
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 34, NO. 5, MAY 2016 1417

Energy-Constrained Distributed Learning and
Classification by Exploiting Relative Relevance

of Sensors’ Data
Majid Mahzoon, Christy Li, Xin Li, and Pulkit Grover

Abstract—We consider the problem of communicating data
from energy-constrained distributed sensors. To reduce energy
requirements, we go beyond the source reconstruction problem
classically addressed, and focus on the problem where the recipient
wants to perform supervised learning and classification on the data
received from the sensors. Restricting our attention to a noiseless
communication setting under simplistic Gaussian source assump-
tions, we study supervised learning and classification under total
energy limitations. The energy constraints are modeled in two
ways: 1) a linear scaling and 2) an exponential scaling of energy
with number of bits used for compression at sensors. We first
assume that the underlying parameters for Gaussian distributions
have already been learned, and obtain (with linear scaling, reverse-
waterfilling-type) strategies for allocating energy, and thus, bits,
across different sensors under these two models. Intuitively, these
strategies allocate larger rates and energies to sensors that are
more “relevant” for the classification goal. These strategies are
used to obtain an achievable bound on the tradeoff between
energy and error-probability (classification risk). We then pro-
vide an algorithm for learning the distribution-parameters of the
sensor-data under energy constraints to arrive at high-reliability
energy-allocation strategies, while enabling the energy-allocation
algorithm to backtrack when the underlying distributions change,
or when there is noise in sensed data that can push the algorithm
toward a local minimum. Finally, we provide numerical results on
energy-savings for classification of simulated data as well as neural
data acquired from electrocorticography (ECoG) experiments.

Index Terms—Rate and energy-constrained learning, super-
vised learning, classification, statistical inference, distributed sens-
ing, neural sensing.

I. INTRODUCTION

E NERGY-EFFICIENT communication1 for distributed
sensors is gaining importance with the advent of wear-

able devices, structural health monitoring, body-area networks,
and networked sensing. It is now widely acknowledged that
energy will be a limiting bottleneck in the Internet of Things
(IoT) revolution, where devices will sense and communicate
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enormous volumes of data which will be processed to make
various inferences and decisions. Because of the tight coupling
and tradeoffs between sensing, communication, and computing
in these devices, there is an urgent requirement for cross-
disciplinary approaches to reduce energy consumption that
bridge concepts from information theory, computer science,
hardware/circuits, and signal processing.

Towards this larger goal, this paper is motivated by the
practitioner’s observation that in many cases, different sensors
have different relevance to the inference or signal process-
ing task (“the goal”) that the practitioner wants to perform.
Often, there is a gentle gradation of relevance of sensors from
immensely relevant to irrelevant. Thus, it might be possible to
reduce required communication and sensing energy by reduc-
ing fidelity of observations from sensors that are less relevant
to the goal2. In this work, we are motivated by problems where
the total sensor network energy, summed over all sensors,
is constrained. Are there applications where such constraints
arise naturally? Indeed, one situation is when all sensors are
wired, such as in health-monitoring and body-area networks3.
Another situation is in wirelessly powered sensor networks,
where the system can focus its power-beam towards sensors that
are allocated more energy based on their relevance to the goal.

A particular application of our interest, that motivates our
problem formulation as well, is high-electrode-count (thou-
sands or tens of thousands of electrodes) brain-computer inter-
faces (BCIs) and neural recording systems. A parallel work of
our team is exploring fundamental and practical challenges in
development and utilization of such high-density systems [1]–
[3]. Classification is a common tool used in BCIs for various
applications such as neuroprostheses. It is commonly observed
that only some of the electrodes are recording data that is
relevant to the classification goal (as observed in neural data
analysis on real data in [1]), and even for these electrodes, there
is significant range of relative relevance. However, the most rel-
evant electrodes can not be predicted in advance as they are
different for different users, and even for the same user, they
evolve over time due to neural plasticity. Thus, it is common
to retrain the classifier frequently in order to maintain a low
error-probability. The electrode count itself is limited by area

2Such techniques for reduction in energy would not work if the end-goal is
not known. Often in such cases, collection from all sensors at high resolution is
the only resort, and is common practice.

