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Abstract—Brain state decoding based on whole-head MEG has
been extensively studied over the past decade. Recent MEG ap-
plications pose an emerging need of decoding brain states based
on MEG signals originating from prespecified cortical regions. To-
ward this goal, we propose a novel region-of-interest-constrained
discriminant analysis algorithm (RDA) in this paper. RDA in-
tegrates linear classification and beamspace transformation into
a unified framework by formulating a constrained optimization
problem. Our experimental results based on human subjects
demonstrate that RDA can efficiently extract the discriminant pat-
tern from prespecified cortical regions to accurately distinguish
different brain states.

Index Terms—Decoding, discriminant analysis, magnetoen-
cephalography (MEG), regions of interest (ROI).

I. INTRODUCTION

M agnetoencephalography (MEG) is a noninvasive neu-
roimaging method that measures magnetic fields gener-

ated by electrical neural activity with high temporal resolution
[1]. It is a valuable technique complementary to other noninva-
sive recording modalities such as electroencephalography and
functional magnetic resonance imaging [2], [3].

Decoding brain states based on MEG has been extensively
studied over the past decade [4]–[8]. A number of machine
learning techniques, such as linear discriminant analysis (LDA)
[5] and support vector machine [6], have been applied for MEG
decoding. Most of these decoding algorithms aim to identify the
optimal discriminant pattern that distinguishes different brain
states with maximal accuracy. This optimal discriminant pat-
tern is often constructed by brain signals arising from widely
distributed cortical regions.

In this paper, we focus on a different decoding problem that
has not been extensively explored in the literature. Our objec-
tive is to decode different brain states by using MEG signals
generated from prespecified cortical regions [9], [10]. Such a
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decoding problem is not trivial, because it is difficult, if not
impossible, to force only the target cortical region to generate
discriminant signals in most experiments. Since human actions
are controlled by distributed cortical networks, the discriminant
brain signals often come from multiple cortical regions [11]. For
example, in a visually-guided motor study, a subject is asked to
move the left or right hand by following a visual cue. The vi-
sual cue for different hands will activate discriminant signals in
visual cortex, although the intention is to activate discriminant
signals in motor cortex.

For this reason, we need to develop a new MEG decoding tool
to extract the discriminant information from prespecified corti-
cal regions to distinguish different brain states while suppressing
the brain signals from other cortical regions. In this paper, the
prespecified cortical regions are referred to as the regions of
interest (ROI), other cortical regions outside ROI are referred to
as the regions of noninterest (RON), and the aforementioned de-
coding problem is referred to as region-of-interest-constrained
decoding (ROI decoding).

One possible approach for ROI decoding is to first extract
the MEG signals from the ROI by source localization, and then
construct a decoder to distinguish different brain states based
on these signals from the ROI [12]–[16]. Such a two-step ap-
proach heavily depends on the results of the first step that may
not perfectly capture all signals originating from the ROI and
simultaneously remove all signals originating from the RON.
It is well known that the source localization problem is pro-
foundly underdetermined due to the limited number of MEG
channels compared to the number of possible electrical sources
[2]. Source localization algorithms choose a solution out of an
infinite set of candidates based on various prior assumptions. In
most cases, these algorithms can only capture the “dominant”
sources, but not necessarily the “discriminant” sources inside
the ROI. If the discriminant sources within the ROI are not
accurately estimated, we cannot achieve high accuracy for the
following decoding process.

On the other hand, it has been reported in the literature that
ROI decoding may be implemented by using the channels on
top of the ROI only [5], [7], [8]. An MEG channel often cap-
tures the brain signals originating from multiple cortical regions.
Therefore, constraining the channel location does not necessar-
ily constrain the ROI location on the cortex. For this reason, a
simple channel selection approach cannot efficiently extract the
MEG signals from the ROI and, hence, does not offer an optimal
solution for ROI decoding.
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In this paper, we propose a novel ROI-constrained discrim-
inant analysis (RDA) algorithm to address the aforementioned
ROI decoding problem. RDA formulates a constrained opti-
mization to find the optimal spatial filter that can accurately
distinguish different brain states based on the MEG signals gen-
erated from the ROI. In our proposed optimization formulation,
the cost function is derived from the theory of linear classifica-
tion. It aims to maximize the discriminant information carried
by the output signal of the spatial filter so that different brain
states can be accurately separated. The constraint is designed
by borrowing the idea of beamspace transformation [14]–[16].
It guarantees that the spatial filter is able to pass the signals
generated by the ROI while attenuating the signals generated by
the RON. By simultaneously considering the decoding accuracy
and the ROI constraint, RDA identifies the optimal discriminant
pattern associated with the ROI and, hence, efficiently solves
the ROI decoding problem. In addition, a numerical solver is
developed in this paper to solve the nonconvex optimization
problem posed by RDA with guaranteed global optimum.

The remainder of this paper is organized as follows. We derive
the proposed RDA algorithm in Section II. Next, the efficiency
of RDA is demonstrated by a number of simulation and ex-
perimental examples in Sections III and IV, followed by the
discussions for future work in Section V. Finally, we conclude
in Section VI and describe the numerical solver proposed for
RDA in Appendix.

II. ROI-CONSTRAINED DISCRIMINANT ANALYSIS

Without loss of generality, we consider two brain states that
are labeled as “State-1” and “State-2,” respectively. For exam-
ple, these two states may correspond to the brain activity when
a subject performs two different movement tasks. We further
assume that MEG data are recorded from M channels. We use
a vector x = [x1 x2 . . . xM ]T � �M to represent the MEG
features corresponding to these M channels, where xm denotes
the mth feature which is associated with the mth MEG channel.
The feature vector x can be a collection of MEG signals from
M different channels at a particular time t. Alternatively, if a
linear transformation (e.g., short-time Fourier transform [17],
wavelet transform [18], etc.) is applied, x can be a set of trans-
formed signals in frequency or wavelet domain. To simplify our
notation, we assume that a single feature is extracted from each
MEG channel. However, the proposed RDA algorithm can be
extended to accommodate multiple features per channel, as will
be discussed in Section V.

