
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 35, NO. 8, AUGUST 2016 1255

Bayesian Model Fusion: Large-Scale Performance
Modeling of Analog and Mixed-Signal Circuits

by Reusing Early-Stage Data
Fa Wang, Student Member, IEEE, Paolo Cachecho, Wangyang Zhang, Member, IEEE,

Shupeng Sun, Student Member, IEEE, Xin Li, Senior Member, IEEE,
Rouwaida Kanj, Senior Member, IEEE, and Chenjie Gu, Member, IEEE

Abstract—Efficient performance modeling of today’s analog
and mixed-signal circuits is an important yet challenging task,
due to the high-dimensional variation space and expensive circuit
simulation. In this paper, we propose a novel performance model-
ing algorithm that is referred to as Bayesian model fusion (BMF)
to address this challenge. The key idea of BMF is to borrow
the information collected from an early stage (e.g., schematic
level) to facilitate efficient performance modeling at a late stage
(e.g., post layout). Such a goal is achieved by statistically mod-
eling the performance correlation between early and late stages
through Bayesian inference. Furthermore, to make the proposed
BMF method of practical utility, four implementation issues,
including: 1) prior mapping; 2) missing prior knowledge; 3) fast
solver; and 4) prior and hyper-parameter selection, are carefully
considered in this paper. Two circuit examples designed in a com-
mercial 32 nm CMOS silicon on insulator process demonstrate
that the proposed BMF method achieves up to 9× runtime speed-
up over the traditional modeling technique without surrendering
any accuracy.

Index Terms—Analog and mixed-signal (AMS) circuits,
Bayesian model fusion (BMF), performance modeling, process
variation.

I. INTRODUCTION

THE AGGRESSIVE scaling of integrated circuits leads
to large-scale process variations that cannot be easily
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reduced by foundries. Process variations manifest themselves
as the uncertainties associated with the geometrical and elec-
trical parameters of semiconductor devices. These device-level
variations significantly impact the parametric yield of analog
and mixed-signal (AMS) circuits and, hence, must be appropri-
ately modeled, analyzed, and optimized at all levels of design
hierarchy [2]–[6].

To address this variability issue, various techniques for
performance modeling have been developed during the past
two decades [7]–[16]. The objective is to approximate the
circuit-level performance (e.g., gain of an analog amplifier)
as an analytical (e.g., linear, quadratic, etc.) function of
device-level variations (e.g., �VTH,�TOX, etc.). Once such
a performance model is available, it can be applied to a num-
ber of important applications such as estimating parametric
yield [17], extracting worst-case corner [18], optimizing cir-
cuit design [19]–[23], etc.

While performance modeling was extensively studied in
the past, the evolution of today’s AMS circuits has posed
a number of new challenges in this area. In particular, the
recent adoption of several emerging design methodologies
(e.g., reconfigurable analog design, adaptive post-silicon tun-
ing, etc.) leads to highly complex AMS systems that integrate
numerous nanoscale devices. The remarkable increase of AMS
circuit size results in a twofold consequence.

1) High-Dimensional Variation Space: A large number of
device-level random variables must be used to model
the process variations associated with a large-scale AMS
system. For example, about 40 independent random vari-
ables are required to model the device mismatches of
a single transistor for a commercial 32 nm CMOS silicon
on insulator (SOI) process. If an AMS system contains
104 transistors, there are about 4×105 random variables
in total to capture the corresponding device-level vari-
ations, resulting in a high-dimensional variation space.
In addition, it is extremely difficult, if not impossible,
to preselect a subset of these random variables for vari-
ation analysis, since the impact of device mismatches is
circuit- and performance-dependent.

2) Expensive Circuit Simulation: The computational cost
of circuit simulation substantially increases, as the AMS
circuit size becomes increasingly large. For instance, it
may take a few days or even a few weeks to run the
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transistor-level simulation of a large AMS circuit such
as phase-locked loop or high-speed link.

These recent trends of today’s AMS circuits make perfor-
mance modeling extremely difficult. On one hand, a large
number of simulation samples must be generated in order to fit
a high-dimensional model. On the other hand, creating a single
sampling point by transistor-level simulation can take a large
amount of computational time. The challenging issue here is
how to make performance modeling computationally afford-
able for today’s large-scale AMS circuits. This fundamental
issue has not been appropriately addressed by the state-
of-the-art performance modeling techniques (e.g., the recent
sparse regression algorithms based on orthogonal matching
pursuit (OMP) [13] or elastic net regularization [15]).

In this paper, we propose a new Bayesian model
fusion (BMF) technique to facilitate large-scale performance
modeling of AMS circuits. The proposed BMF method is
motivated by the fact that today’s AMS circuits are often
designed via a multistage flow. Namely, an AMS design often
spans three core stages: 1) schematic design; 2) layout design;
and 3) chip manufacturing and testing. At each stage, simula-
tion or measurement data are collected to validate the circuit
design, before moving to the next stage. The traditional perfor-
mance modeling techniques rely on the data at a single stage
only and they completely ignore the data that are generated at
other stages. The key idea of BMF, however, is to reuse the
early-stage data when fitting a late-stage performance model.
As such, the performance modeling cost can be substantially
reduced.

Mathematically, the proposed BMF method is derived from
the theory of Bayesian inference [24]. Starting from a set
of early-stage (e.g., schematic-level) sampling points, BMF
first approximates an early-stage performance model based on
these samples. The early-stage model is used as a template
to define our prior knowledge for late-stage (e.g., post-layout)
performance modeling. Specifically, a prior distribution is sta-
tistically defined for the late-stage model coefficients. The
prior knowledge is then combined with very few late-stage
sampling points to solve the late-stage model coefficients
via Bayesian inference. From this point of view, by fusing
the early-stage and late-stage performance models through
Bayesian inference, we only need a small number of late-
stage sampling points to fit a high-dimensional late-stage
model, thereby significantly reducing the computational cost
for performance modeling.

BMF was previously proposed for parametric yield esti-
mation of AMS circuits [25] where Bayesian inference was
used to estimate the probability distribution of AMS perfor-
mance metrics. In this paper, we further extend the idea of
BMF to performance modeling. Compared to other traditional
performance modeling methods, BMF reduces the number of
required sampling points by up to 9× without surrendering
any accuracy, as will be demonstrated by our experimental
results in Section V.

The remainder of this paper is organized as follows.
In Section II, we review the important background on perfor-
mance modeling, and then describe our proposed BMF method
in Section III. Several implementation issues are discussed

in Section IV to further improve the modeling accuracy and
reduce the computational cost of BMF. The efficacy of BMF is
demonstrated by several circuit examples in Section V. Finally,
we conclude in Section VI.