3In fact, it is not just a battery constraint here. If all of the sensors consume
large energy in a dense sensing environment, the amount of heat generated can
get large enough to burn the tissue.
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and power of sensors: the power consumption of 1000s of elec-
trodes can easily exceed tens of watts [2]! Such large power
consumption can cause the user to perspire (which can cause
the electrodes to short-circuit, compromising the recordings), or
worse, burns in their tissue. The sensors are all wired together,
and thus a total energy constraint is fairly realistic.

Thus, we seek strategies that allocate each sensor an amount
of energy based on its relevance to the inference goal under a
total energy constraint. We use two models of sensor-energy
consumption as a function of the compression rate (measured
in bits per observation) allocated to each sensor: a linear model,
and an exponential model. The linear model is more suit-
able when communication energy dominates sensing energy,
or when the sensing circuitry employs certain slow and low-
resolution (e.g. “Successive Approximation Register (SAR)”)
Analog-to-Digital Converter (ADC) architectures. When sens-
ing circuitry employs higher resolution and/or fast ADCs (e.g.
flash ADCs or oversampled ADCs), and when sensing energy
dominates communication energy, an exponential-type model
is more appropriate [2].

Our goal is to use these models to obtain energy-efficient rate
allocations that minimize the classification error-probability.
Intuitively, an efficient rate allocation would allocate larger
number of bits to more relevant sensors. The relevance of a
sensor must in turn depend on what inference we desire from
the measurements. In this work, our inference goal is super-
vised learning and classification from a parameterized Bayesian
perspective. For simplicity, we limit ourselves to Gaussian pri-
ors on the data under different classes, and further restrict our
attention to two classes (i.e., binary classification). As a key
simplifying step, we approximate the problem of minimizing
error-probability with that of recovering the decision variable
(prior to thresholding, see Section III-A). For this simplistic
problem and for both models of energy consumption, we pro-
vide the following results on energy-constrained supervised
learning:

(i) Energy-constrained algorithms for learning the parame-
ters on labeled data (prior to testing) of the underlying
distributions from quantized observations, and using them
for relevance-based quantization. Importantly, our strate-
gies learn parameters of more relevant sensors at a higher
accuracy, incorporate backtracking in order to deal with
changes in underlying distributions and/or burst noise in
sensing and/or communication;

(ii) Energy-constrained testing/classification of unlabeled
data assuming that the underlying distributions have been
perfectly learned and fixed (i.e., they do not evolve over
time). We also provide an upper bound on the asymp-
totic “energy-risk” tradeoffs, that is the tradeoff between
total available energy and the classification “risk,” i.e., the
classification error-probability [4].

While (ii) above optimistically assumes that underlying dis-
tributions are known, and therefore appears practically less
interesting in comparison with (i), it lays the necessary ground-
work for (i): the strategies for (ii) are leveraged to obtain
improved rate allocation in (i) even with uncertainty/errors in
estimation of parameters. Because of energy constraints, we
assume that sensors are not able to perform any sophisticated

computations (such as parameter estimation) themselves, and
instead rely on a data-fusion node (which collects the data sent
by individual nodes) to estimate parameters and decide rate
allocation.

This work is deeply connected with literature in informa-
tion theory, signal processing, and distributed machine learning.
Our strategies are related to the reverse-waterfilling strategy
[5] in information theory that is the solution to the clas-
sical rate allocation problem for minimum distortion when
communicating independent Gaussian sources. There is one
important difference between our classification formulation and
the classical communication problem. In the classical problem,
sources with larger variances are assigned larger number of bits
to be represented faithfully. This is reminiscent of Principle
Component Analysis (PCA), where features with larger vari-
ances are retained through training [4]. The key observation
is that even large-variance sources can be irrelevant when the
goal is not communication, but classification. For instance, if
the mean of a sensor’s observations does not change signifi-
cantly under the two hypotheses, then these observations are
not very relevant. Instead of variance, a parameter called the
“Fisher score” [6] of the sources — given by square of the
difference of means under the two classes, divided by the (com-
mon) variance under each class — turns out to be the important
parameter.