RDA seeks for a linear combination of all features as the
discriminant function for decoding

y = wT · x, (1)

where w � �M defines the weight values of all MEG features.
Since x is the collection of features associated with the MEG
channels at different spatial locations, the linear combination
in (1) can be conceptually viewed as a spatial filter. For ROI
decoding, the spatial filter must be optimally designed to meet
the following two criteria:

1) ROI Selectivity: The spatial filter should pass the MEG signals
generated by the neural sources within the ROI and attenuate
the MEG signals generated by the RON.
2) Decoding Accuracy: The output of the spatial filter must carry
sufficient discriminant information to accurately distinguish dif-
ferent brain states.
In what follows, we will formulate a constrained optimization
to determine the vector w in (1) that simultaneously satisfies the
aforementioned two criteria.

Consider two sets of training data {xn,1 ; n = 1, 2, . . . , N1}
and {xn ,2 ; n = 1, 2, . . . , N2} where xn,1 and xn,2 are the
feature vectors of the nth trial for the brain states “State-1” and
“State-2,” respectively. The symbols N1 and N2 represent the
numbers of training trials for these two brain states. In order to
distinguish the two brain states, we follow the idea of LDA [5],
[8], [19] to maximize the ratio of the between-class scatter over
the within-class scatter for the output y of the spatial filter in (1)

maximize
w

wT · SB · w
wT · SW · w . (2)

The between-class scatter matrix SB � �M×M and the within-
class scatter matrix SW � �M×M are defined by

SB = N1 · (μ1 − μ) · (μ1 − μ)T

+ N2 · (μ2 − μ) · (μ2 − μ)T (3)

SW =
N1∑

n=1

(xn,1 − μ1) · (xn,1 − μ1)
T

+
N2∑

n=1

(xn,2 − μ2) · (xn,2 − μ2)
T , (4)

where μ1 and μ2 stand for the mean values of {xn,1 ; n = 1,
2, . . . , N1} and {xn,2 ; n = 1, 2, . . . , N2}, respectively, and μ
is the mean of μ1 and μ2 . Note that the matrix SB is positive
semi-definite and the matrix SW is positive definite.

In addition to the cost function in (2), the spatial filter y =
wT·x must appropriately select the MEG signals generated by the
ROI. Toward this goal, we adopt a vertex-based model that has
been widely used by many MEG source localization algorithms
[2], [20]. Specifically, we assume that the cortex is partitioned
into a number of vertices. Each vertex contains a current dipole
that models the electrical source within the vertex. Based on this
model, the MEG feature vector x can be represented as

x =
N∑

n=1

An · qn , (5)

where An � �M×3 is the leadfield matrix of the nth dipole,
qn � �3 denotes the moment of the nth dipole, and N is the
total number of dipoles. The leadfield matrix An models the
influence of the nth dipole on the measured MEG signals. It
can be calculated according to the geometrical structure and the
conducting medium of the human head [2].
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Substituting (5) into (1), the output of the spatial filter y =
wT·x can be represented as

y = wT ·
N∑

n=1

An · qn . (6)

We further partition y into two nonoverlap components:

yΦ = wT ·
∑

n∈Φ

An · qn (7)

yΦ̃ = wT ·
∑

n /∈Φ

An · qn (8)

y = yΦ + yΦ̃ , (9)

where Φ represents the set containing all current dipoles inside
the ROI. In other words, yΦ in (7) represents the filter output
generated by the sources within the ROI and yΦ̃ in (8) denotes
the filter output generated by the sources inside the RON. The
power of yΦ and yΦ̃ can be calculated as

pΦ = yΦyT
Φ = wT ·

∑

m∈Φ

∑

n∈Φ

Am · qm · qT
n · AT

n · w (10)

pΦ̃ = yΦ̃yT
Φ̃ = wT ·

∑

m /∈Φ

∑

n /∈Φ

Am · qm · qT
n · AT

n · w. (11)

We use the ratio between pΦ and pΦ̃ to quantitatively measure
the ROI selectivity of the spatial filter:

pΦ

pΦ̃
=

wT ·
∑

m∈Φ
∑

n∈Φ Am · qm · qT
n · AT

n · w
wT ·

∑
m /∈Φ

∑
n /∈Φ Am · qm · qT

n · AT
n · w . (12)

In practice, the dipole moments {qn ; n = 1, 2, . . . , N} are
not known. Hence, the ratio in (12) must be estimated with a
number of assumptions. For instance, if there is no prior in-
formation about the dipole moments, the traditional beamspace
transformation method calculates the ratio pΦ/pΦ̃ by assuming
that all dipoles are uniformly distributed and mutually inde-
pendent [15]. With these assumptions, the ratio in (12) can be
simplified as

pΦ

pΦ̃
=

wT ·
∑

n∈Φ An · AT
n · w

wT ·
∑

n /∈Φ An · AT
n · w =

wT · GΦ · w
wT · GΦ̃ · w , (13)

where

GΦ =
∑

n∈Φ

An · AT
n (14)

GΦ̃ =
∑

n /∈Φ

An · AT
n . (15)

The matrices GΦ and GΦ̃ in (14) and (15) are both positive
definite [15]. Once the leadfield matrices {An ; n = 1, 2, . . . ,
N} are known, pΦ/pΦ̃ in (13) is represented as a function of the
vector w.

Combining (2) and (13) yields the following constrained op-
timization problem:

maximize
w

wT · SB · w
wT · SW · w

subject to
wT · GΦ · w
wT · GΦ̃ · w ≥ λ, (16)

where λ is a user-defined parameter. The optimization in (16)
aims to find the optimal spatial filter y = wT·x to distinguish two
brain states, while simultaneously constraining the power ratio
pΦ/pΦ̃ to be no less than λ.

Studying the optimization formulation in (16) reveals several
important properties. First, since the left side of the constraint
function is in the form of a generalized Rayleigh quotient, its
lower bound and upper bound are equal to [21]

inf
w

wT · GΦ · w
wT · GΦ̃ · w = η

(
G−1

Φ̃
· GΦ

)
(17)

sup
w

wT · GΦ · w
wT · GΦ̃ · w = ρ

(
G−1

Φ̃
· GΦ

)
(18)

where inf(•) and sup (•) denote the infimum (i.e., the greatest
lower bound) and the supremum (i.e., the least upper bound) of a
function, and η(•) and ρ(•) stand for the minimum and maximum
eigenvalues of a matrix.