II. BACKGROUND

A. Performance Model

Given an AMS circuit (e.g., an analog amplifier), its per-
formance (e.g., gain) may vary due to process variations. In
the process design kit, a set of independent random variables
with standard normal distribution

x = [ x1 x2 · · · xR
]T (1)

are usually used to model device-level process variations. The
objective of performance modeling is to approximate the cir-
cuit performance as an analytical function of the device-level
variations

f (x) ≈
M∑

m=1

αm · gm(x) (2)

where f represents the performance of interest, {αm; m =
1, 2, . . . , M} contains the model coefficients, {gm(x); m =
1, 2, . . . , M} contains the basis functions, and M is the total
number of basis functions. In this paper, we adopt orthonor-
mal polynomials [26] as our basis functions. Namely, the
basis functions {gm(x); m = 1, 2, . . . , M} are normalized and
orthogonal (i.e., orthonormal)

∫ +∞

−∞
gi(x) · gj(x) · pdf(x) · dx =

{
1 (i = j)
0 (i �= j)

(3)

where pdf(x) is the probability density function of x. A sim-
ple 1-D example of orthonormal polynomials with normally
distributed x can be expressed as [13], [26]

g1(x) = 1 g2(x) = x g3(x) = 1√
2

· (x2 − 1
)

. . . . (4)

The 1-D case in (4) can be further extended to the 2-D case

g1(x1, x2) = 1 g2(x1, x2) = x1

g3(x1, x2) = x2 g4(x1, x2) = 1√
2

· (x2
1 − 1

)

g5(x1, x2) = x1 · x2 · · ·
. (5)

More details about orthonormal polynomials can be found
in [26].

The performance model in (2), once available, can be
applied to several important applications such as estimat-
ing parametric yield [17], extracting worst-case corner [18],
optimizing circuit design [19]–[23], etc.

B. Least-Squares Fitting

In order to determine the performance model in (2), we need
to find the model coefficients {αm; m = 1, 2, . . . , M}. Toward
this goal, the traditional least-squares fitting method first gen-
erates a set of sampling points and then solves the model
coefficients from the following linear equation [27]:

G · α = f (6)
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where

α = [α1 α2 · · · αM
]T (7)

f = [ f (1) f (2) · · · f (K)
]T

(8)

G =

⎡

⎢⎢⎢⎢
⎣

g1
(
x(1)
)

g2
(
x(1)
) · · · gM

(
x(1)
)

g1
(
x(2)
)

g2
(
x(2)
) · · · gM

(
x(2)
)

...
...

...
...

g1
(
x(K)
)

g2
(
x(K)
)

gM
(
x(K)
)

⎤

⎥⎥⎥⎥
⎦

. (9)

In (7)–(9), x(k) and f (k) are the values of x and f (x) at the kth
sampling point, respectively, and K represents the total number
of sampling points. The number of sampling points (i.e., K)
should be greater than the number of unknown coefficients
(i.e., M). As such, the linear equation in (6) is overdetermined
and the unknown model coefficients {αm; m = 1, 2, . . . , M}
are determined by solving its least-squares solution.

When the aforementioned least-squares fitting method is
applied to high-dimensional performance modeling with many
unknown model coefficients, it requires a large number of
sampling points to form the overdetermined linear equation
in (6). Note that each sampling point is generated by running
an expensive transistor-level simulation. It, in turn, implies that
the least-squares fitting approach can be extremely expensive
for high-dimensional performance modeling.

C. Sparse Regression

Recently, several sparse regression algorithms have been
developed to address the complexity issue associated with
least-squares fitting [11]–[16], [28]. The key idea is not to
solve an overdetermined linear equation. Instead, the unknown
model coefficients are uniquely determined by solving an
underdetermined linear equation. This goal is achieved by
exploiting the fact that most model coefficients of a high-
dimensional performance model are close to zero. In other
words, the unknown model coefficients carry a unique sparse
pattern. The sparse regression algorithms were particularly
developed to solve these sparse coefficients from a small
number of sampling points. As such, the simulation cost of
generating the required sampling points is greatly reduced.

OMP is a commonly used sparse regression technique [13].
OMP applies a greedy algorithm to identify a set of important
basis functions and use them to approximate the performance
metric of interest. In particular, OMP repeatedly selects a sin-
gle most important basis function at each iteration step. Such
a basis function is selected by maximizing the correlation
between the basis function and the current modeling residual.
The aforementioned iteration steps continue until a sufficiently
large number of basis functions are chosen to accurately
approximate the performance metric. More details about OMP
can be found in [13].

While sparse regression has been successfully applied to
many practical applications, it still requires a large number
of (e.g., 103) sampling points to fit a high-dimensional per-
formance model [12], [13]. Therefore, it remains ill-equipped
for modeling large-scale AMS circuits where running a single
transistor-level simulation to generate one sampling point may

take a few days or even a few weeks. Motivated by this obser-
vation, we will propose a new BMF technique in this paper
to further reduce the number of required simulation samples
and, hence, the computational cost for large-scale performance
modeling.

III. BAYESIAN MODEL FUSION

Unlike the traditional sparse regression approach that fits
the sparse performance model based on the simulation data at
a single stage only (e.g., post-layout simulation data), BMF
attempts to identify the underlying pattern of the unknown
model coefficients by reusing the early-stage data (e.g.,
schematic-level simulation data) in order to efficiently fit
a late-stage (e.g., post-layout) performance model. In par-
ticular, BMF consists of the following two major steps:
1) statistically defining the prior knowledge for the unknown
model coefficients based on the early-stage simulation data and
2) optimally determining the late-stage performance model by
combining the prior knowledge and very few late-stage simula-
tion samples. In this section, we will discuss the mathematical
formulation of these two steps and highlight the novelty.

A. Prior Knowledge Definition

We consider two different performance models: 1) the early-
stage model fE(x) and 2) the late-stage model fL(x)

fE(x) ≈
M∑

m=1

αE,m · gm(x) (10)

fL(x) ≈
M∑

m=1

αL,m · gm(x) (11)

where {αE,m; m = 1, 2, . . . , M} and {αL,m; m = 1, 2, . . . , M}
represent the early-stage and late-stage model coefficients,
respectively. In (10) and (11), we assume that the early-stage
model fE(x) and the late-stage model fL(x) share the same
basis functions. More complicated cases where fE(x) and fL(x)

are approximated by different basis functions will be further
discussed in Section IV.

The early-stage model fE(x) is fitted from the early-stage
simulation data. In practice, the early-stage simulation data are
collected to validate the early-stage design, before we move
to the next stage. For this reason, we should already know
the early-stage model fE(x) before fitting the late-stage model
fL(x). Namely, we assume that the early-stage model coeffi-
cients {αE,m; m = 1, 2, . . . , M} are provided as the input to our
proposed BMF method for late-stage performance modeling.