The fact that we naturally arrive at Fisher score to quantify
relevance of each sensor is interesting, but hardly surprising:
Fisher score is one of the key metrics used frequently in the
problem of “sensor selection,” which is a precursor to our
problem (see, e.g., [7]–[10]). Motivated primarily by ease of
computation through dimensionality reduction (once the data
has been collected), sensor-selection algorithms select the sen-
sors most relevant to the task at hand, and ignore data from other
sensors (including using metric beyond the Fisher score, see
e.g. [8]–[10]). More broadly, sensor-selection algorithms have
been developed for many applications such as target tracking,
distributed detection, field reconstruction, etc. (e.g., [11]). The
main difference between our work and classical sensor selection
is that while sensor-selection algorithms make a binary decision
on whether to select a sensor, we seek a softer sensor selection,
where we assign each sensor bits/energy based on the degree of
relevance of a sensor to the inference goal.

A body of work in information theory implicitly addresses
the problem of rate allocation based on relevance for a closely
related problem of hypothesis testing, notably the works of Han
and Amari [12] (see also the citations therein), Ahlswede and
Csiszar [13], and Berger’s work (and the follow-up work) on
decentralized estimation [14] and the CEO problem [15]. Our
main contributions that go beyond these works are:
• We do not allow our sensors to perform sophisticated

computations. This is in part motivated by the BCI appli-
cation, where sensors are largely just amplifiers followed
by ADCs [2]. Thus, unlike e.g. in [12], our sensors
are unable to carry out parameter estimation themselves,
and can only communicate data at a flexible (but speci-
fied) resolution. This naturally leads us to a formulation
where we reconstruct the decision variable which is also
a formulation not considered in these works.
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• We are interested in not merely the problem when the
underlying distributions are static and known, but in the
problem of learning itself. That is, the parameters of the
underlying distributions also need to be learned under
rate/energy constraints (and need to be relearned when the
distribution changes).
• Finally, we address not just a sum-rate problem, but also

a sum-energy problem using an exponential model of
energy (Lemma 2 and ensuing results and algorithms).

We note that for conceptual simplicity, we allow the sensors
to use vector quantization strategy in Section III-A. While we
aim to provide solutions that work for scalars and small block-
lengths, the current results fall short of that goal. However,
we do note that the multiplicative difference in average dis-
tortion for scalars and infinite blocklengths can be small (e.g.
for Gaussian sources [16], [17], the factor is for large rates

π
√

3
2 ≈ 2.72, and empirically smaller for smaller rates [18]).

Thus, we still use guidance obtained on rate allocation from
the asymptotic analysis in Section III-A for scalar strategies in
Section III-B.

More recently, within statistical learning, there has been an
increasing interest in distributed learning algorithms, though
most of the literature is motivated by connectivity, and not rate,
constraints. Rate/energy-risk tradeoffs such as those proposed
here, have also been examined in the recent work of Lafferty4

[19], albeit not in a distributed sensing setting, but a distributed
computing setting.

Another related body of work from signal processing per-
spective focuses on detecting edges in the sensors’ field (e.g.,
[20], [21]), regression and clustering (e.g., [22]–[25]). In [22],
[23], by adaptive learning, a constrained resource such as num-
ber of samples is assigned to more informative data region
to reconstruct function with boundaries. This “active learn-
ing” is further studied in [26], [27] in the context of recon-
structing sparse vectors by allocating more sampling points at
non-zero values. Besides focusing on a different goal (classifi-
cation) and using a different constraint (that on rate/energy),
the active learning strategy proposed in this paper improves
in the above aspects by providing a backtracking algorithm
— “ambivalence-backtracking” — that backtracks towards
“ambivalence,” i.e., chooses an allocation closer to uniform
bit allocation. This allows our algorithm to retrain and classify
even when the underlying distributions of sensor-observations
are changing, or simply when a burst-noise pushes the classifier
in an undesirable direction. The strategy is particularly useful in
our reverse-waterfilling-type allocation (Lemma 1) where many
of the sensors that are deemed less relevant may not receive any
rate at all, and may therefore be turned off.