Second, adjusting the value of λ allows us to explore the trade-
off between the discriminant power and the ROI selectivity of
the spatial filter. In one extreme case, if λ is set to the minimum
possible value (i.e., η(G−1

Φ̃
·GΦ )), the constraint in (16) is sat-

isfied for any given w and, hence, the ROI decoding in (16) is
equivalent to the traditional LDA in (2) where the discriminant
information is maximized and the ROI constraint is completely
ignored. In the other extreme case, if λ is set to the maximum
possible value (i.e., ρ(G−1

Φ̃
·GΦ )), there is only one possible di-

rection of w to satisfy the constraint in (16) and the optimal
solution of (16) is independent of the cost function. In this case,
the filter is designed to maximize the total signal power orig-
inating from the ROI, instead of the discriminant information
generated by the ROI. In other words, it maximizes the ROI
selectivity only and, hence, is unlikely to achieve high decod-
ing accuracy. When λ varies between these two extreme cases,
the optimization in (16) explores the tradeoff between its cost
function (related to the decoding accuracy) and the constraint
function (related to the ROI selectivity).

Third, neither the cost function nor the constraint set in (16)
is convex. In this case, a general-purpose nonlinear optimizer is
likely to settle at a local optimum and, hence, cannot efficiently
find the global optimum. To the best of our knowledge, there
is no existing optimization algorithm that guarantees to find the
global optimum of (16). Motivated by this observation, we pro-
pose a novel numerical algorithm to solve (16) both efficiently
(i.e., with low computational cost) and robustly (i.e., with guar-
anteed global optimum). The details of our proposed numerical
solver are described in the Appendix. Algorithm 1 summarizes
the major steps of the proposed RDA algorithm.

III. SIMULATION STUDIES

In this section, we will demonstrate how RDA controls the
ROI selectivity by varying the value of λ based on simulation ex-
periments. In addition, we will make a full comparison between
RDA and other traditional methods for ROI decoding.
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Algorithm 1: Region-of-Interest-Constrained Discrimi-
nant Analysis (RDA)

1. Start from the training data {xn,1 ; n = 1, 2, . . . , N1}
and {xn,2 ; n = 1, 2, . . . , N2} corresponding to two
different brain states, the user-specified ROI, and a
prespecified threshold λ.

2. Partition the structural brain image into N vertices and
define the set Φ containing all current dipoles inside the
ROI.

3. Calculate the leadfield matrices {An ; n = 1, 2, . . . , N}
for the current dipoles associated with the vertex-based
model.

4. Calculate the matrices SB and SW based on (3), (4).
5. Calculate the matrices GΦ and GΦ̃ based on (14), (15).
6. Formulate the constrained nonlinear optimization

problem in (16).
7. Apply Algorithm 2 in the Appendix to find the optimal

solution w∗ of (16) to form the spatial filter in (1).

Fig. 1. (a) Red color indicates the spatial location of the ROI (i.e., the left
precentral and postcentral gyri). (b) Shown in red are the 36 channels on top of
the ROI where each dot represents a pair of gradiometers.

A. Simulation Setup

In the simulation experiments, we set the left sensorimotor
area (i.e., the left precentral and the left postcentral gyri) as the
ROI, as shown in Fig. 1(a). Two different brain states, “State-1”
and “State-2,” are considered. We assume that the discriminant
information between “State-1” and “State-2” comes from the
cortical regions both inside and outside the ROI. To generate
the simulation data, the MRI image of a human subject is used
to define the source space. A fixed grid with 2-mm spacing
is generated from the gray/white matter boundary of the MRI
image by using FreeSurfer [20]. It results in 172 902 vertices in
total. Among them, 9481 vertices are inside the ROI and 163 421
vertices are inside the RON. We use one current dipole at each
vertex of the grid to model the source within the brain [22].
In addition, we automatically parcellate and label the cortical
surface as different cortical areas by using FreeSurfer [22].

Several different current dipoles and noise components are
considered in our simulation setup:
1) 20 current dipoles are used to model the discriminant
sources between “State-1” and “State-2.” A half of these dipoles
{qROI ,n ; n = 1, 2, . . . , 10} are randomly distributed inside
the ROI, and the other half {qRON ,n ; n = 1, 2, . . . , 10} are
randomly distributed inside the RON. The magnitude of these
dipoles is randomly generated from two Gaussian distributions:
N(0, 1) for “State-1” and N(6, 1) for “State-2”. The different

mean values of these two Gaussian distributions model the dis-
criminant information of the two brain states. The orientation
of these dipoles is uniformly distributed over all possible direc-
tions.
2) 200 current dipoles {qNoi ,n ; n = 1, 2, . . . , 200} are used
to model the noisy sources that are independent of the brain
states. These dipole locations are randomly distributed all over
the cortical surface, including both the ROI and the RON. The
magnitude of these dipoles is randomly generated from a Gaus-
sian distribution N(0, 22) and their orientation is uniformly dis-
tributed over all possible directions.
3) In addition to the current dipoles, a vector n is used to model
the MEG measurement noise of all channels. In our simulation
setup, we assume that the noise is statistically independent be-
tween different channels and it follows a Gaussian distribution
N(0, 0.0012).

It is important to mention that there are several possible meth-
ods to set up the current dipoles to model neural sources. For
instance, the orientation of a dipole may be constrained to be
normal to the cortical surface or it may not be fixed to a specific
direction [2]. In this study, we adopt the latter approach where
the dipole orientation is not necessarily normal to the cortical
surface and it can possibly take any direction.

Once the dipole model is set up, the leadfield of each dipole
is calculated for a whole-head MEG system (Elekta Neuromag)
with 204 gradiometers. These 204 gradiometers are distributed
over 102 locations where each location contains two gradiome-
ters. The MEG feature vector x is computed by

x =
10∑

n=1

AROI ,n · qROI ,n +
10∑

n=1

ARON ,n · qRON ,n

+
200∑

n=1

ANoi ,n · qNoi ,n + n, (19)

where AROI ,n , ARON ,n and ANoi ,n represent the correspond-
ing leadfield matrices, respectively. According to (19), we gen-
erate 500 feature vectors for each brain state to construct the
training set.