Given the early-stage model fE(x), we first extract the prior
knowledge that can be used to facilitate efficient late-stage
modeling. To this end, we propose to learn the underly-
ing pattern of the late-stage model coefficients {αL,m; m =
1, 2, . . . , M} based on the early-stage model coefficients
{αE,m; m = 1, 2, . . . , M}. Remember that both the early-stage
and late-stage models are fitted for the same performance
metric of the same circuit. Their model coefficients should
be similar. We statistically represent such prior knowledge
as a probability density function (PDF) that is referred to
as the prior distribution [24]. In particular, we consider the
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Fig. 1. Simple example of our proposed zero-mean prior distribution is shown
for two model coefficients αL,1 and αL,2. The coefficient αL,1 is possibly
close to zero, since its prior distribution is narrowly peaked around zero. The
coefficient αL,2 can possibly be far away from zero, since its prior distribution
widely spreads over a large range.

following two different cases to define the prior distribution:
1) zero-mean prior distribution and 2) nonzero-mean prior
distribution.

1) Zero-Mean Prior Distribution: If the early-stage model
coefficient αE,m has a large (or small) magnitude, it is likely
that the late-stage model coefficient αL,m also has a large (or
small) magnitude. Such prior knowledge can be mathemati-
cally encoded as a zero-mean Gaussian distribution

pdf
(
αL,m

) ∼ Gauss
(
0, σ 2

m

)
(m = 1, 2, . . . , M) (12)

where the standard deviation σm is a parameter that encodes
the magnitude information of the model coefficient αL,m. If the
standard deviation σm is small, the prior distribution pdf(αL,m)

is narrowly peaked around zero, implying that the coefficient
αL,m is possibly close to zero. Otherwise, if the standard devia-
tion σm is large, the prior distribution pdf(αL,m) widely spreads
over a large range and the coefficient αL,m can possibly take
a value that is far away from zero. Fig. 1 shows a simple
example of our proposed zero-mean prior distribution for two
model coefficients αL,1 and αL,2 where σ1 is small and σ2
is large.

Given (12), we need to appropriately determine the standard
deviation σm to fully specify the prior distribution pdf(αL,m).
The value of σm should be optimized so that the probability
distribution pdf(αL,m) correctly represents our prior knowl-
edge. In other words, by appropriately choosing the value of
σm, the prior distribution pdf(αL,m) should take a large value
(i.e., a high probability) at the location where the actual late-
stage model coefficient αL,m occurs. However, we only know
the early-stage model coefficient αE,m, instead of the late-stage
model coefficient αL,m, at this moment. Remember that αE,m

and αL,m are expected to be similar. Hence, the prior distribu-
tion pdf(αL,m) should also take a large value at αL,m = αE,m.
Based on this criterion, the optimal prior distribution pdf(αL,m)

can be found by maximizing the probability for αE,m to occur

max
σm

pdf
(
αL,m = αE,m

)
(m = 1, 2, . . . , M) . (13)

Namely, given the early-stage model coefficient αE,m, the opti-
mal standard deviation σm is determined by the maximum
likelihood estimation in (13).

To solve σm from (13), we consider the following first-order
optimality condition:

d

dσm
pdf
(
αL,m = αE,m

) = 0 (m = 1, 2, . . . , M) . (14)

Substituting (12) into (14) yields

1√
2π · σm

· exp

(

− α2
E,m

2 · σ 2
m

)

·
(

α2
E,m

σ 3
m

− 1

σm

)

= 0

(m = 1, 2, . . . , M). (15)

The optimal value of σm is equal to

σm = ∣∣αE,m
∣
∣ (m = 1, 2, . . . , M) . (16)

Equation (16) reveals an important fact that the optimal stan-
dard deviation σm is simply equal to the absolute value of the
early-stage model coefficient αE,m. This observation is con-
sistent with our intuition. Namely, if the early-stage model
coefficient αE,m has a large (or small) magnitude, the late-
stage model coefficient αL,m should also have a large (or
small) magnitude and, hence, the standard deviation σm should
be large (or small), as shown in Fig. 1.

To complete the definition of the prior distribution for all
late-stage model coefficients {αL,m; m = 1, 2, . . . , M}, we fur-
ther assume that these coefficients are statistically independent.
Their joint distribution is represented as

pdf(αL) =
M∏

m=1

pdf
(
αL,m

)

= 1
(√

2π
)M ·∏M

m=1

∣
∣αE,m

∣
∣

· exp

(

−
M∑

m=1

α2
L,m

2 · α2
E,m

)

(17)

where

αL = [αL,1 αL,2 · · · αL,M
]T (18)

contains all late-stage model coefficients. The independence
assumption in (17) simply implies that we do not know the
correlation information among these coefficients as our prior
knowledge. The correlation information will be learned from
the late-stage simulation data, when the posterior distribution
is calculated by the Bayesian inference in Section III-B.

2) Nonzero-Mean Prior Distribution: An alternative
approach of prior definition is to construct a nonzero-
mean Gaussian distribution for each late-stage model coef-
ficient αL,m

pdf
(
αL,m

) ∼ Gauss
(
αE,m, λ2 · α2

E,m

)
(m = 1, 2, . . . , M)

(19)

where αE,m and λ2 · α2
E,m are the mean and variance, respec-

tively, and λ is a hyper-parameter that can be determined by
cross-validation as will be discussed in detail in Section IV-D.
Fig. 2 shows a simple example of our proposed nonzero-mean
prior distribution for two model coefficients αL,1 and αL,2
where αE,1 is small and αE,2 is large.

The prior distribution in (19) has a twofold meaning. First,
the Gaussian distribution pdf(αL,m) is peaked at its mean value
αL,m = αE,m, implying that the early-stage coefficient αE,m

and the late-stage coefficient αL,m are likely to be similar. In
other words, since the Gaussian distribution pdf(αL,m) expo-
nentially decays with (αL,m −αE,m)2, it is unlikely to observe
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Fig. 2. Simple example of our proposed nonzero-mean prior distribution is
shown for two model coefficients αL,1 and αL,2. The coefficient αL,1 possibly
takes a small magnitude, since its prior distribution is narrowly peaked around
a small value. The coefficient αL,2 possibly takes a large magnitude, since its
prior distribution widely spreads over a large value.

a late-stage coefficient αL,m that is extremely different from
the early-stage coefficient αE,m. Second, the standard deviation
of the prior distribution pdf(αL,m) is proportional to |αE,m|.
It means that the absolute difference between the late-stage
coefficient αL,m and the early-stage coefficient αE,m can be
large (or small), if the magnitude of the early-stage coef-
ficient |αE,m| is large (or small). Restating in words, each
late-stage coefficient αL,m has been provided with a rela-
tively equal opportunity to deviate from the corresponding
early-stage coefficient αE,m.

