35], l1-norm regularization [19], [36], and
reweighted l1-norm regularization [37].

The remainder of this paper is organized as follows. In
Section II, we briefly review the background of spatial vari-
ation modeling by using VP. In Section III, we develop the
proposed modeling algorithm based on HMT and then dis-
cuss several implementation issues in Section IV. The efficacy
of HMT is demonstrated by several industrial examples in
Section V. Finally, we conclude in Section VI.

II. BACKGROUND

A. Virtual Probe

Without loss of generality, in order to intuitively charac-
terize the spatial variation, an interested performance (e.g.,
the frequency of an RO) can be expressed as a 2-D func-
tion g(x, y), where x and y represent the coordinates of spatial
location on a wafer [3], [19]. To capture the information in
spatial frequency domain, g(x, y) can be mapped to frequency
domain by several kinds of transforms, such as Fourier trans-
form, DCT, and wavelet transform. In this paper, similar
as VP [19], we take DCT transform as an example. After
discretization, the coordinates x and y can be denoted as
integers x ∈ {1, 2, . . . , P} and y ∈ {1, 2, . . . , Q} and DCT
transform [46] for g(x, y) can be represented as

G(u, v) =
P∑

x=1

Q∑

y=1

αu · βv · g(x, y) · cos
π · (2x − 1)(u − 1)

2 · P

× cos
π · (2y − 1)(v − 1)

2 · Q
(1)

where

αu =
{√

1/P (u = 1)√
2/P (2 ≤ u ≤ P)

(2)

βv =
{√

1/Q (v = 1)√
2/Q (2 ≤ v ≤ Q).

(3)

In (1), {G(u, v); u = 1, 2, . . . , P, v = 1, 2, . . . , Q} rep-
resents a set of DCT coefficients. The sampling value
{g(x, y); x = 1, 2, . . . , P, y = 1, 2, . . . , Q} can also be
expressed as the linear combination of G(u, v) by inverse
DCT (IDCT) [46]

g(x, y) =
P∑

u=1

Q∑

v=1

αu · βv · G(u, v) · cos
π · (2x − 1) · (u − 1)

2 · P

× cos
π · (2y − 1) · (v − 1)

2 · Q
. (4)

Based on (1)–(4), it is easy to verify that once all the sam-
pling values {g(x, y); x = 1, 2, . . . , P, y = 1, 2, . . . , Q} are
known, the DCT coefficients {G(u, v); u = 1, 2, . . . , P, v =
1, 2, . . . , Q} can be uniquely determined, and vice versa.
However, in order to reduce testing cost, we always would
like to recover {g(x, y); x = 1, 2, . . . , P, y = 1, 2, . . . , Q}
accurately from an extremely limited number of samples at
locations {(xm, ym); m = 1, 2, . . . , M}, where M � PQ.
So the recovery can be formulated as the following linear
equation [19]:

A · η = B (5)

where

A =

⎡

⎢⎢⎢⎣

A1,1,1 A1,1,2 · · · A1,P,Q

A2,1,1 A2,1,2 · · · A2,P,Q
...

...
...

...

AM,1,1 AM,1,2 · · · AM,P,Q

⎤

⎥⎥⎥⎦ (6)

Am,u,v = αu · βv · cos
π · (2xm − 1) · (u − 1)

2 · P

× cos
π · (2ym − 1) · (v − 1)

2 · Q
(7)

η = [
G(1, 1) G(1, 2) · · · G(P, Q)

]T (8)

B = [
g(x1, y1) g(x2, y2) · · · g(xM, yM)

]T
. (9)

If all the unknown coefficients η can be calcu-
lated from (5) based on the sampling data at loca-
tions {(xm, ym); m = 1, 2, . . . , M}, all the function values
{g(x, y); x = 1, 2, . . . , P, y = 1, 2, . . . , Q} can be obtained
by (4). However, solving (5) is not trivial since M � PQ,
i.e., the equations in (5) are profoundly underdetermined and
cannot be uniquely solved by a simple matrix inverse [19].
As derived in [19], MAP estimation [46] is preferred to be
used here to solve (5) based on the key idea that the optimal
solution η should maximize the posterior distribution, namely

max
η

pdf(η|B). (10)

According to Bayes’ theorem, we have

pdf(η|B) ∝ pdf(η) · pdf(B|η). (11)
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Then the optimization problem (5) can be reformulated as

max
η

pdf(η) · pdf(B|η). (12)

Applying VP algorithm [19], (12) could be formulated as
an l1-norm regularization problem by deducing pdf(η) and
pdf(B|η) as follows.

1) Based on the prior knowledge of spatial variation sparse-
ness in frequency domain, each DCT coefficient is mod-
eled as an independent random variable with zero-mean
Laplace distribution. Then, we have

pdf(η) =
(

1

2λ

)PQ

· exp

(
−‖η‖1

λ

)
(13)

where ||•||1 denotes l1-norm, i.e., the summation of the
absolute value of all the elements in a vector.

2) The likelihood function pdf(B|η) is characterized by
a Dirac delta function, namely, pdf(B|η) is nonzero if
and only if A·η equals B

pdf(B|η) =
{∞ (A · η = B)

0 (A · η 
= B)
(14)

where
∫

A·η=B
pdf(B|η) · dB = 1. (15)

Then, according to (13)–(15), the optimization (12) can be
rewritten as

min ||η||1
s.t. A · η = B. (16)

Equation (16) is referred to as l1-norm regularization prob-
lem in compressive sensing field and can be solved by linear
programming in [45]. Once the DCT coefficients η are calcu-
lated, the spatial variation model can be constructed by IDCT
as in (4).

B. Embedded Zero-Tree

Note that the traditional VP method models each DCT
coefficient as mutually independent. In contrast, the correla-
tions among different DCT coefficients have been exploited
in the field of image processing (e.g., image browsing, dig-
ital watermarking [34], and image compression [38]–[41]) to
achieve superior recovery accuracy. For example, in image
compression [41], by exploiting the self-similarity of the hier-
archically decomposed sub-bands in the frequency domain,
an embedded zero-tree (EZT) can be constructed to convey
the significance information of the DCT coefficients. Next,
the prior knowledge of insignificant coefficients could be effi-
ciently encoded as part of the EZT. As a result, the error
of compressed images could be largely reduced for the same
compression ratio. In the next section, we will study the corre-
lation model of DCT coefficients and the EZT representation
in detail.