The rest of the paper is organized as follows. In Section II,
we provide the problem statement, the notation, and the mod-
els of energy consumption (namely, linear and exponential
in the number of sensor bits). In Section III, we provide
energy-constrained algorithms for (i) classification/testing once
learning has been performed (Section III-A), and (ii) energy-
constrained learning (Section III-B). We explore the pro-
vided algorithms numerically in Section IV, where we also

4Interestingly, reverse-waterfilling also shows up in Lafferty’s problem [19].

include an analysis on real-world neural data acquired from an
Electrocorticographical (ECoG) system that is implanted on the
surface of the brain and is used as a neuroprosthesis through a
classification algorithm. We observe that while we treat features
as individual sensors in our problem formulations, the applica-
tion to real data brings out the fact that the same sensor can
generate multiple features in this application. We discuss this
disconnect further in the concluding section (Section V) along
with other directions of future work.

II. NOTATION AND PROBLEM STATEMENT

To understand the problem of rate- and energy-constrained
supervised learning and classification, we will first (in
Section III-A) investigate a problem in which the parameters
of the underlying distributions have already been estimated. In
Section III-B, we will use the insights obtained from this prob-
lem to provide strategies that adapt rate allocation to efficiently
learn and use the knowledge of the parameters.

In our setup, there are M distributed sensors which have
observations Xi , i = 1, 2, . . . , M , that they communicate to a
fusion center through noiseless but rate-limited channels that
connect the sensors individually to the fusion center. No direct
communication is allowed between sensors. The fusion center
is allowed a small rate of feedback which it can use to tell
each sensor its allocated rate (measured in bits per measure-
ment). From a statistical inference perspective, for simplicity,
each measurement is treated as a feature5, and the vector X =
[X1, X2, . . . , X M ] of measurements is called a data point in the
M-dimensional feature space.

At each time instant t , a data point X(t) is drawn from
class Ct = 1 with probability p1 and from class Ct = 2 with
probability p2 independently across time steps.

If a data point X(t) is drawn from class Ct = j , j ∈ {1, 2}, the
sensors’ observations are assumed to be distributed as jointly
Gaussian, X(t) ∼ N(μ j , � j ). Thus, each sensor’s observation
is marginally (and unconditionally) a mixture Gaussian dis-
tribution. Without loss of generality, we assume that for the
i-th sensor Xi , μ1i = −μ2i = −μi , i.e., the conditional means
under the two classes are symmetric around zero. Further, for
simplicity, we assume that � j = � for j = 1, 2, with diag-
onal elements σ 2

i . Thus, in the remainder of the paper, we
will assume that under class 1, Xi ∼ N(−μi , σ

2
i ) and under

class 2, Xi ∼ N(μi , σ
2
i ). Under our simplistic assumptions, the

Bayes’s optimal solution is to classify the data point X in the
first class if the log-likelihood ratio is above some threshold
constant ν′, which is equivalent to,

(X− μ1)
T �−1

1 (X− μ1)+ ln |�1|
− (X− μ2)

T �−1
2 (X− μ2)− ln |�2| > ν′. (1)

Because we assume that �1 = �2 = �, the decision criterion
in (1) simplifies to wT X < ν, where

w = �−1 (μ2 − μ1) , and ν = log
p1

p2
. (2)

5When each individual measurement is not a feature, but feature extraction
can be performed at individual sensors, the results extend naturally.
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This means that the decision rule which classifies a data point
X in class j, j = 1, 2 is a function of this linear combina-
tion of the known measurements. This is called the Linear
Discriminant Analysis (LDA) [28].