Similar to (17), we again assume that all late-stage model
coefficients {αL,m; m = 1, 2, . . . , M} are statistically indepen-
dent and their joint distribution is represented as

pdf(αL) =
M∏

m=1

pdf
(
αL,m

) = 1
(√

2π · λ
)M ·

M∏

m=1

∣∣αE,m
∣∣

· exp

(

−
M∑

m=1

(
αL,m − αE,m

)2

2 · λ2 · α2
E,m

)

. (20)

For a given performance modeling problem, it is impor-
tant to determine whether a nonzero-mean or zero-mean prior
distribution is preferred. Intuitively, a nonzero-mean prior
distribution provides stronger prior knowledge than a zero-
mean prior distribution. The nonzero-mean prior distribution
encodes both the sign and the magnitude information about
the late-stage model coefficients, while the zero-mean prior
distribution encodes the magnitude information only. From
this point of view, a nonzero-mean prior distribution is pre-
ferred, if the early-stage and late-stage model coefficients are
extremely close and, hence, the prior knowledge learned from
the early-stage model coefficients is highly accurate. On the
other hand, if the early-stage and late-stage model coeffi-
cients are substantially different, we should not pose an overly
strong prior distribution and, hence, a zero-mean prior distri-
bution is preferred in this case. The aforementioned problem
of prior selection problem will be further discussed in detail
in Section IV-D.

B. Maximum-A-Posteriori Estimation

Once the prior distribution pdf(αL) is defined by (17)
or (20), we will combine pdf(αL) with K late-stage simulation
samples {(x(k), f (k)

L ); k = 1, 2, . . . , K}, where x(k) and f (k)
L are

the values of x and fL(x) at the kth sampling point, respectively,

to solve the late-stage model coefficients αL by maximum-
a-posteriori (MAP) estimation. The key idea of MAP is to
find the posterior distribution [24], i.e., the conditional PDF
pdf(αL|fL) where

fL =
[

f (1)
L f (2)

L · · · f (K)
L

]T
(21)

contains all late-stage simulation samples that are collected.
Intuitively, the posterior distribution pdf(αL|fL) indicates the
remaining uncertainty of αL, after we observe K late-stage
simulation samples. Here, since αL is a random variable, it
is described by a probability distribution, instead of a deter-
ministic value. MAP attempts to find the optimal value of
αL to maximize the posterior distribution pdf(αL|fL). Namely,
it aims to find the solution αL that is most likely to occur
according to the posterior distribution.

Based on Bayes’ theorem, the posterior distribution
pdf(αL|fL) is proportional to the prior distribution pdf(αL)

multiplied by the likelihood function pdf(fL|αL) [24]

pdf(αL|fL) ∝ pdf(αL) · pdf( fL|αL). (22)

The prior distribution pdf(αL) is already defined by (17)
or (20). To derive the likelihood function pdf(fL|αL), we
further assume that the error for the late-stage performance
model fL(x) follows a zero-mean Gaussian distribution and,
hence, (11) can be rewritten as:

fL(x) =
M∑

m=1

αL,m · gm(x) + εL (23)

where εL denotes the modeling error with the distribution

pdf(εL) = 1√
2π · σ0

· exp

(

− ε2
L

2 · σ 2
0

)

∼ N
(

0, σ 2
0

)
. (24)

In (24), the standard deviation σ0 controls the magnitude of
the modeling error.

Given (23) and (24), since the modeling error at the kth
simulation sample

(
x(k), f (k)

L

)
is simply one sampling point of

the random variable εL, it follows the Gaussian distribution:

f (k)
L −

M∑

m=1

αL,m · gm

(
x(k)
)

∼ N
(

0, σ 2
0

)
. (25)

Therefore, the probability of observing the kth sampling
point is

pdf
(

f (k)
L

∣∣
∣αL

)
= 1√

2π · σ0

× exp

⎧
⎨

⎩
− 1

2 · σ 2
0

·
[

f (k)
L −

M∑

m=1

αL,m · gm

(
x(k)
)
]2
⎫
⎬

⎭
.

(26)

Assume that all sampling points are independently generated,
we can write the likelihood function pdf(fL|αL) as

pdf( fL|αL) =
K∏

k=1

pdf
(

f (k)
L

∣
∣∣αL

)
(27)
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which is a multivariate Gaussian distribution. It is straight-
forward to prove that if both pdf(αL) and pdf(fL|αL) follow
Gaussian distributions, the posterior distribution pdf(αL|fL)

also follows a Gaussian distribution [29]. In what follows,
we will derive the posterior distribution pdf(αL|fL) and,
consequently, the MAP estimation of the late-stage model
coefficients αL for two different cases: 1) zero-mean prior
distribution and 2) nonzero-mean prior distribution.

1) Zero-Mean Prior Distribution: Combining (17), (22),
(26), and (27), we can derive the mean vector μL and the
covariance matrix �L of pdf(αL|fL) as

�L =
[
σ−2

0 · GT · G + diag
(
σ−2

1 , σ−2
2 , . . . , σ−2

M

)]−1
(28)

μL = σ−2
0 · �L · GT · fL (29)

where G and fL are defined by (9) and (21), respectively, and
diag(·) represents the operator to construct a diagonal matrix.
The hyper-parameter σ0 can be optimally determined by using
the cross-validation technique discussed in Section IV-D. Since
the Gaussian PDF pdf(αL|fL) reaches its maximum at the mean
value, the MAP solution αL is equal to the mean vector μL

αL = σ−2
0 · �L · GT · fL. (30)

2) Nonzero-Mean Prior Distribution: Combining (20),
(22), (26), and (27), we can derive the mean vector μL and
the covariance matrix �L of pdf(αL|fL) as

�L =
[
η · diag

(
α−2

E,1, α
−2
E,2, . . . , α

−2
E,M

)
+ GT · G

]−1
(31)

μL = �L ·
[
η · diag

(
α−2

E,1, α
−2
E,2, . . . , α

−2
E,M

)
· αE + GT · fL

]

(32)

where

αE = [αE,1 αE,2 · · · αE,M
]T (33)

η = σ 2
0

λ2
. (34)

Similar to (29), the MAP solution αL is equal to the mean
vector μL

αL = �L ·
[
η · diag

(
α−2

E,1, α
−2
E,2, . . . , α

−2
E,M

)
· αE + GT · fL

]
.