III. SPATIAL VARIATION MODELING VIA

HIDDEN MARKOV TREE

In this section, we propose a novel spatial variation mod-
eling method based on HMT to further improve the accuracy
and efficiency of VP. This novel algorithm takes full advan-
tage of the two kinds of prior knowledge for spatial variations
in frequency domain, i.e., correlations and sparse structure
of its DCT transform, while the previous one is completely
ignored by VP. Here, we will study the DCT coefficient cor-
relation by examining some industrial data at first. Then HMT
is introduced for complete DCT coefficients modeling to cap-
ture these two properties. Based on the HMT training result
and random Gaussian distribution assumption of the modeling
residue, MAP estimation can be applied to formulate (5) as
a convex optimization. In addition, an iteration scheme is pro-
posed at last to refine the constructed HMT model and obtain
a convergent result.

A. Probabilistic Model for Prior Knowledge

As previously mentioned, VP [19] has demonstrated the
rationality of the coefficient sparseness structure and also taken
advantage of it to reduce the modeling cost. Here, we will
focus on studying another property, i.e., the strong correla-
tions among DCT coefficients with different frequencies. Since
spatial patterns of process variations are often smooth as is
demonstrated in [19] and [44], the magnitude of DCT coeffi-
cients used for modeling will decay along with the frequency
increasing, which is also referred as “decaying spectrum” in
many other fields [40]–[43]. Suppose that the DCT coefficients
correlation really exists and define that a coefficient is insignif-
icant with respect to a given threshold T if its magnitude is
smaller than T. Then along the similar frequency orientation,
e.g., u-dimension in Fig. 1, it is reasonable to assume that if the
low-frequency coefficient is insignificant, the higher-frequency
coefficients will also be insignificant with a large probability.

In fact, we can decompose the frequency domain of DCT
hierarchically [38]–[41] with many sub-bands sharing the sim-
ilar frequency orientation as what follows. Initially, assume
that a 2-D frequency domain can be divided at each dimen-
sion by using “low” and “high” frequency filters vertically and
horizontally as shown in Fig. 1(a). The low frequency at this
scale means 0 ≤ |ω| < π/2 (where ω denotes the angular fre-
quency), and the high frequency means π/2 ≤ |ω| < π . Then,
totally four sub-bands (labeled LL1, HL1, LH1, and HH1)
arise, and HH1 represents the sub-band of the finest scale
(i.e., of the highest frequencies). To obtain the coefficients
of lower frequency which are regarded to be more significant,
the sub-band LL1 could be further decomposed at a coarser
scale as in Fig. 1(b), where the low frequency at this scale
means 0 ≤ |ω| < π/4, and the high frequency means
π/4 ≤ |ω| < π/2. Such decomposition process stops until the
required scale is reached [40]. Denote the angular frequency at
u-dimension as ωu, and the frequency at v-dimension as ωv. It
could be found clearly that, in Fig. 1(b), HH2 and HH1 share
a similar frequency orientation since they are both selected
out by high frequency filters at each dimension. For HH2,
we have π/4 ≤ ωu < π/2 and π/4 ≤ ωv < π/2. For HH1,
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Fig. 1. (a)–(c) Hierarchical decomposition of the DCT in frequency
domain, where 2-D of the frequency domain are denoted as u-dimension and
v-dimension, respectively. Note that (c) shows the construction of EZT and
the arrow points from parent to children. The lowest frequency sub-band is
at the top left, and the highest frequency sub-band is at the bottom right.

we have π/2 ≤ ωu < π and π/2 ≤ ωv < π . So the frequen-
cies of HH1 are around twice as much as those of HH2 in
each dimension. On the other hand, HL2 and HL1 also share
a similar frequency orientation that is different from the one
shared by HH2 and HH1. This is because HL2 and HL1 are
both selected out by using high filters at u-dimension but low
filters at v-dimension. For HL2, we have π/4 ≤ ωu < π/2
and 0 ≤ ωv < π/4, and for HL1, we have π/2 ≤ ωu < π

and 0 ≤ ωv < π/2. If the spatial variation components
at the frequency sub-band HL2 are found to be sufficiently
small, we expect that the DCT coefficients of HL1 are
also small.

Then, a tree could be constructed by connecting the sub-
bands of similar frequency orientations at two successive
scales as shown in Fig. 1(c). For the corresponding coefficients
of these connected sub-bands, the one at the coarse scale (i.e.,
of low frequency) is called parent, and the others at the next
finer scale (i.e., of higher frequency) of the similar frequency
orientation are called children. Note that all the parents have
four children except the LL sub-band at the coarsest scale
that have three (i.e., the other three sub-bands at the coarsest
scale) [38], [39]. Consequently, considering the similar fre-
quency orientations shared by the connected sub-bands and
the “decaying spectrum” of the coefficients [38], [39], [41],
it is reasonable to assume that if the parent coefficient

Fig. 2. 8×8 DCT coefficients are labeled to 0–63. For the top left component,
u = 1 and v = 1, while for the bottom right component, u = 8 and v = 8.
G3 is the parent coefficient of G{12,13,14,15}, and G11 is the parent coefficient
of G{44,45,46,47}.

is insignificant, the children coefficients will also be insignif-
icant with a large probability. Based on this assumption, this
tree structure might result in a few subtrees whose coeffi-
cients are all near to zero. Consequently, it is referred as
EZT [38]–[41]. Further details about EZT could be founded
in [38]–[41].

Take DCT with 8×8 coefficients as an example, which can
be treated as an depth-3 tree as shown in Fig. 2, where coef-
ficients G(u, v)(u = 1, 2, . . . , 8, v = 1, 2, . . . , 8) is labeled as
Gi(0 ≤ i ≤ 63). The parent of coefficient Gi is G[i/4] for
1 ≤ i ≤ 63, while the set of four children associated with
coefficient Gj is G{4j,4j+1,4j+2,4j+3} for 1 ≤ j ≤ 15. Coefficient
G0 is the root of the DCT coefficient tree, which has only
three children: G{1,2,3} [38].

Of course, if we consider different types of dependences
among the coefficients, other kinds of trees could also be
set up, but EZT seems to be the most popular one [38].
It has been previously used in image processing, includ-
ing image browsing, progressive transmission [32], [33] and
digital watermarking [34], and achieved superior performance.