For the aforementioned training set, the discriminant infor-
mation originates from both the ROI and the RON. However,
ROI decoding aims to extract the optimal discriminant pattern
originating from the ROI only to distinguish different brain
states. In order to evaluate the performance of an ROI decoding
algorithm, we consider two test sets:
1) A test set with discriminant signals generated by the dipoles
outside the ROI only (TestSet-RON): The MEG feature vector
is computed by

x =
10∑

n=1

ARON ,n · qRON ,n +
200∑

n=1

ANoi ,n · qNoi ,n + n.

(20)
2) A test set with discriminant signals generated by the dipoles
inside the ROI only (TestSet-ROI): The MEG feature vector is
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computed by

x =
10∑

n=1

AROI ,n · qROI ,n +
200∑

n=1

AN oi,n · qN oi,n + n. (21)

For each of these test sets, we simulate 5000 trials for each of
the two brain states.

Ideally, if a decoding algorithm does not select the discrimi-
nant information originating from the RON, its decoding accu-
racy on TestSet-RON should be at the chance level. On the other
hand, if a decoding algorithm is efficient at extracting the dis-
criminant information from the ROI, its decoding accuracy on
TestSet-ROI should be sufficiently high. In other words, a good
ROI decoding algorithm should yield high decoding accuracy
on TestSet-ROI but low decoding accuracy on TestSet-RON.

B. Simulation Results

For testing and comparison purposes, five different decoding
algorithms are implemented:

1) LDA based on whole-head MEG (LDA-W): The MEG
data recorded from all gradiometers are used for decoding.

2) LDA based on selected channels (LDA-S): The MEG data
recorded from 36 gradiometers located on top of the ROI
are used for decoding. The locations of the selected chan-
nels are shown in Fig. 1(b).

3) Source-space discriminant analysis (SDA): MNE [23] is
applied to estimate the sources for each trial. Thereafter,
only the sources within the ROI are used for decoding.
Since thousands of sources within the ROI are found by
MNE, Fisher criterion (FC) is applied to select the impor-
tant sources as features [24], where the number of selected
features is determined by leave-one-out cross validation
[19] based on the training set. With these selected features,
LDA is applied for classification.

4) Beamspace discriminant analysis (BDA): A linear sub-
space is first determined by the beamspace transformation
[14]–[16] to extract the signals originating from the ROI.
Next, LDA is applied to this linear subspace for decoding.

5) ROI-constrained discriminant analysis (RDA): The pro-
posed RDA algorithm is applied for decoding.

Fig. 2(a) and (b) shows the decoding accuracy of five differ-
ent algorithms based on TestSet-ROI and TestSet-RON, respec-
tively. Here, the decoding accuracy is defined as the number of
correctly classified trials divided by the total number of trials. In
Fig. 2, the decoding accuracy is plotted as a function of λ (i.e., the
power ratio pΦ/pΦ̃ defined in (13)) for both BDA and RDA. As
discussed in Section II, the parameter λ varies between the lower
bound and the upper bound of the constraint function in (16).

A number of important observations can be made from Fig. 2.
First, LDA-W achieves similar decoding accuracy for TestSet-
ROI and TestSet-RON. It implies that the discriminant informa-
tion used by LDA-W originates from both the ROI and the RON.
Namely, without taking into account the ROI constraint, LDA-
W attempts to extract the optimal discriminant pattern from all
cortical regions.

By using the MEG channels on top of the ROI only, LDA-S
is able to select the discriminant information originating from
the ROI. Compared to the decoding accuracy of LDA-W, the

Fig. 2. Decoding accuracy (i.e., the number of correctly classified trials di-
vided by the total number of trials) is shown for different algorithms based on:
(a) TestSet-ROI and (b) TestSet-RON. The accuracy of RDA and BDA is shown
as a function of λ (i.e., the power ratio pΦ /pΦ̃ defined in (13)).

accuracy of LDA-S increases for TestSet-ROI and decreases
for TestSet-RON. However, the decoding accuracy of LDA-S
remains high for TestSet-RON, implying that LDA-S still takes
advantage of the discriminant information from the RON.

SDA maps the MEG signals into the source space, and then
uses the sources within the ROI for decoding. As shown in
Fig. 2, the decoding accuracy of SDA is extremely low in our
simulation experiments due to two reasons. First, it is diffi-
cult to accurately estimate the sources inside the ROI for each
single trial. It is well known that the problem of source localiza-
tion is profoundly underdetermined. Most source localization
algorithms (e.g., MNE [23]) can only capture the “dominant”
sources, but not necessarily the “discriminant” sources inside
the ROI. If the discriminant sources within the ROI are not ac-
curately estimated, we cannot achieve high decoding accuracy
by applying SDA. Second, source localization often results in
thousands of sources that are considered as the input features
for decoding, while our training data are limited. In this case,
it is extremely difficult to prevent the decoder from overfitting
the training data, even though we have carefully applied feature
selection in the experiments. For these reasons, SDA cannot effi-
ciently extract the discriminant pattern inside the ROI to achieve
high decoding accuracy.
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Next, we consider our proposed RDA algorithm. As shown in
Fig. 2, when λ reaches the lower bound, the decoding accuracy of
RDA is 73.7% and 72.1% for TestSet-ROI and TestSet-RON, re-
spectively. It implies that when the ROI constraint is completely
ignored, the discriminant pattern extracted by RDA contains
the discriminant information originating from both the ROI and
the RON. In this extreme case, RDA is exactly equivalent to
LDA-W. As a result, the decoding accuracy is almost identical
for TestSet-ROI and TestSet-RON. As λ increases, the decoding
accuracy of TestSet-RON decreases, indicating that a reduced
amount of discriminant information originating from the RON
is used for decoding. In other words, RDA can smoothly con-
trol the ROI selectivity of the decoder by varying the value
of λ. It is important to note that as λ increases, the extracted
discriminant information from the ROI does not monotonically
increase. Here, the decoding accuracy for TestSet-ROI is not a
monotonic function of λ, because RDA cannot perfectly remove
the discriminant information originating from the RON without
distorting the information originating from the ROI.