(35)

Studying (35) reveals an important observation that we only
need to determine η, instead of the individual parameters σ0
and λ, in order to find the MAP solution αL. Similar to the case
of zero-mean prior distribution, the hyper-parameter η can be
optimally determined by using the cross-validation technique
discussed in Section IV-D.

While the basic idea of prior knowledge definition and MAP
estimation is illustrated in this section, several implementation
issues must be carefully considered in order to make BMF of
practical utility. These implementation details will be further
discussed in the next section.

IV. IMPLEMENTATION ISSUES

To make the proposed BMF method of practical utility, four
implementation issues, including: 1) prior mapping; 2) missing
prior knowledge; 3) fast solver; and 4) prior and hyper-
parameter selection, must be carefully considered. In this
section, we will discuss these implementation issues in detail.

A. Prior Mapping

In Section III-A, we assume that the early-stage model fE(x)

and the late-stage model fL(x) share the same basis functions,
as shown in (10) and (11). The prior distribution pdf(αL) is
then defined accordingly as (17) or (20). However, the afore-
mentioned assumption does not always hold in practice. In
this paper, we consider two important scenarios where this
assumption is not valid. First, additional basis functions may
be required in the later stage due to the post-layout extrac-
tion of multifinger transistors. In this case, we can still learn
the design knowledge from the early stage by prior mapping.
Second, additional basis functions may be required in the late
stage where the prior information for these extra basis func-
tions is not available. In this case, we must set up the proposed
BMF framework with missing prior knowledge. In this sec-
tion, we focus on the first scenario, while the second scenario
will be further discussed in Section IV-B.

We consider the schematic-level circuit as the early-stage
design and the post-layout circuit as the late-stage design.
In this scenario, multifinger transistors lead to different basis
functions in these two stages. Due to the extra random
variables modeling device mismatches, we have to apply addi-
tional basis functions containing these new random variables
for performance modeling.

For illustration purpose, we consider a simple differential
pair example. Its input offset voltage (VOS) is strongly depen-
dent on the threshold voltage of the two input transistors.
Here, we denote the random variables modeling the threshold
voltage mismatches of the first and second input transistors
as x1 and x2, respectively. The schematic-level performance
model of the input offset voltage can be expressed as

fE(x1, x2) ≈ αE,1 · x1 + αE,2 · x2 + αE,3 (36)

where αE,1, αE,2, and αE,3 denote the schematic-level model
coefficients.

We further assume that each input transistor contains two
fingers at the post-layout stage. After post-layout extraction,
the threshold voltage mismatch of each finger should be mod-
eled as an independent random variable. Without loss of
generality, we define x1,1 and x1,2 as the random variables
associated with the two fingers of the first input transistor,
and x2,1 and x2,2 as the random variables associated with
the two fingers of the second input transistor. The post-
layout performance model of the input offset voltage can be
expressed as

fL
(
x1,1, x1,2, x2,1, x2,2

) ≈ αL,1,1 · x1,1 + αL,1,2 · x1,2

+ αL,2,1 · x2,1 + αL,2,2 · x2,2 + αL,3

(37)
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where αL,1,1, αL,1,2, αL,2,1, αL,2,2, and αL,3 denote the post-
layout model coefficients.

In general, we define the following independent random
variables for the post-layout stage:

x∗ = [ x1,1 · · · x1,W1 x2,1 · · · x2,W2 · · · xR,1 · · · xR,WR

]T (38)

where Wr denotes the number of fingers associated with
the schematic-level random variable xr(r = 1, 2, . . . , R). We
further define the post-layout performance model fL(x∗) as

fL
(
x∗) ≈

M∑

m=1

Tm∑

t=1

αL,m,t · gm,t
(
x∗) (39)

where {αL,m,t; m = 1, 2, . . . , M; t = 1, 2, . . . , Tm} contains
the post-layout model coefficients corresponding to the basis
functions {gm,t(x∗); m = 1, 2, . . . , M; t = 1, 2, . . . , Tm}.
Equation (39) is similar to (11) but with a different represen-
tation. In (39), due to the multifinger devices, each schematic-
level basis function gm(x)(m = 1, 2, . . . , M) is mapped to a set
of post-layout basis functions {gm,t(x∗); t = 1, 2, . . . , Tm}. The
post-layout basis functions {gm,t(x∗); m = 1, 2, . . . , M; t =
1, 2, . . . , Tm} are orthonormal. Furthermore, based on the com-
pleteness condition [26], the basis function set is permutation-
invariant. It means that for any vector x∗

s obtained by
permuting the variables in x∗, the new basis function set
{gm,t(x∗

s ); m = 1, 2, . . . , M; t = 1, 2, . . . , Tm} should be
identical to the original set {gm,t(x∗); m = 1, 2, . . . , M;
t = 1, 2, . . . , Tm}.

To intuitively illustrate the permutation-invariant property,
we consider the simple example in (37) where we have

x∗ = [ x1,1 x1,2 x2,1 x2,2
]T (40)

g1,1(x∗) = x∗
1 = x1,1 g1,2(x∗) = x∗

2 = x1,2

g2,1(x∗) = x∗
3 = x2,1 g2,2(x∗) = x∗

4 = x2,2. (41)

In this example, if we consider the following permutated
vector:

x∗
s = [ x1,2 x1,1 x2,1 x2,2

]T (42)

we can construct the following basis functions:

g1,1(x∗
s ) = x∗

s,1 = x1,2 g1,2(x∗
s ) = x∗

s,2 = x1,1

g2,1(x∗
s ) = x∗

s,3 = x2,1 g2,2(x∗
s ) = x∗

s,4 = x2,2. (43)

It is straightforward to verify that the two sets of basis
functions in (41) and (43) are identical.

The schematic-level model coefficients {αE,m; m =
1, 2, . . . , M} in (10) are already known, the goal of our
prior mapping is to determine the prior distribution for the
post-layout model coefficients {αL,m,t; m = 1, 2, . . . , M; t =
1, 2, . . . , Tm} in (39). To this end, we first define the following
schematic-level multifinger representation hE(x∗):

hE
(
x∗) ≈

M∑

m=1

Tm∑

t=1

βE,m,t · gm,t
(
x∗) (44)

where {βE,m,t; m = 1, 2, . . . , M; t = 1, 2, . . . , Tm} stands for
the model coefficients. The model hE(x∗) in (44) captures the
same schematic-level performance function as fE(x) in (10),
and shares the same basis functions as fL(x∗) in (39).