In order to verify the rationality of the assumption of coef-
ficients correlation with EZT for spatial variation modeling,
let us conduct an experiment based on an industrial IC design
here. At first, we measure the power of a set of RO from
16 wafers (each wafer contains around 110 chips). Then for
each wafer, the DCT coefficients of the power spatial variation
can be calculated and the corresponding EZT can be set up. To
analyze correlations among these coefficients, we can calculate
the conditional probability Pi|p(i) = P(|Gi| < T||Gp(i)| < T),
where Gp(i) is the parent of Gi, and P(•|•) actually denotes
the probability that the coefficient is insignificant given that
its parent is insignificant. Then, it is found that when we set
T to 0.2, which is much smaller than the maximum mag-
nitude of the coefficients, the conditional probability Pi|p(i)

ranges from 0.78 to 0.9. In addition, the correlation coeffi-
cient between |Gp(i)| and |Gi| in this case is around 0.38. It
has been observed by the image processing community that the
correlation coefficients with EZT are around 0.35 for a large
number of image applications [40]. Consequently, there indeed
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Fig. 3. Two-state, zero-mean Gaussian mixture model can closely fit the
PDF of DCT coefficients obtained from the industrial data.

exist strong correlations among DCT coefficients of our spa-
tial variation modeling, and EZT could capture this kind of
correlations exactly.

Because the prior knowledge of coefficients characterization
could further constrains the underdetermined equations (5),
accurate and efficient characterization of coefficients correla-
tions can provide tractable and unique pattern to the solution
of (5). Based on EZT, all the dependencies among DCT coef-
ficients can be completely characterized by using the joint
probability density function. However, it could be very difficult
or even impossible to estimate and use such kind of complete
joint probability density because the number of coefficient
combination grows exponentially in terms of the number of
coefficients. Conversely, if we treat these coefficients indepen-
dently as in VP [14], [19], all the intercoefficient correlations
revealed above are totally disregarded. Therefore, it is required
to strike a balance between the above two extremes, which
means, the key and only the key correlations should be cap-
tured. Toward this goal, we introduce a probabilistic tree, i.e.,
HMT based on EZT, for coefficients modeling in this paper.
The following two features contribute to the efficiency and
flexibility of the proposed modeling scheme.

1) Considering the sparse structure, each coefficient is
modeled as a mixture Gaussian density with a hidden
state variable.

2) To characterize the key correlations between the coeffi-
cients, Markovian dependencies are introduced between
the hidden state variables. Based on the EZT of
DCT coefficients, these Markovian dependencies can be
described by HMT.

Next, we will develop the mixture density model for an
individual DCT coefficient in detail, and then extend it to HMT
model for the whole DCT transform.

1) Probabilistic Model for Marginal Distribution: In order
to characterize an individual DCT coefficient, let us restudy
the previous empirical experiment where the interesting circuit
performance is the power of ROs from 16 wafers. Fig. 3 shows
the distribution of all the calculated DCT coefficients for the
power spatial variation. It can be obviously found that for this
industrial design, probability distribution function (PDF) of
the coefficients implies a sparse structure, namely, only a few
coefficients have large value, while most coefficients are near
zero. The similar structure has been observed in [3] and [15],
including VP for spatial variation characterization [14], [19].

Fig. 4. Two-state, zero-mean Gaussian mixture model for an individual DCT
coefficient. S denotes the hidden state variable. Ps(1) denotes the correspond-
ing probability massive function (PMF) of state variable when S = 1 and
the coefficient has the low-variance Gaussian PDF. Ps(2) denotes the corre-
sponding PMF of state variable when S = 2 and the coefficient has the high-
variance Gaussian PDF. (a) Low State. (b) High State. (c) Gaussian Mixture
State.

To capture this sparse property and fit the distribution
histogram perfectly, we can set up a simple model for
each coefficient with a mixture of two states as shown
in Fig. 4.

1) Low state associated with a Gaussian distribution that
has zero-mean and small variance σL. This low state
corresponds to the coefficients with very small val-
ues. Note that the small variance means the coeffi-
cient value in this state is near to zero with a large
probability.

2) High state associated with a Gaussian distribution that
has zero-mean and large variance σH . This high state
corresponds to the coefficients with large values. The
large variance means the coefficient in this state is very
likely to hold large value far from zero.

As shown in Fig. 4, with this two-state mixture model, each
coefficient belongs either to a low state or to a high state.
Therefore, these coefficients could be completely modeled by
the variances (i.e., σL and σH) of the Gaussian distribution
corresponding to each state and the PMF of the state variable S.
Let PS(1) denote the PMF of state variable when S = 1 and
PS(2) denote the PMF when S = 2. Then with this two-state
mixture model, PS(2) = 1 − PS(1) and the PDF of individual
DCT coefficient can be expressed as

pdf(Gi) = PS(1) · pdf(Gi|S = 1) + PS(2) · pdf(Gi|S = 2). (17)

In our application, the value of DCT coefficient could be
observed while the value of S is not, so we say that the value
of state variable is hidden.

To prove validity, we use this simple two-state mixture
model to fit the PDF of DCT coefficients obtained from the
previous industrial data for the power of processors. As shown
in Fig. 3, PDF of the modeling result is almost the same as
that of the industrial data, which demonstrates its efficiency.
It is obvious that the modeling accuracy could be improved if
we use N > 2 states and allow nonzero mean value. However,
since the two-state mixture model is simple, effective, and easy
to use, we will focus on it in our applications. But the pro-
posed algorithms can also be applied to handle general mixture
models. Actually, such kind of Gaussian mixture model has
been applied in many other fields and proved to be extremely
useful [32], [33].



976 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 35, NO. 6, JUNE 2016

In summary, the general N-state Gaussian mixture model
consists of the following parameters.

1) A discrete random state variable S with the value
s, s ∈ {1, 2, . . . , N}, and the corresponding PMF,
PS(1), PS(2), . . . , PS(N).