Finally, we study the results of BDA. BDA uses beamspace
transformation [14]–[16] to extract the signals generated by the
ROI. Similar to RDA, beamspace transformation uses the power
ratio pΦ/pΦ̃ in (13) to control the ROI selectivity. However, un-
like RDA that formulates a constrained optimization problem
in (16), beamspace transformation cannot directly set the ratio
pΦ/pΦ̃ to a specific value. Let {ϕi ; i = 1, 2, . . . ,M} denote
the eigenvalues of the matrix G−1

Φ̃
·GΦ arranged in descending

order. Beamspace transformation selects the K dominant eigen-
vectors {v1 , v2 , . . . , vK } associated with the K largest eigen-
values {ϕ1 , ϕ2 , . . . , ϕK }. Next, the ROI constraint pΦ/pΦ̃ is
approximated as a linear subspace spanned by these K dominant
eigenvectors {v1 , v2 , . . . , vK }. In this case, the exact value of
pΦ/pΦ̃ is unknown but its lower bound is set by ϕK (i.e., the Kth
largest eigenvalue). As K increases, the lower bound of pΦ/pΦ̃
decreases. In other words, BDA increases the ROI selectivity
by reducing the number of selected dominant eigenvectors. By
varying K from M to 1, we plot the decoding accuracy of BDA
as a function of λ in Fig. 2. Here, λ is the lower bound of the
power ratio pΦ/pΦ̃ , instead of the exact value of pΦ/pΦ̃ .

Similar to RDA, the decoding accuracy of BDA quickly de-
creases for TestSet-RON as λ increases. However, comparing
the decoding accuracy between RDA and BDA for TestSet-ROI,
we notice that RDA offers superior accuracy over BDA in this
example. Note that the constraint set of (16) is nonconvex, in-
stead of a simple linear subspace. When BDA is applied, it
approximates the nonconvex constraint set of (16) by a linear
subspace. Such an approximation does not fully cover the actual
constraint set of (16). In other words, BDA attempts to decode
the brain states by searching a smaller constraint set than RDA.
It, in turn, results in a suboptimal decoder and is less accurate
than RDA.

IV. EXPERIMENTAL STUDIES

In this section, we will present the MEG data collected from
two human subjects performing both overt and imagined wrist
movements to compare the proposed RDA algorithm with sev-

TABLE I
NUMBER OF SUCCESSFUL TRIALS PER MOVEMENT DIRECTION FOR EACH

HUMAN SUBJECT

Subject ID Sub1 Sub2

Overt 84 150
Imagined 174 126

eral other traditional methods. All procedures are approved by
the Institutional Review Boards of Carnegie Mellon University
and the University of Pittsburgh. All experiments are performed
in accordance with the approved protocol.

A. Experimental Setup and Data Preprocessing

In our experiments, two healthy subjects perform a center-out
movement task with their right wrist while holding an MEG-
compatible joystick [8]. Target images are generated by a com-
puter and projected to a nonmagnetic screen in front of the
subjects to prompt the movement direction. Two different ex-
perimental paradigms are designed: 1) overt movement and 2)
imagined movement. During the overt movement trials, the sub-
jects are instructed to move a cursor from the center of the
screen to one of the four locations (i.e., up, down, left or right)
by making wrist movements (i.e., radial deviation, ulnar devia-
tion, flexion and extension), while keeping the rest of the body
relaxed. During the imagined movement trials, the subjects are
instructed to imagine making the wrist movements to the target
displayed on the screen, while the cursor moves from the center
to the target automatically. For both overt and imagined move-
ments, the subjects are instructed to keep their gaze at the center
of the screen and only attend to the targets using their peripheral
vision.

Several studies in the literature suggest that a significant
amount of information regarding the wrist movement direction
can be found from the contralateral sensorimotor cortex [25]–
[27]. Hence, we aim to decode the movement direction of the
right wrist from left sensorimotor cortex in this study. On the
other hand, our experimental paradigm involves visual stimuli.
Due to this reason, the visual cortex may generate neural signals
that can distinguish different movement directions. To focus on
the left sensorimotor cortex and remove the discriminant sig-
nals from other cortical regions, the left sensorimotor area (i.e.,
the left precentral gyrus and the left postcentral gyrus) is set as
the ROI and the other regions are set as the RON, as shown in
Fig. 1(a).

MEG data are acquired by using a 306-channel whole-head
MEG system (Elekta Neuromag) with 1-kHz sampling fre-
quency. The signals recorded by 204 gradiometers are used
for movement decoding. Other signals recorded by 102 mag-
netometers are not used due to their low signal-to-noise ratio.
In addition, electrooculography (EOG) is used to monitor eye
blinks and eye movements. Electromyography (EMG) of wrist
flexor and extensor muscles is recorded to make sure that no
movement happens during the imagined sessions. All trials with
EOG or EMG contamination are rejected. Table I summarizes
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Fig. 3. Spatial distributions of wavelet coefficients are shown for (a) first set of
102 gradiometers and (b) second set of 102 gradiometers. In both plots, the color
maps in the first two columns are calculated by averaging the wavelet coefficients
over all trials of the left and right movement directions, respectively, and the
color maps in the last column show the scores calculated by Fisher criterion
(FC). Each row corresponds to the wavelet coefficients associated with the same
time-frequency window. Red color indicates large value and blue color indicates
small value. All plots of wavelet coefficients share the same color scale, and all
plots of FC scores share the same color scale.

the number of successful trials per movement direction for each
subject.

We consider the ROI decoding problem for the left and right
directions only, since the RDA algorithm is formulated for two-
class classification in this paper. It has been demonstrated in the
literature that significant power modulation related to movement
directions can be observed in the low-frequency band (� 7 Hz)
during a short time window [5]. For these reasons, we only con-
sider the low-frequency band (� 7 Hz) for the time window t �
[270 ms, 510 ms], where t = 0 ms represents target onset. We ap-
ply discrete wavelet transform (DWT) with second-order Symlet
wavelet function [28] to decompose the MEG signals from each
channel and each trial to multiple levels. The DWT results in
four wavelet coefficients within the selected frequency band and
time window for each channel. These four wavelet coefficients
correspond to four time windows t � [270 ms, 330 ms], [330 ms,
390 ms], [390 ms, 450 ms] and [450 ms, 510 ms] and cover the
low-frequency band (� 7 Hz). Taking the overt case of Sub1 as
an example, Fig. 3 shows the spatial distributions of the wavelet
coefficients for two different classes over four time-frequency
windows. In this section, we investigate the ROI decoding prob-
lem for each time-frequency window separately. In Section V,
we will further discuss how to extend the proposed RDA algo-
rithm to simultaneously use multiple time-frequency windows
for decoding.