Given that (10) and (44) are different representations of
the same performance model, they should capture the same
performance variability

VAR
[
α2

E,m · gm(x)
]

= VAR

[ Tm∑

t=1

β2
E,m,t · gm,t

(
x∗)
]

(m = 1, 2, . . . , M) (45)

where VAR(·) denotes the variance of a random variable. Since
the basis functions in (45) are orthonormal, we have

α2
E,m =

Tm∑

t=1

β2
E,m,t (m = 1, 2, . . . , M). (46)

We further assume that different fingers of the same device
have the same impact on performance variability. In practice,
this assumption does not always hold, because different fingers
may be subject to different systematic variations. However,
these systematic variations cannot be easily modeled for prior
definition at the schematic level without knowing the layout
details; instead, they will be taken into account when cal-
culating the posterior distribution based on the post-layout
simulation data.

Given the aforementioned assumption and the permutation-
invariant property of basis functions, we can derive the
following equation for the model coefficients in (44):

βE,m,1 = βE,m,2 = · · · = βE,m,Tm(m = 1, 2, . . . , M). (47)

Combining (46) and (47), we have

α2
E,m = Tm · β2

E,m,1 = Tm · β2
E,m,2

= · · · = Tm · β2
E,m,Tm

(m = 1, 2, . . . , M). (48)

If the basis functions {gm,t(x∗); m = 1, 2, . . . , M; t =
1, 2, . . . , Tm} are properly defined, the model coefficients
αE,m(m = 1, 2, . . . , M) and {βE,m,t; t = 1, 2, . . . , Tm} should
have the same sign, yielding

βE,m,1 = βE,m,2 = · · · = βE,m,Tm

= αE,m

/√
Tm(m = 1, 2, . . . , M). (49)

Since the schematic-level multifinger representation hE(x∗)
in (44) and the post-layout model fL(x∗) in (39) are associated
with the same performance metric and share the same basis
functions, we expect that the early-stage model coefficients
{βE,m,t; m = 1, 2, . . . , M; t = 1, 2, . . . , Tm} are similar to the
late-stage model coefficients {αL,m,t; m = 1, 2, . . . , M; t =
1, 2, . . . , Tm}. Hence, once the early-stage model coefficients
{βE,m,t; m = 1, 2, . . . , M; t = 1, 2, . . . , Tm} are calculated
by (49), the prior distribution of the late-stage model coef-
ficients {αL,m,t; m = 1, 2, . . . , M; t = 1, 2, . . . , Tm} can be
defined by following (12)–(20).

B. Missing Prior Knowledge

In this section, we consider the scenario where additional
basis functions are required in the late stage and the prior
information for these extra basis functions is not available.
In practice, this scenario can happen because the early-stage
model does not necessarily capture all detailed behaviors of
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a circuit. For instance, it is well-known that layout parasitics
will be added to the post-layout netlist (i.e., late stage) during
layout extraction. The variations of these parasitics must be
modeled by a number of new random variables that are com-
pletely ignored at the schematic level (i.e., early stage). The
late-stage post-layout model fL(x) should contain additional
basis functions corresponding to the new random variables that
are not found from the early-stage schematic model fE(x). In
this case, the early-stage model fE(x) does not carry any prior
knowledge about the late-stage model coefficients associated
with these additional basis functions. In other words, the prior
knowledge for these late-stage model coefficients is missing.

To appropriately handle the scenario with missing prior
knowledge, we revisit the prior distribution pdf

(
αL,m

)
defined

in Section III-A. In particular, we consider the following two
different cases: 1) zero-mean prior distribution and 2) nonzero-
mean prior distribution.

1) Zero-Mean Prior Distribution: As mentioned in
Section III-A, the standard deviation σm of the Gaussian
distribution pdf(αL,m) in (12) encodes the magnitude infor-
mation of the late-stage model coefficient αL,m. If there is no
prior knowledge available for αL,m, it implies that the late-
stage model coefficient αL,m can possibly take any value with
equal probability. Hence, the standard deviation σm should be
set to +∞

σm = +∞ (50)

so that the prior distribution is nearly constant over a wide
range. Note that when calculating the posterior distribution
in (28) and (29), only the value of σ−1

m is needed. Hence, the
infinite standard deviation in (50) would not cause any numer-
ical problem for solving the late-stage model coefficients.

2) Nonzero-Mean Prior Distribution: In this case, the mag-
nitude information of the late-stage model coefficient αL,m is
encoded by the early-stage model coefficient αE,m using the
Gaussian distribution pdf(αL,m) in (19). Note that the stan-
dard deviation of pdf(αL,m) is also controlled by αE,m as
shown in (19). Similar to the zero-mean prior case, we set

αE,m = +∞ (51)

so that the prior distribution is almost uniformly distributed
over a wide range. We rewrite (32) as

μL = �L ·
[
η ·
[
α−1

E,1 α−1
E,2 · · · α−1

E,M

]T + GT · fL

]
. (52)

Therefore, only the value of α−1
E,m is needed to calculate the

posterior distribution in (31) and (52), similar to the zero-mean
prior case.

C. Fast Solver

The late-stage model coefficients are solved by MAP esti-
mation in (28)–(35) where a linear equation must be solved. In
practice, if a large number of basis functions are used to model
the circuit performance function, a large number of model
coefficients must be solved in (30) or (35), thereby resulting
in expensive computational cost. To address this issue, we pro-
pose a novel low-rank update algorithm to efficiently solve the
linear equation posted by MAP estimation.

Studying (28)–(35), we observe that the matrix G ∈ �K×M

has more columns than rows, and thus GT · G ∈ �M×M is not
full-rank. The rank of GT · G is equal to K (e.g., 102–103) is
substantially less than its size M (e.g., 103–105). Therefore,
instead of directly solving the linear equation by a direct solver
(e.g., Cholesky decomposition [30]), we apply a computation-
ally efficient low-rank update to find all model coefficients
based on the Sherman–Morrison–Woodbury formula [30]. In
what follows, we derive our proposed low-rank solver for
the following two cases: 1) zero-mean prior distribution and
2) nonzero-mean prior distribution.

1) Zero-Mean Prior Distribution: We rewrite the matrix
�L in (28) as

�L =
[
σ−2

0 · GT · G + AZ

]−1 = A−1
Z

− A−1
Z · GT ·

(
σ 2

0 · I + G · A−1
Z · GT

)−1 · G · A−1
Z (53)

where I ∈ �K×K denotes an identity matrix and AZ ∈ �M×M

is diagonal

AZ = diag
(
σ−2

1 , σ−2
2 , . . . , σ−2

M

)
. (54)

Substituting (53) into (30) yields

αL = σ−2
0 · A−1

Z · GT · fL − σ−2
0 · A−1

Z · GT

×
(
σ 2

0 · I + G · A−1
Z · GT

)−1 · G · A−1
Z · GT · fL. (55)

In (55), the inverse matrix A−1
Z can be easily calculated since

AZ is diagonal. On the other hand, the matrix σ 2
0 · I + G ·

A−1
Z · GT ∈ �K×K is substantially smaller than the matrix

�L ∈ �M×M . Hence, solving the linear equation in (55) is
more computationally efficient than directly solving (30).