2) The Gaussian conditional PDF for each state
pdf(Gi|S = s), i = 0, 1, . . . , PQ − 1. Then the PDF of
an individual DCT coefficient Gi can be expressed as

pdf(Gi) =
N∑

s=1

PS(s) · pdf(Gi|S = s). (18)

2) Probabilistic Model for Joint Distribution: Intuitively,
(18) can be used to capture the sparse structure of spatial vari-
ation modeling efficiently, but the correlations between DCT
coefficients as we have discussed before are totally discarded.
Ideally, we would like to find a model that not only matches
the PDF of individual coefficients but also captures coefficient
correlations. Toward this goal, we can extend the previous two-
state mixture model to Gaussian mixtures with interdependent
state variables, i.e., model each coefficient as a Gaussian mix-
ture, and allow probabilistic dependencies between the hidden
state variables so as to explore the correlations between DCT
coefficients.

Then the remaining problem is how to model the depen-
dencies between the interdependent state variables appropri-
ately. It is obvious that if we take into account all possible
dependencies to establish the complete joint PDF, the com-
plexity will become unacceptable. Fortunately, as we have
discussed before, the major correlations between the coeffi-
cients could be characterized by EZT. Therefore, we could
construct HMT based on EZT to characterize the depen-
dencies among state variables and model the whole DCT
transform.

HMT is one kind of general probabilistic graph that is
useful to model the local dependencies between random
variables [32]. In this paper, the proposed HMT shares the
same topology as that of EZT defined in Fig. 2, but each
node corresponds to the hidden state variable instead of DCT
coefficient. Dependencies between pairs of states are repre-
sented by links connecting the corresponding nodes. Actually,
HMT specifies the dependency between the parent and chil-
dren state variables as the first order Markov process, i.e.,
the children state depends only on its parent state. For exam-
ple, as in Fig. 5, all the state variables S4–S7 are children
of S1, so they all depend on S1 and only on S1. However, it
should be noted that dependencies are not simply limited to
parent–children interactions. S4–S7 may be highly correlated
due to their relationship with S1.

State variable dependencies can be characterized by state
transition probabilities. According to our numerical results
given in Section V, a large state transition probability often
appears when one node and its parent are both in low state,
while a small probability appears when the parent is in low
state but the children is in high state.

Let Si denote the hidden state variable corresponding to
DCT coefficient Gi, i = 0, 1, . . . , PQ − 1. The parameters

Fig. 5. For an individual coefficient Gi, it is modeled as Gaussian mixture
with a hidden state variable Si. In (a), the smaller black circle represents
the corresponding coefficient, and the bigger circle represents Si. Meanwhile,
to represent the intercoefficient dependencies, we link the hidden states and
establish an HMT model. (b) Truncation of HMT.

for HMT with N-state Gaussian mixture model include the
following.

1) PS0(s), the PMF of the root S0 when it takes value
s ∈ {1, 2, . . . , N}.

2) εsr
i,p(i) = PSi|Sp(i)(Si = s|Sp(i) = r), the state transition

probability that Si is in state s given Sp(i) is in state r,
where Sp(i) is parent of Si and s, r ∈ {1, 2, . . . , N}.

3) μi,s and σ 2
i,s, the mean value and variance of the DCT

coefficient Gi with Gaussian distribution given Si is in
state s.

All the model parameters can be grouped together as
a model parameter vector θ . In this paper, recall that we focus
on two-state zero-mean Gaussian mixture model, so N = 2
and μi,s = 0.

It should be noted that some conditional dependencies for
the hidden state variables are implicitly contained in the
Markovian tree connection. For state variable Si, given its par-
ent state Sp(i), the value of Si is independent of the entire
tree except for Si’s descendants. Conversely, given its children
state Sch(i), the value of Si are independent of Sch(i)’s descen-
dants. For instance, Fig. 5(b) represents a truncation of our
HMT based on EZT. For state S4, given the value of its parent
state S1, the value of S4 is independent of the entire tree except
for its descendants. Meanwhile, if given its children state S16,
the value of state S4 is independent of S16’s descendants.
Combining these correlations together, we see that given the
value of parent state S1 and the children states S16–S19,
the value of S4 is conditionally independent of the rest of
the tree.

3) Training of HMT via EM Algorithm: In order to obtain
the value of HMT parameters θ , training procedure should
be done for the DCT coefficients based on the industrial
data. Maximum likelihood (ML) principle [46] is always used
for parameter estimation. However, direct ML method [46] is
intractable here for the training of θ since the hidden state
variables S = [S0, S1, . . . , SPQ−1] are invisible. Therefore, we
introduce another widely used method, i.e., iterative expecta-
tion maximization (EM) algorithm.
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Algorithm 1 EM algorithm for HMT Training

1. Initialize the model parameters as θ0, set iteration
counter l = 0;

2. E step: Calculate the probabilities P(Si = s|η, θ l) and
P(Si = s, Sp(i) = r|η, θ l);

3. M step: Update the entries of θ l+1 to maximize the
likelihood function as:

PSi(s) = P
(

Si = s|η, θ l
)
, (19)

ε
s,r
i,p(i) =

P
(

Si = s, Sp(i) = r|η, θ l
)

P
(

Sp(i) = r|η, θ l
) , (20)

μi,s =
GiP

(
Si = s|η, θ l

)

PSi(s)
, (21)

σ 2
i,s =

(
Gi − μi,s

)2
P
(

Si = s|η, θ l
)

PSi(s)
. (22)

4. Set l = l+1. If θ converges, then stop; else, go to step 2.

The goal of EM algorithm given in Algorithm 1 is to maxi-
mize a likelihood function ln f (η|θ) which measures how well
the model parameter θ describes the coefficients η. Toward this
goal, it decouples the complex likelihood function maximiza-
tion into iterations between two simple steps, i.e., the E and
M steps. At l + 1th iteration, in E step, it calculates the two
kinds of PMF for hidden state variables: 1) P(Si = s|η, θ l)

and 2) P(Si = s, Sp(i) = r|η, θ l), i = 0, 1, . . . , PQ − 1
and s, r ∈ {1, 2, . . . , N} (θ l represents the HMT parame-
ters obtained in lth iteration) by using upward–downward
algorithm [32], [46]. In M step, it optimizes the model param-
eters θ to achieve maximum value of the likelihood function.
After the initialization of θ , the EM algorithm iterates E and
M steps until convergence. Further details about the algorithm
are referred in [31] and [32].