Since there are two subjects, two experimental paradigms
(i.e., overt and imagined movements) for each subject and four
time-frequency windows for each paradigm, we have 16 differ-
ent datasets in total. To simplify the notation, the datasets asso-
ciated with the ith (i = 1, 2) subject and the jth (j = 1, 2, 3, 4)
time-frequency window are labeled as “Subi Oj” and “Subi Ij”
for overt and imaged movements, respectively. For instance,
“Sub1 O1” refers to the first subject and the first time-frequency
window. For each dataset, the feature vector is 204-dimensional,
corresponding to the wavelet coefficients calculated for 204 gra-
diometers.

During a separate visit, each subject is asked to perform a
standard structural MRI scan of the head. The MRI data are

used to define the vertices and the associated current dipoles to
formulate the ROI constraint. Toward this goal, the MRI data are
coregistered with the MEG data. A fixed source grid with 2-mm
spacing is generated from the gray/white matter boundary of the
MRI image by using FreeSurfer [20]. In addition, the cortical
surface is parcellated and labeled as different cortical regions
by using FreeSurfer.

B. ROI Decoding Results

As discussed in Section II, the performance of ROI decoding
should be evaluated according to two criteria: 1) decoding accu-
racy and 2) ROI selectivity. For the simulation experiments, we
assess these two criteria based on two different test sets: TestSet-
RON and TestSet-ROI. However, it is not possible to generate
these test sets for the MEG measurement data. Hence, we eval-
uate the decoding accuracy by using six-fold cross-validation
[19] and assess the ROI selectivity by using the discriminant
pattern source localization (DPSL) method [29]. Considering
the spatial filter y = wT·x in (1), DPSL calculates the gain of
the spatial filter for the neural source (i.e., a current dipole)
at each spatial location to determine whether the MEG sig-
nals generated by this particular source can pass the spatial
filter. The resulting gain is normalized between 0 and 1. A large
gain implies that the MEG signals generated by the correspond-
ing source can pass the spatial filter and, hence, strongly con-
tribute to the decoding result. In the ideal case of ROI decoding,
the neural sources with nonzero gain should sit inside the ROI
only.

Fig. 4 shows the decoding accuracy of five different algo-
rithms that we implement: 1) LDA-W, 2) LDA-S, 3) SDA, 4)
BDA, and 5) RDA. The detailed descriptions for these five meth-
ods can be found from our simulation studies in Section III-B
and the same algorithm setup is used for the experimental stud-
ies here. The decoding accuracy is defined as the number of
correctly classified trials divided by the total number of trials.

In order to fully understand the proposed RDA algorithm
and compare it with the traditional BDA method, the decoding
accuracy is plotted as a function of λ (i.e., the power ratio
pΦ/pΦ̃ defined in (13)) for both BDA and RDA. Furthermore,
the spatial locations of the discriminant sources (i.e., the sources
that generate discriminant signals) are estimated by DPSL and
are plotted for LDA-W, LDA-S and RDA in Fig. 5. Since SDA
and BDA are expected to have good ROI selectivity, we do not
show the DPSL results for SDA and BDA here.

Studying Figs. 4 and 5 reveals several important observations.
First, while LDA-W achieves high decoding accuracy as shown
in Fig. 4, it completely ignores the ROI constraint. Therefore,
as shown in Fig. 5, the discriminant sources corresponding to
LDA-W are widely distributed over several cortical regions.
Such results are observed, because our experimental paradigm
involves both visual stimulus and overt/imagined movements
and, hence, multiple cortical regions are activated. Without con-
sidering the ROI constraint, LDA-W picks up the discriminant
information from all these cortical regions for decoding.

By using the MEG channels located on top of the ROI, LDA-
S is able to constrain the discriminant sources close to the ROI.
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Fig. 4. Movement decoding accuracy (both mean and standard deviation) is plotted for LDA-W, LDA-S, SDA, BDA and RDA. The decoding accuracy is defined
as the number of correctly classified trials divided by the total number of trials. For BDA and RDA, the accuracy is plotted as a function of λ (i.e., the power
ratio pΦ /pΦ̃ defined in (13)). The plots associated with the ith (i = 1, 2) subject and the jth (j = 1, 2, 3, 4) time-frequency window are labeled as “Subi Oj” and
“Subi Ij” for overt and imaged movements, respectively. Each red circle denotes a reasonably large value of λ where the discriminant information from the RON
is substantially removed and the decoding accuracy of RDA is sufficiently high.

However, as shown in Fig. 5, LDA-S fails to constrain the dis-
criminant sources within the ROI in most cases. In addition,
because LDA-S only uses a limited number of channels for de-
coding, its accuracy is not as high as that of LDA-W, as shown in
Fig. 4. These results demonstrate that directly selecting a subset
of MEG channels on top of the ROI is not an efficient approach
to extract the discriminant information for ROI decoding.

As shown in Fig. 4, the decoding accuracy of SDA is ex-
tremely low. SDA fails to achieve high decoding accuracy due
to several reasons. First, it is difficult to accurately estimate the
sources inside the ROI for each single trial. Second, source lo-
calization often results in thousands of neural sources that are
considered as the input features of decoding, while our training
data are limited. In this case, it is extremely difficult to pre-
vent the decoder from overfitting the training data. For these
reasons, even though SDA can offer perfect ROI selectivity, it
cannot efficiently extract the discriminant pattern inside the ROI
to achieve high decoding accuracy.

Next, we consider our proposed RDA algorithm and com-
pare it with other traditional methods. As shown in Fig. 4, the
decoding accuracy of RDA is plotted as a function of λ (i.e.,
the power ratio pΦ/pΦ̃ defined in (13)). If λ reaches the lower

bound, RDA and LDA-W are exactly equivalent. On the other
hand, if λ reaches the upper bound, the decoding accuracy drops
significantly. In this extreme case, the spatial filter y = wT·x
formed by RDA is determined by the dominant eigenvector of
G−1

Φ̃
·GΦ , which maximizes the total signal power originating

from the ROI, instead of the discriminant information generated
by the ROI. In other words, if λ is set to its upper bound, RDA
maximizes the ROI selectivity only and, hence, is unlikely to
achieve high decoding accuracy. When λ varies between these
two extreme cases, RDA explores the tradeoff between ROI se-
lectivity and decoding accuracy. As λ increases from the lower
bound to the upper bound, the ROI selectivity is improved while
the decoding accuracy is expected to decrease.