2) Nonzero-Mean Prior Distribution: Similar to the previ-
ous case, we rewrite the matrix �L in (31) as

�L = [η · AN + GT · G
]−1 = η−1 · A−1

N

− η−1 · A−1
N · GT

(
η · I + G · A−1

N · GT
)−1 · G · A−1

N

(56)

where AN ∈ �M×M is diagonal

AN = diag
(
α−2

E,1, α
−2
E,2, . . . , α

−2
E,M

)
. (57)

Substituting (56) into (35) yields

αL = η−1 · A−1
N · (η · AN · αE + GT · fL

)− η−1 · A−1
N · GT

×
(
η · I + G · A−1

N · GT
)−1

G · A−1
N · (η · AN · αE + GT · fL

)
.

(58)

Since the matrix η · I + G · A−1
N · GT ∈ �K×K is substan-

tially smaller than the matrix �L ∈ �M×M , solving the linear
equation in (58) is more computationally efficient than directly
solving (35).

It is important to note that the proposed low-rank update
in (55) and (58) is able to find the exact solution of αL without
any approximation, while substantially reducing the compu-
tational cost. As will be demonstrated by the experimental
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Algorithm 1 BMF
1. Starting from the early-stage performance model fE(x) in (10),

define the prior distribution for the late-stage model coeffi-
cients based on (17) (i.e., zero-mean Gaussian distribution)
or (20) (i.e., nonzero-mean Gaussian distribution). The hyper-
parameter (i.e. σ0 or η) should be optimally determined by
cross-validation.

2. For the additional late-stage basis functions posed by multi-
finger transistors, define the prior distribution for the late-stage
model coefficients by prior mapping discussed in Section IV.A.

3. For the additional late-stage basis functions without prior infor-
mation, define the prior distribution for the late-stage model
coefficients by using (50) or (51).

4. Collect K late-stage simulation samples {(x(k), f (k)
L ); k =

1, 2, . . . , K}.
5. Use the fast solver to calculate the late-stage model coefficients

by MAP estimation based on (55) or (58).

results in Section V, the proposed fast solver achieves up to
600× runtime speed-up compared to the conventional solver
based on Cholesky decomposition [30].

D. Prior and Hyper-Parameter Selection

As mentioned in Section III, we must appropriately
choose the prior distribution (i.e., zero-mean or nonzero-mean
Gaussian distribution) and the corresponding hyper-parameter
value (i.e., σ0 or η), when applying BMF. The objective here
is to find the optimal prior distribution and hyper-parameter
value to minimize the modeling error. Toward this goal, we
need to estimate the modeling error for different prior distribu-
tions and hyper-parameter values, and then choose the optimal
setting with minimal error.

To quantitatively estimate the modeling error for a given
prior distribution and hyper-parameter value, we adopt the
idea of N-fold cross-validation [24]. In particular, we partition
the entire data set into N nonoverlapping groups. Modeling
error is estimated from N independent runs. In each run, one
of the N groups is selected to estimate the modeling error
and all other groups are used to calculate the model coeffi-
cients. Since the training data for coefficient calculation and
the testing data for error estimation are not overlapped, over-
fitting can be easily detected. Furthermore, different groups
are used for error estimation in different runs. As such, each
run gives an estimated error value en(n = 1, 2, . . . , N) based
on a unique group of testing data. The final modeling error is
computed as e = (e1 + e2 + · · · + eN)/N.

E. Summary

Algorithm 1 summarizes the major steps of our proposed
BMF method. It consists of two major components: 1) prior
distribution definition and 2) MAP estimation. BMF appro-
priately determines the hyper-parameter (i.e., σ0 or η) based
on cross-validation. The hyper-parameter value controls the
weight of the prior information when the late-stage model
coefficients are solved by MAP estimation. If the prior infor-
mation is not highly accurate, a small weight should be
assigned to it so that the late-stage model coefficients are not
biased by the inaccurate prior information.

Fig. 3. Simplified circuit schematic is shown for an RO designed in
a commercial 32 nm CMOS SOI process.

V. NUMERICAL EXAMPLES

In this section, two circuit examples designed in a com-
mercial 32 nm CMOS SOI process are used to demonstrate
the efficacy of the proposed BMF approach. The objective
here is to build late-stage performance models for the two
circuits, where the schematic stage is considered as the early
stage and the post-layout stage is considered as the late stage.
When applying BMF, we use the schematic-level performance
model to define our prior knowledge for post-layout perfor-
mance modeling. The schematic-level performance model is
fitted by applying the OMP algorithm to 3000 random sam-
ples generated from transistor-level Monte Carlo simulation at
the schematic stage.

For testing and comparison purposes, four different per-
formance modeling techniques are implemented: 1) the tradi-
tional sparse regression approach based on OMP [13]; 2) the
BMF method with zero-mean prior distribution (BMF-ZM);
3) the BMF method with nonzero-mean prior distribution
(BMF-NZM); and 4) the proposed BMF method with prior
selection (BMF-PS). Here the OMP algorithm is selected for
comparison because it is one of the state-of-the-art techniques
in the literature. The OMP algorithm does not consider any
prior information from the schematic stage. The BMF-ZM and
BMF-NZM methods rely on preselected prior distributions;
they are compared against the BMF-PS method in order to
highlight the benefit of prior selection.

In our experiments, two nonoverlapping data sets, referred
to as the training set and the testing set, respectively, are
generated from post-layout transistor-level Monte Carlo sim-
ulation with random sampling. The training set is used for
coefficient fitting, including cross-validation as illustrated in
Algorithm 1. The testing set contains 300 independent ran-
dom samples that are used to estimate the modeling error. All
numerical experiments are run on a 2.53 GHz Linux server
with 16 GB memory.

A. Ring Oscillator

Fig. 3 shows the simplified circuit schematic of an RO. In
this example, there are totally 7177 independent random vari-
ables to model device-level process variations, including both
interdie variations and random mismatches at the post-layout
stage. Our objective is to approximate three post-layout per-
formance metrics (i.e., power, phase noise, and frequency) as
linear functions of these random variables.