Additionally, since the number of available data for train-
ing could be very limited, “tying” strategy [32] can be applied
here to obtain more robust parameter estimations. It is ratio-
nal to assume that the DCT coefficients at the same level of
EZT have similar properties since they correspond to similar
components in frequency domain. Then, with the tying strat-
egy, we can allow these coefficients to share the same model
parameters, i.e., εsr

i,p(i), μi,s, and σ 2
i,s (recall that in this paper,

μi,s is set to 0). The superior performance of this tying strategy
has been proved in [32].

Once HMT training result is obtained, the PDF of each DCT
coefficient Gi can be expressed as

pdf(Gi) =
N∑

s=1

PSi(s) · pdf(Gi|Si = s) (23)

where PSi(s) can be obtained with θ , the training result
of HMT parameter vector. Then MAP estimation can be
used to optimize the unknown DCT coefficients η =
[G0, G1, . . . , GPQ−1] by solving (12) and reconstruct the
spatial variation pattern as illustrated in the following section.

B. Maximum-a-Posteriori Estimation

According to Bayesian inference and (11), to maximize the
pdf(η|B), we should deduce pdf(η) and pdf(B|η) first.

Based on (23), the PDF of η can be presented as

pdf(η) =
PQ−1∏

i=0

pdf(Gi)

=
PQ−1∏

i=0

(
N∑

s=1

PSi(s) · pdf(Gi|Si = s)

)
. (24)

Note that when HMT parameters are obtained by EM train-
ing, the probability PSi(s) [means PSi(Si = s), s = 1, 2, . . . , N]
can be calculated as a series of constants, and pdf(Gi) with
the unknown coefficient Gi is actually a sum of Gaussian dis-
tributions pdf(Gi|Si = s) with the weight PSi(s). Then pdf(η)

becomes a nonconvex function, so does the objective function
pdf(η)·pdf(B|η) in (12). But it is always complicated or even
impossible to find out the global optimum of a nonconvex
function numerically. Fortunately, as shown in the numeri-
cal results given in Section V, for the state variable Si in
HMT, the probability of a primary option Si = sip could
be much larger than that of others, i.e., the coefficient Gi

will be located in the primary state sip with a much larger
probability compared with other states. Therefore, the PDF
of Gi can be simplified as only one Gaussian distribution
pdf(Gi|Si = sip) with a weight PSi(sip). This means that pdf(η)

can be approximated by the product of a series of Gaussian
distributions corresponding to the most probable sequence of
hidden states sip, i = 0, 1, . . . , PQ − 1 for each state

pdf(η) =
PQ−1∏

i=0

(
PSi(sip) · 1√

2π · σip
· exp

(
− G2

i

2 · σ 2
ip

))
(25)

where σip corresponds to the variance of the Gaussian distribu-
tion of the primary state sip and is referred as primary variance
at the rest of this paper. Then pdf(η) becomes a convex
function.

Intuitively, we can get the most probable sequence of hidden
states by enumerating all the possibilities, and choose the one
with the ML. However, the computational complexity could
be up to O(NPQ), which is really expensive. Luckily, Viterbi
algorithm [46] is a standard method for HMT that can be used
here to find out this sequence. It should be noted that the
complexity of Viterbi algorithm is linear [i.e., O(PQ)] for its
fusion of dynamic programming.

The prior PDF in (25) has a twofold meaning.
1) Most of σip, i = 0, 1, . . . , PQ − 1 are very small as

shown in the numerical results in Section V, which indi-
cates sparse structure of DCT transform, i.e., most of
the DCT coefficients are close to zero with a large
probability.

2) The probability PSi(sip) of the state variable Si is
strongly affected by its parent with the consideration
of the state transition probability εsr

i,p(i) during the cal-
culation. The dependencies among the state variables
represent the correlations of DCT coefficients as we have
discussed before.
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On the other side, in order to calculate pdf(B|η), we can
commonly assume that the residue between the measurement
data and the recovered results t = B − A·η can be modeled
as a sequence of white Gaussian noise with the variance σ 2

t .
Then we have

pdf(B|η) = 1√
2π · σt

· exp

(
− 1

2σ 2
t

M∑

m=1

(
Bm − Am,: · η

)2
)

.

(26)

Recall that M represents the number of obtained samples and
M � PQ. The value of σt can be determined by a statistical
technique, i.e., cross-validation, in [46].

The unknowns in (25) and (26) are the coefficients η, while
PSi(sip), σip, and σt are constants previously calculated. Then
substitute (25) and (26) into (12), the optimization problem
in (10) can be transformed to

min
η

PQ−1∑

i=0

G2
i

σ 2
ip

+
M∑

m=1

(
Bm − Am,: · η

σt

)2

. (27)

Note that the optimization of (27) tries to minimize the sum
of two parts.

1) The first part can be regarded as a weighted l2-norm
for DCT coefficients. The weight 1/σ 2

ip is obtained
from HMT model and indicates the coefficient corre-
lation information. The minimization of this part can be
regarded to guarantee the sparsity of DCT coefficients
while considering their intercorrelations. But the HMT
model used here is obtained from the input, i.e., the ini-
tialized DCT coefficients that could be coarse and noisy,
which means the estimated σip could be inexact.

2) The second part refers to the normalized mean squared
error (MSE) for spatial variation modeling. Obviously
the goal of minimization for this part is to improve
the modeling accuracy. Note that the measurement sam-
ples B are introduced in this part to revise the DCT
coefficients η = [G0, G1, . . . , GPQ−1]T .

It is obvious that the objective function of (27) is convex.
Therefore, the traditional convex optimization methods, such
as interior point algorithm [45], can be applied here to obtain
the optimal coefficients η robustly and efficiently.

C. Iteration Flow

As discussed in the above section, MAP estimation takes
advantage of HMT training result to optimize the unknown
coefficients η. But the accuracy of HMT model partly depends
on the input initial coefficients, which might be coarse and
noisy. In order to refine the HMT model and σip in (27), and
figure out a convergent and accurate result, we propose an iter-
ation scheme based on HMT and Bayesian inference. During
each iteration, EM algorithm is applied first to construct the
HMT model based on the coefficients obtained from the pre-
vious iteration. Then Viterbi algorithm is used to figure out
the most possible sequence of HMT hidden states and MAP
estimation formulates the original spatial variation characteri-
zation as a convex optimization problem (27). By solving (27),
the refined coefficients for the next iteration can be calculated.