It is also important to note that the decoding accuracy of RDA
is almost unchanged, as λ varies between the lower bound and a
reasonably large value (e.g., the value denoted by the red circle
in Fig. 4). For several datasets such as Sub2 O3 and Sub2 O4, the
decoding accuracy even slightly increases as λ increases, due
to the following two reasons. First, the discriminant informa-
tion generated by multiple cortical regions may be redundant.
Hence, high decoding accuracy can be achieved by extracting
the discriminant information from the ROI, instead of other
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Fig. 5. The discriminant pattern source localization (DPSL) method [29] is applied to find the spatial locations of the discriminant sources for LDA-W, LDA-S
and RDA: (a) Subject 1 and (b) Subject 2. The plots associated with the ith (i = 1, 2) subject and the jth (j = 1, 2, 3, 4) time-frequency window are labeled as
“Subi Oj” and “Subi Ij” for overt and imaged movements, respectively. Red color indicates the spatial locations where the gain of the spatial filter y = wT·x in (1)
is large. In other words, the MEG signals generated by the sources at these locations can pass the spatial filter y = wT·x and contribute to the decoding outcome.

cortical regions. Second, as only a small number of training
trials are available from the dataset, the ROI constraint posed
by RDA can act as an efficient regularization strategy to avoid
overfitting.

The spatial locations of the discriminant sources captured by
RDA are shown in Fig. 5, when λ is set to the values denoted by
the red circles in Fig. 4. Based on Fig. 5, we observe that when λ

is sufficiently large, the proposed RDA algorithm successfully
forms a spatial filter to pass the MEG signals generated by the
ROI only. In other words, unlike LDA-W and LDA-S where
the discriminant sources are widely distributed over multiple

cortical regions, all sources corresponding to RDA appropriately
sit inside the ROI, as shown in Fig. 5.

Finally, comparing the decoding accuracy between BDA and
RDA in Fig. 4, we notice that these two methods result in the
same decoding accuracy, when the value of λ reaches its lower
bound or upper bound. Remember that the lower and upper
bounds are determined by (17) and (18), respectively. When λ

reaches its lower bound, the constraint in (16) is always satisfied
for any w � �M. On the other hand, when λ reaches its upper
bound, the constraint set in (16) is a 1-D subspace defined by the
dominant eigenvector of G−1

Φ̃
·GΦ . In these two extreme cases,
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BDA and RDA are exactly equivalent and, hence, their decoding
results are identical. However, as the value of λ varies between
these two bounds, RDA results in superior decoding accuracy
over BDA. In these cases, the constraint set of (16) is nonconvex,
instead of a simple linear subspace. When BDA is applied, it
approximates the nonconvex constraint set of (16) by a linear
subspace. Such an approximation does not fully cover the actual
constraint set and, hence, results in a suboptimal decoder.

V. DISCUSSION AND FUTURE WORK

The objective of RDA is to extract the MEG signals from pre-
specified cortical regions for decoding. In the literature, various
signal processing algorithms are applied to remove the artifacts
that are introduced by nonneural activities (e.g., eye movement
[30]). In this paper, we develop the RDA algorithm that aims to
remove the neural signals corresponding to the RON. Namely,
when we try to study one specific cortical region (i.e., our ROI),
we consider the neural signals generated by other cortical re-
gions (i.e., the RON) as artifacts and, hence, should not be used
for decoding. For instance, consider the example of a visually-
guided motor study where the subject is asked to move the left
or right hand by following a visual cue. The visual cue for differ-
ent hands will activate the visual cortex and the neural signals
generated by the visual cortex should be removed, if our in-
terest is to decode the movement information from the motor
cortex.

While our simulation and experimental studies both demon-
strate the superior performance of RDA over other traditional
methods, there remain a number of open questions related to
RDA. First, RDA provides a tool that can extract the optimal
discriminant pattern for decoding based on the MEG signals
from the ROI, where the ROI selectivity is controlled by a user-
defined parameter λ. How to appropriately choose the parameter
λ to satisfy the requirements for a practical application remains
an open question. One possible solution is to plot the decoding
accuracy as a function of λ based on the training data, as shown
in Fig. 4. Next, we set the minimum decoding accuracy accord-
ing to the application of interest, and then take the appropriate
value of λ to meet the minimum decoding accuracy.

Second, RDA is currently limited to the case where only
one feature is extracted from each MEG channel for decoding.
However, it is possible to extend RDA to handle the general
case with multiple features per MEG channel. For example, if
we use the feature extraction method described in Section IV-A,
multiple features of the same channel correspond to different
time windows. In this case, the linear discriminant function y
= wT·x in (1) can be conceptually viewed as a spatio-temporal
filter. We can use the same objective function shown in (2), but
redefine pΦ and pΦ̃ in (13) based on the output of this spatio-
temporal filter.

Third, RDA is formulated for two-class classification in this
paper. It is possible to extend RDA to multiple classes by inte-
grating it with a multiclass classification algorithm developed
by the machine learning community. For example, we can use
the one-versus-rest approach, which attempts to build a K-class
classifier by combining K two-class classifiers [19].

Finally, the possible applications of the proposed RDA algo-
rithm should be further explored in both clinical and nonclinical
domains. For instance, by setting ROI to different cortical re-
gions, RDA may be used to study and compare the functional
roles of different cortical regions when performing specific brain
tasks. It, in turn, may serve as a powerful tool for presurgical
localization of the cortical areas that are significantly modulated
by the intended brain task [31].

VI. CONCLUSION

In this paper, we propose a novel RDA algorithm for ROI de-
coding. RDA aims to extract the optimal discriminant pattern to
distinguish different brain states based on the MEG signals origi-
nating from prespecified cortical regions. Such a goal is accom-
plished by formulating a constrained nonconvex optimization
problem based on linear classification and beamspace transfor-
mation. In addition, an efficient numerical solver is developed
to find the solution of RDA with guaranteed global optimum.
Compared to other traditional methods, RDA can efficiently ex-
tract the discriminant signals from the ROI and suppress the
signals originating from the RON, as is demonstrated by the
experimental results in this paper.