To build the performance models of interest, we collect
a number of Monte Carlo samples for power, phase noise,
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Fig. 4. Histograms of post-layout simulation samples are shown for (a) power,
(b) phase noise, and (c) frequency of the RO.

and frequency by running post-layout simulation. Fig. 4 shows
the histograms of these simulation samples. Based on the
simulation data, we fit the performance models using four dif-
ferent approaches: 1) OMP; 2) BMF-ZM; 3) BMF-NZM; and
4) BMF-PS.

Tables I–III summarize the relative modeling error as a func-
tion of the number of post-layout training samples. Here the
relative modeling error is defined as

∥∥∥f̃L − fL

∥∥∥
2

/
‖fL‖2 (59)

TABLE I
RELATIVE MODELING ERROR (%) OF POWER FOR RO

TABLE II
RELATIVE MODELING ERROR (%) OF PHASE NOISE FOR RO

TABLE III
RELATIVE MODELING ERROR (%) OF FREQUENCY FOR RO

where f̃L and fL are two vectors containing the predicted and
actual post-layout performance values, respectively. The rel-
ative modeling error is averaged from 50 repeated runs with
different training and testing sets.

Note that the training set used for prior selection and the
testing set used for error evaluation are different. Therefore,
the prior selection step may not choose the optimal prior dis-
tribution that minimizes the modeling error over the testing
set. In our experiments, BMF-ZM, BMF-NZM, and BMF-PS
share the same training and testing sets and, therefore, the
modeling error of BMF-PS should be equal to the model-
ing error of either BMF-ZM or BMF-NZM for a single run.
The results reported in Tables I–III, however, are averaged
from 50 repeated runs. Hence, the error values of BMF-PS
are not always identical to those of either BMF-ZM or
BMF-NZM.

Studying Tables I–III reveals two important observations.
First, the modeling error decreases as the number of simula-
tion samples increases. Given the same number of samples, the
proposed BMF-PS achieves significantly higher accuracy than
OMP. Second, BMF-ZM is less accurate than BMF-NZM for
power, but is more accurate than BMF-NZM for frequency.
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Fig. 5. Fitting cost of different modeling approaches is shown for
three performance metrics. (a) Power. (b) Phase noise. (c) Frequency
of the RO.

In other words, the optimal prior distribution can vary
from case to case in practice. In this example, BMF-PS is
able to achieve superior modeling accuracy over all other
approaches.

To study the performance modeling cost for different
approaches, we partition the total modeling cost into two
portions: 1) simulation cost (i.e., the cost of running post-
layout transistor-level simulation to generate all the samples
in the training set) and 2) fitting cost (i.e., the cost of solving
all unknown post-layout model coefficients). Fig. 5 shows

TABLE IV
RELATIVE MODELING ERROR AND COST FOR RO

Fig. 6. Simplified circuit schematic for an SRAM read path designed in
a commercial 32 nm CMOS SOI process.

the fitting cost for three different algorithms: 1) OMP;
2) BMF-PS with the conventional solver based on Cholesky
decomposition [30]; and 3) BMF-PS with our proposed fast
solver based on low-rank update. In this example, our fast
solver achieves up to 600× runtime speed-up over the con-
ventional solver. As the problem size further increases, the
efficacy of the proposed fast solver is expected to be more
pronounced.

Table IV further compares the performance modeling error
and cost for OMP and BMF-PS with fast solver. Note that
the overall modeling cost is dominated by the simulation cost.
In this example, BMF-PS achieves 9× runtime speed-up over
OMP with superior accuracy.

B. SRAM Read Path

Fig. 6 is the simplified circuit schematic of an SRAM read
path. In this example, each SRAM column contains 128 bit
cells. There are totally 66 117 independent random variables
to model device-level process variations. The read delay from
the wordline to the output of the sense amplifier (Out) is our
circuit performance of interest. It is approximated as a linear
function of the 66 117 random variables.

To build the performance model for read delay, we col-
lect a number of Monte Carlo samples by running post-layout
simulation. Fig. 7 shows the histogram of these simulation
samples. Based on these simulation data, we fit the per-
formance model using four different approaches: 1) OMP;
2) BMF-ZM; 3) BMF-NZM; and 4) BMF-PS.

Table V summarizes the relative modeling error as a func-
tion of the number of post-layout training samples, where
the relative modeling error is defined as in (59). The rela-
tive modeling error is averaged from 50 repeated runs with
different training and testing sets. Similar to the RO example,
two important observations can be made by studying Table V.
First, given the same number of post-layout training samples,
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Fig. 7. Histogram of post-layout simulation samples for read delay of the
SRAM read path.

TABLE V
RELATIVE MODELING ERROR (%) OF READ

DELAY FOR SRAM READ PATH

Fig. 8. Fitting cost of different modeling approaches is shown for read delay
of the SRAM read path.

the proposed BMF-PS is able to achieve substantially higher
accuracy than OMP. Second, BMF-NZM is less accurate than
BMF-ZM with 100 samples; however, it is more accurate than
BMF-ZM when a large number of samples are available. In
other words, the optimal prior distribution can vary even for
the same performance metric in practice. In this example,
BMF-PS is able to achieve superior modeling accuracy over
all other approaches.

Fig. 8 shows the fitting cost for two different algorithms:
1) OMP and 2) BMF-PS with our proposed fast solver based
on low-rank update. In this example, the conventional solver
based on Cholesky decomposition becomes computationally

TABLE VI
RELATIVE MODELING ERROR AND COST FOR SRAM READ PATH

infeasible due to the large problem size. Hence, its fitting cost
is not reported here.

Table VI further compares the performance modeling error
and cost for OMP and BMF-PS with fast solver. In this
example, BMF-PS achieves 4× runtime speed-up over OMP
without surrendering any accuracy.

It is important to note that we consider linear performance
models only for both the RO and SRAM examples. However,
the proposed BMF framework is not limited to linear perfor-
mance modeling. BMF can be applied to orthonormal basis
functions in (3) where high-order basis functions are included.
When building a nonlinear performance model in practice, we
must efficiently fit the early-stage model by applying a num-
ber of heuristics (e.g., the variable pruning approach described
in [13]).

VI. CONCLUSION

In this paper, a novel BMF algorithm is developed for
efficient high-dimensional performance modeling of AMS cir-
cuits with consideration of process variations. BMF optimally
combines the early-stage (e.g., schematic-level) information
and a small number of late-stage (e.g., post-layout) training
samples by encoding them as the prior distribution and likeli-
hood function, respectively, through Bayesian inference. Next,
the late-stage model coefficients are accurately determined by
maximizing the posterior distribution. Several implementation
issues are carefully considered to make the proposed BMF
method of practical usage. As is demonstrated by two cir-
cuit examples designed in a commercial 32 nm CMOS SOI
process, the proposed BMF method is able to achieve up to
9× runtime speed-up compared to the traditional modeling
approach.
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