This iteration terminates until ||ηl+1 − ηl||2 < δ, where ||•||2
denotes the l2-norm, ηl denotes the coefficients obtained at lth
iteration, and δ is the threshold set as a small value, e.g., 10−4.

IV. IMPLEMENTATION DETAILS

In order to make the proposed spatial variation modeling
method practically efficient, two important implementation
issues should be considered carefully during the above iter-
ations based on HMT and Bayesian inference, i.e., the coeffi-
cient initialization for the iteration scheme and the refinement
of Bayesian inference (27). In this section, we will describe
the two issues in detail.

A. Initialization of Bayesian Inference

According to the HMT modeling process and MAP esti-
mation (27) based on Bayesian inference, the efficiency of
the proposed iteration scheme depends on both the initialized
DCT coefficient and the measurement samples B. It is obvious
that the more accurate the initialized coefficients are, the faster
the convergence rate of the iteration scheme is. Actually, we
can apply the traditional compressive sensing methods, such
as OMP algorithm [35] or l1-norm regularization [36], to ini-
tialize the coefficients by taking full advantage of the sparse
property. Then HMT modeling and Bayesian inference can
be used to capture the coefficient correlations and refine the
coarse initialization. In this paper, we take OMP as an example
for the initialization.

The goal of OMP is to figure out the sparse solution for the
optimization problem

min
η0

∥∥∥Aη0 − B
∥∥∥

2

s.t.
∥∥∥η0

∥∥∥
0

≤ p (28)

where A and B are given in (6) and (9), respectively. A can
be represented as A = [A:,0, A:,1, . . . , A:,PQ−1], where A:,i,
i = 0, 1, . . . , PQ − 1, is the column vector of A · η0 is the
initialized coefficients required to be solved for the iteration
scheme, ||•||0 denotes the l0-norm, i.e., the number of nonzero
components. p is an arbitrary integer meaning the upper bound
of the number of nonzero elements in η0 calculated by (28).
According to the sparse structure of DCT coefficients in our
application, we have p � M. Then the rest M–p elements in
η0 are set zero.

The key idea of OMP [35] is to pick up the most useful
column of A in a greedy fashion, which makes the chosen
column and the present residue related to the greatest extent.
Then its contribution is subtracted from B. The above proce-
dure should be repeated until the number of iterations is up
to p. Subsequently, the optimal result obtained at pth iteration
is regarded as the initial coefficients η0 for the iteration scheme
proposed in Section III-C. Algorithm 2 shows the detailed flow
of OMP in our application.

Algorithm 2 assumes that p is given as the input. In prac-
tice, p is unknown and often determined automatically by
cross-validation technique [46]. The key idea here is to run
Algorithm 2 repeatedly for different values of p and calculate
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Algorithm 2 OMP Algorithm
1. Initialize the residual r0 = B, the index set �0 = φ,

0 = {0, 1, . . . , PQ − 1}, the chosen columns A0 = φ,
and the iteration counter l = 1;

2. Find the index λl by solving the optimization problem:

λl = arg max
λ∈l−1

| < rl−1, A:,λ > |. (29)

where <•,•> denotes the inner product of the two
vectors.

3. Augment the index set and the matrix of chosen atoms:
�l = �l−1 ∪ {λl} and Al = [Al−1,A:,λl].

4. Solve the least square problem to obtain a new signal
estimate:

η0
l = arg min

η0

∥∥∥B − Alη
0
∥∥∥

2
. (30)

5. Calculate the new residual:

rl = B − Alη
0
l . (31)

6. Set l = l+1, l = l−1 −{λl}. If l < p, return to Step2.

the modeling error associated with each p. Once the relation-
ship between modeling error and p is known, the optimal value
of p is determined by minimizing the modeling error.

B. Refinement of Bayesian Inference

According to MAP and Bayesian inference, (27) is utilized
to optimize the DCT coefficients as discussed in Section III-B.
As shown in (27), the sum of two parts should be minimized,
i.e., the weighted l2-norm of coefficients and the normalized
MSE of spatial variation modeling. Note that for the first part,
if the estimated σip is close to zero, the correlated coefficient
Gi would be forced to take the value of zero, which might
deviate from accurate estimation especially during the early
iterations. In order to improve stability and ensure that a zero-
valued σip does not strictly prohibit a nonzero estimate of Gi at
the next step, we introduce γ = [γ0, γ1, . . . , γPQ−1](γi 
= 0)

in (27) to refine this cost function as

min
η

PQ−1∑

i=0

G2
i

σ 2
ip + γi

+
M∑

m=1

(
Bm − Am,: · η

σt

)2

. (32)

Actually, the similar refinement technique has also been
applied in reweighted l1-norm regularization method [37].
Meanwhile, (32) is still a convex optimization problem that
can be solved efficiently and accurately.

Furthermore, since spatial patterns of process variations are
often smooth as is demonstrated in [44], the magnitude of
DCT coefficients used for modeling will decay along with
the frequency increasing [42]. Hence, in order to improve the
modeling accuracy, it is rational to let the value of correspond-
ing γi decrease with the increase of coefficient frequency. In
this paper, we assume that γi for the coefficients at the same
level of the HMT have the same value due to the tying strategy
mentioned before. For different levels, γi can be empirically
set as 10(0.5−lt)(lt = 1, 2, . . . , Lt, Lt is the maximum level
of HMT).