APPENDIX

NUMERICAL SOLVER FOR RDA

As discussed in Section II, the constraint function of (16) has
an upper bound of ρ(G−1

Φ̃
·GΦ ) defined in (18). Therefore, the

optimization in (16) is feasible, if and only if λ is less than or
equal to ρ(G−1

Φ̃
·GΦ ). If λ equals ρ(G−1

Φ̃
·GΦ ), the globally opti-

mal solution w∗ should be the dominant eigenvector of G−1
Φ̃
·GΦ

corresponding to the eigenvalue λ. Otherwise, if λ is less than
ρ(G−1

Φ̃
·GΦ ), the optimization in (16) is strictly feasible. In this

section, we will develop a numerical algorithm to find the glob-
ally optimal solution w∗ for this strictly feasible case.

Given the fact that GΦ̃ is positive-definite, we rewrite (16) as

minimize
w

− wT · SB · w
wT · SW · w

subject to wT · (λ · GΦ̃ − GΦ) · w ≤ 0. (22)

Since the cost function in (22) is invariant with respect to the
rescaling of w, we can fix its denominator to an arbitrary constant
and optimize the numerator only. It allows us to transform the
optimization in (22) to an equivalent problem

minimize
w

− wT · SB · w

subject to wT · SW · w = 1

wT · (λ · GΦ̃ − GΦ) · w ≤ 0. (23)

As shown by the Proposition 2 of [32], strong duality holds for
(23) and its dual problem is expressed as

maximize
α,β

α

subject to − SB − α · SW + β · (λ · GΦ̃ − GΦ) ≥ 0

β ≥ 0 (24)
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where the constraint −SB − α·SW + β (λ·GΦ̃ − GΦ ) � 0
means that the matrix −SB − α·SW + β (λ·GΦ̃ − GΦ ) must
be positive semi-definite.

Due to strong duality, the optimal cost function value of (23)
is equal to that of (24). In addition, since the two optimization
problems (22) and (23) yield the same optimal cost function
values, we can conclude that the optimal cost function values
of (22)–(24) are all identical. We denote this optimal value
as f ∗. On the other hand, since the optimization in (24) is a
convex semi-definite programming (SDP) problem [33], it can
be solved both robustly (i.e., with guaranteed global optimum)
and efficiently (i.e., with low computational cost) [33]. Once the
optimization in (24) is solved, the optimal cost function value
f ∗ is known and we need to further find the optimal solution w∗

to fully determine the spatial filter in (1).
Given the optimal cost function value f ∗ of (22), the following

inequality holds for any vector w within the feasible set of (22):

−wT · SB · w
wT · SW · w ≥ f ∗. (25)

Remember that the matrix SW is positive definite and, hence,
the scalar wT·SW ·w is positive. (25) is equivalent to:

− wT · SB · w − f ∗ · wT · SW · w ≥ 0. (26)

The left-hand side of (26) reaches the minimum value 0 or,
equivalently, the equality sign is reached for the inequality in
(25), when w is equal to the optimal solution w∗. Therefore, the
solution w∗ of (22) can be determined by solving the following
optimization problem:

minimize
w

− wT · (SB + f ∗ · SW ) · w

subject to wT · (λ · GΦ̃ − GΦ) · w ≤ 0. (27)

The optimal cost function value of (27) is zero and, hence, is
invariant with respect to the rescaling of the vector w. Based on
this observation, we define

w =
[
w1 w2 · · · wM −1 1

]T =
[
vT 1

]T
, (28)

where v = [w1 w2 ... wM−1]T. In other words, since the opti-
mization in (27) aims to find the direction of the vector w, we
can fix the last element of w to be any constant (e.g., 1). Next,
we represent the M-by-M symmetric matrix −(SB + f∗·SW ) in
the form of four submatrices

− (SB + f ∗ · SW ) =

[
A0 b0

bT
0 c0

]
, (29)

where A0 � �(M−1)×(M−1), b0 � �M−1, and c0 ∈ �. Similarly,
we represent the matrix λ·GΦ̃ − GΦ as

λ · GΦ̃ − GΦ =

[
A1 b1

bT
1 c1

]
, (30)

where A1 � �(M−1)×(M−1), b1 � �M−1, and c1 ∈ �.
Based on (28)–(30), we rewrite the optimization problem in

(27) as:

minimize
y

vT · A0 · v + 2 · bT
0 · v + c0

subject to vT · A1 · v + 2 · bT
1 · v + c1 ≤ 0. (31)

To solve (31), we write the corresponding dual problem [33]

maximize
r,ζ

r

subjectto ζ ≥ 0
[
A0 + ζ · A1 b0 + ζ · b1

(b0 + ζ · b1)T co + ζ · c1 − r

]
≥ 0 (32)

where r ∈ � and ζ ∈ � are the optimization variables. The
optimization in (32) is a convex SDP problem [33]. Solving
it yields the optimal solution ζ = ζ∗. Once ζ∗ is known, the
optimal solution v∗ of (31) is given by [33]

v∗ = − (A0 + ζ∗ · A1)
−1 · (b0 + ζ∗ · b1) . (33)

Substituting v = v∗ into (28) yields the optimal solution w∗ of
(22), which is also the optimal solution of (16).

Algorithm 2 summarizes the major steps of our proposed
algorithm to find the optimal solution w∗ of (16) with guaranteed
global optimum.

Algorithm 2: RDA Solver
1. Start from the optimization problem in (16) where SB ,

SW , GΦ , GT and λ are known.
2. Calculate ρ(G−1

Φ̃
·GΦ ) in (18).

3. If λ > ρ(G−1
Φ̃
·GΦ ), the optimization in (16) is

infeasible. If λ = ρ(G−1
Φ̃
·GΦ ), the optimal solution w∗

equals the dominant eigenvector of G−1
Φ̃

· GΦ .
Otherwise, if λ < ρ(GΦ

−1·GΦ ), follow Steps
4–8 to find the optimal solution w∗.

4. Solve the SDP problem in (24) and get the optimal cost
function value f∗.

5. Compute A0 , b0 and c0 using (29), and A1 , b1 and c1
using (30).

6. Solve the SDP problem in (32) and get the optimal
solution ζ∗.

7. Calculate v∗ using (33).
8. Substitute v = v∗ into (28) to calculate the optimal

solution w∗.
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