Algorithm 3 Spatial Variation Modeling Based on HMT
1: Collect M measurement data at locations {(xm, ym); m =

1, 2, . . . , M}.
2: Initialize the DCT coefficients as η0 by applying OMP

given in Algorithm 2.
3: Set the iteration counter l = 1.
4: Set �0 = ||η0 − 0||2 and δ = 10−4, where δ is the

convergence threshold.
5: while (�l−1 > δ) do
6: Construct the HMT based on DCT coefficients ηl−1

via EM algorithm given in Algorithm 1;
7: Obtain the most possible primary state sequence

via Viterbi algorithm and determine the primary vari-
ance σip in (25) for each coefficient;

8: Calculate the variance of the residue σt in (26) via cross
validation;

9: Calculate the coefficients ηl by solving the convex
optimization (32);

10: Update �l = ||ηl − ηl−1||2;
11: Set l = l + 1;
12: end while

C. Summary

Algorithm 3 summarizes the major steps of the pro-
posed spatial variation modeling method in this paper. At
the beginning, OMP algorithm is applied to initialize the
DCT coefficients. Then during each iteration, with the coef-
ficients obtained from previous iteration, HMT model is
established, based on which, the original modeling prob-
lem (5) is transformed to a convex programming (32) via MAP
estimation. Afterwards, DCT coefficients could be updated.
Once we figure out the convergent result, the spatial vari-
ation model {g(x, y); x = 1, 2, . . . , P, y = 1, 2, . . . , Q} can
be established by IDCT as shown in (4). Applying HMT,
the correlations and sparsity of the modeling coefficients can
be captured exactly. Therefore, given the same number of
sampling points, the modeling accuracy of proposed method
can be improved evidently compared with the existing meth-
ods, which will be demonstrated by the industrial examples
in Section V. Actually, even in the cases with little correla-
tions among the DCT coefficients, the proposed method could
still achieve the similar modeling accuracy as the previous
VP method [19] (whose key algorithm is l1-norm regulariza-
tion). This is because sparsity of the coefficients is considered
carefully in all these methods.

In what follows, we will demonstrate the efficacy of the
proposed spatial variation modeling method by some industrial
examples.

V. NUMERICAL EXAMPLES

In this section, we validate the proposed algorithm by con-
structing the spatial variation models of power and frequency
based on the measurement data collected for a set of ROs. We
do not use the data set in [19] for our experiment, because
it is proprietary and inaccessible to us. All the numerical
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Fig. 6. Measurement power values of 108 industrial chips from the same
wafer are mapped to 10–16, which show significant spatial variations.

Fig. 7. PMFs of the primary states for all the 256 DCT coefficients. It can
be found that the PMFs for more than 92% primary states are larger than 0.9.

experiments are performed on a computer with 3.2 GHz CPU
and 8 GB memory.

A. Power Measurement Data

We consider the power data measured from 108 industrial
chips on the same wafer as shown in Fig. 6. It is observed
that the power value significantly varies from chip to chip
due to process variation. In order to capture the power spatial
variations at wafer-level, a 2-D function g(x, y) is utilized to
model the power, where x = 1, 2, . . . , 14 and y = 1, 2, . . . , 14.
Each coordinate point (x, y) corresponds to a chip. Meanwhile,
for simplicity, a two-state zero-mean HMT is applied for DCT
coefficient modeling.

Since the two types of prior knowledge, i.e., sparse structure
and coefficient correlations, are the key fundamentals of our
proposed HMT method, we will give the training result of
HMT based on power data to demonstrate the rationality of
these assumptions first, then show the whole modeling results
for power variations.

1) Prior Knowledge of DCT Coefficients: Fig. 7 shows the
PMF of primary states and Fig. 8 gives the histogram of pri-
mary variances corresponding to all coefficients. From Fig. 7,
we can find that the PMFs for more than 92% primary states
obtained by Viterbi algorithm are larger than 0.9. This means
that for this two-state HMT model, the probability of the pri-
mary state is much larger than the other option. Therefore, it is

Fig. 8. Histogram of primary variances σip, i = 0, . . . , PQ − 1.
σip corresponding to more than 80% coefficients are close to zero.

Fig. 9. Conditional probabilities P
(
Si = s, Sp(i) = r

)
for 256 DCT coeffi-

cients, where s, r ∈ {1, 2}, “1” represents low state, and “2” represents high
state. (a) P(Si = 1, Sp(i) = 1). (b) P(Si = 2, Sp(i) = 1). (c) P(Si = 1,
Sp(i) = 2). (d) P(Si = 2, Sp(i) = 2).

exactly rational to approximate pdf(η) by only the product of
a series of Gaussian distributions corresponding to the primary
states as given in (25). From Fig. 8, it can be found that the
primary variances (σip, i = 0, 1, . . . , PQ−1) corresponding to
more than 80% coefficients are close to zero. This indicates
the sparse structure of the coefficients, i.e., most coefficients
possess low-variance Gaussian PDF and would be close to
zero with very large probability.

Fig. 9 gives the conditional probabilities P(Si = s,
Sp(i) = r), s, r ∈ {1, 2} for all the coefficients obtained from
the two-state zero-mean HMT training result. From Fig. 9,
we can find that P(Si = 1, Sp(i) = 1) is concentrated near 1
as in Fig. 9(a), while P(Si = 2, Sp(i) = 1) is concentrated
near 0 as in Fig. 9(b). This implies that for this HMT model,
if the parent is in low state, i.e., Sp(i) = 1, the children are
more likely to be in low state (i.e., Si = 1) than in high state
(i.e., Si = 2). Similarly, from Fig. 9(c) and (d), we can find that
if the parent is in high state, the children are more likely to be
in high state than in low state. The second property of DCT
transform, i.e., coefficient correlations, is reflected by Fig. 9
exactly.

From the above numerical results, we can find that it is
rational to regard the two types of prior knowledge, i.e., sparse



LIAO et al.: EFFICIENT SPATIAL VARIATION MODELING OF NANOSCALE ICs VIA HMT 981

structure and coefficient correlations, as the key fundamentals
for our modeling method based on HMT.

2) Spatial Variation Modeling: In order to quantitatively
evaluate the accuracy of the proposed HMT method for
power variation modeling, we repeatedly run Algorithm 3 to
predict the wafer-level spatial variations with different num-
bers (i.e., M) of spatial samples. For testing and com-
parison purposes, we further consider three other existing
methods: 1) l1-norm regularization [19]; 2) OMP [35]; and
3) reweighting l1-norm regularization [37]. The comparison
against l1-norm regularization is based on the source code
implemented by Carnegie Mellon University. All the heuristic
techniques described in [19], e.g., modified-Latin hypercube
sampling and cross-validation, have also been applied in our
experiment.

The accuracy of prediction metric is defined as the average
error

EAVG =
√√√√
∑

x
∑

y

[
g(x, y) − ĝ(x, y)

]2
∑

x
∑

y

[
g(x, y)

]2 (33)

where g(x, y) and ĝ(x, y) denote the measured value and the
estimated value of the power at location (x, y), respectively.

Fig. 10 shows the predication error [both the average error
EAVG calculated by (33) and its standard deviation] as a func-
tion of the number of samples (i.e., M) for different algorithms.
It is clear that the proposed HMT method achieves supe-
rior accuracy than the other algorithms. This is because the
proposed HMT method takes full advantage of two inher-
ent properties of DCT coefficient, i.e., the sparse structure
and coefficient correlations, while the later one is completely
ignored in all the traditional methods. Furthermore, OMP
method and reweighted l1-norm regularization method show
relatively larger recovery error in this case. This is because
both of these algorithms favor strong sparsity in frequency
domain. However, as shown in Fig. 11, the DCT coefficients
of dynamic power estimated in one run are only approximately
(but not extremely) sparse, i.e., most coefficients are observed
with small values but the number of coefficients with large
values is still considerable.

Meanwhile, another two important observations could
be made based on Fig. 11. First, similar as VP
methods [14], [19], substantial high-frequency components
are contained in G(u, v), implying that the spatial varia-
tion sampling rate could not be largely reduced due to
Nyquist–Shannon sampling theorem by using the traditional
modeling methods. Second, G(u, v) is correlated, i.e., if the
parent coefficient is close to zero, the children are also very
likely to be zero.

Particularly, Fig. 12 shows the power data predicted from
40 tested chips (i.e., M = 40) by the proposed HMT method.
Comparing Figs. 6 and 12, it can be found that the power
spatial variation is predicted well. To quantitatively assess the
prediction accuracy of each chip, we calculate the following
relative error:

EREL(x, y) =
∣∣∣∣
g(x, y) − ĝ(x, y)

g(x, y)

∣∣∣∣. (34)

Fig. 10. Average prediction error (both the average error and the stan-
dard deviation) of different algorithms is estimated by 100 repeated runs. It
suggests that the proposed HMT method could largely reduce the prediction
error, especially when the number of samples M ranges from 30 to 80 in this
example.

Fig. 11. DCT coefficients (magnitude) of the power show a unique pattern
that is approximately sparse and correlated.

Fig. 12. Power value predicted from 40 tested chips by the proposed HMT
method.

This metric quantitatively measures the difference between
the measurement data (i.e., Fig. 6) and prediction results
(i.e., Fig. 12) for every chip. Fig. 13 shows the histogram
of the relative error calculated for all the chips on the same
wafer with 40 tested chips. Note that the relative error is less
than 10% for most chips in this example.

For the modeling cost of spatial variations, compared with
the coefficient computation in (5), the silicon area overhead
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Fig. 13. Histogram of the relative errors EREL calculated by (34) for all
chips in the same wafer by applying the proposed HMT method.

Fig. 14. Measurement frequency values of 109 industrial chips from the
same wafer show significant spatial variations.

and the testing time required to generate sampling points is
much more expensive. For instance, today’s advanced pro-
cessor chip typically applies hundreds of on-chip ROs to
monitor process variations [11] and the reliability test of
one chip often consumes days of time. On the contrary, for
the calculation of the modeling coefficients, our proposed
method takes averagely 100 s, l1-norm regularization (i.e.,
the existing VP method [19]) takes averagely 480 s (because
cross-validation is utilized to screen out high frequency com-
ponents), reweighted l1-norm regularization takes more than
2500 s (because an iterative scheme is applied to enhance
sparsity further), and OMP only takes about 5 s (because it
only uses simple inner-product computations to select impor-
tant basis function). Therefore, the number of sampling points
could be taken as a metric for cost comparison. Note that as
shown in Fig. 10, in order to model the power distribution
with a given error specification EAVG = 0.06 in our case, the
number of sampling points required for the proposed method
is around 50, while the smallest number for other approaches
is around 85. Namely, compared to the existing approaches,
the proposed method could achieve up to 75% cost reduction
without any surrender of modeling accuracy.

B. Frequency Measurement Data

We consider the frequency of ROs collected from the same
wafer for the same circuit design at this section. These RO

Fig. 15. Average prediction error (both average error and standard deviation)
of different algorithms is estimated by 100 repeated runs.

Fig. 16. DCT coefficients (magnitude) of the frequency show a unique pattern
that is sparse and correlated.

Fig. 17. Frequency value predicted from 40 tested powers by the proposed
HMT algorithm.

data are of great significance for process monitoring and
control because they are strongly correlated with the final
chip performance [11], [14]. Fig. 14 shows the measurement
data of frequency as a function of location (x, y).

We apply different algorithms to predict the spatial variation
based on different number of sampling data. Fig. 15 shows the
average error calculated by (33). Similar to the previous exam-
ple, the average errors are calculated from 100 repeated runs.
Note that for this example, the proposed HMT method also
achieves better accuracy than other three traditional techniques
in general.
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Fig. 18. Histogram of the relative errors of the proposed HMT method
calculated by (34) for all chips in the same wafer.

Fig. 16 gives DCT coefficients after applying the pro-
posed method in one run. Similar to the previous example,
some high-frequency components and the correlations of
DCT coefficients can also be observed. However, compared
with the dynamic power modeling, whose coefficients for
one run are shown in Fig. 11, the frequency components
of this case are obviously further sparser. Therefore, the
modeling errors of OMP, reweighted l1-norm regularization
and l1-norm regularization are almost the same as shown
in Fig. 15.

Fig. 17 shows the frequency of RO predicted from 40 exam-
ples by our proposed HMT method. Fig. 18 further shows
the histogram of the relative error calculated for all chips
using (34). The relative error is less than 5% for most chips
in this example.

VI. CONCLUSION

In this paper, we propose a novel method based on HMT
for efficient spatial variation modeling. Applying the proposed
method, HMT is introduced to model DCT coefficients accu-
rately by covering both the sparse structure and the correlation
properties for DCT transform in frequency domain. MAP esti-
mation is used to reformulate the spatial variation modeling
as a typical convex optimization problem. Numerical results
demonstrate that the proposed HMT method could achieve up
to 40% accuracy improvement at the same low measurement
cost compared with the existing approaches including OMP,
l1-norm regularization, and reweighted l1-norm regularization.

Furthermore, though EZT is utilized in this paper to exploit
the correlations between DCT coefficients, other correlation
models may be applied for spatial variation modeling and
analysis. In our future research, we will further study the mod-
eling accuracy and computational cost of different correlation
models.
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