A. Energy Consumption Models for Given Rate of
Compression

Two models of energy consumption are considered. In both
models, the energy consumption Esensor is a function of the
number of bits, denoted by Rsensor , used to represent each
sensor’s source symbol:

Definition 1 (Linear Model): The energy consumed by a sen-
sor is given by Esensor = Rsensor . The proportionality constant
is ignored for simplicity.

Definition 2 (Exponential Model): The energy consumed by
a sensor is given by Esensor = 2Rsensor . The constant in the
exponent is ignored for simplicity.

Our problem is therefore a rate allocation problem, which is
naturally information theoretic in nature, with either sum-rate
constraints (Linear Model) or a constraint on sum of exponen-
tials of the rates (Exponential Model). Results will be obtained
for both models.

B. Energy-Constrained Classification Assuming Underlying
Parameters are Known and Fixed

In Section III, we address the problem of classification under
total energy constraints assuming that the communication chan-
nels from sensors to the data-fusion center are noiseless. First,
in Section III-A, we ask the question of how to quantize sen-
sor data at each sensor (locally) based on the relevance of a
sensor’s data to the classification goal, assuming that the under-
lying parameters of distributions (μ and �) have already been
perfectly estimated through learning. Thus, the learning period
using labeled data is assumed to be over, with perfect learning
and parameter estimation accomplished.

The i-th sensor observation Xi is communicated to the fusion
center at rate Ri . For analytical simplicity, we assume that the
sensor can perform vector quantization across n time steps.
Thus, the i-th sensor uses an encoder (quantization) function
Ei : Xn

i → {1, . . . , 2n Ri } and sends the index Ei (Xn
i ) to the

fusion center. The goal is to design these strategies to minimize
the classification error-probability averaged over data points
realizations and normalized by time, subject to a constraint on
the total energy of communication, i.e.,

inf
Ei ,Ri

1

n

n∑
t=1

Pr
(

C
(

X(t)
)
�= Ĉt

(
E1(Xn

1 ), . . . ,EM (Xn
M )
))

subject to
M∑

i=1

Ei ≤ Etotal ,

(3)

where C
(
X(t)

)
is the true underlying class of X(t) and Ĉt (·) is

the predicted class of X(t) based on the received indices.
Denote the result of the optimization in (3) as Pe,n , and the

error-probability at any particular time t as P(t)
e . In Section III-

A, we will derive an asymptotic upper bound on P(t)
e (and thus

on Pe,n in the n→∞ limit) assuming the Gaussian parameters

are perfectly estimated, thus providing an inner bound on the
energy-risk tradeoff for the classification problem considered
here. The resulting rate allocation will serve as guidance for
algorithm-design for the learning problem in Section III-B.

Because our fusion center recovers X̂i , an estimate of Xi , it
uses a set of decoding functions Di : {1, . . . , 2n Ri } → X̂n

i to
reproduce the sensor observations. With a slight abuse of nota-
tion, we continue to use Ĉt as the classifier applied on received
data at the fusion center, even though it is applied now on the
decoded data point from the received indices.

C. Energy-Constrained Supervised Learning and
Classification

In Section III-B, we then address the problem where underly-
ing parameters of distributions of sensor-data are not known in
advance, and have to be estimated at the data-fusion center. Two
problems are considered: first, we consider a problem where
the parameters are unknown but fixed, which allows a simple
energy-constrained algorithm building on the strategies devel-
oped in Section III-A. Next, we consider the problem where the
parameters are unknown and can slowly evolve.

Throughout the paper, vectors are generally denoted in
bold font. Q(.) (the “Q-function” [29]) is the tail proba-
bility of the standard Gaussian distribution, that is, Q(x) =

1√
2π

∫∞
x e− u2

2 du.

III. ALGORITHMS FOR CLASSIFICATION AND LEARNING

We first (in Section III-A) provide a relevance-based data-
compression technique that relies on perfectly estimated param-
eters of distributions at sensors to obtain energy-efficient rate
allocations for the sensors. In Section III-B, we will then use
the insights from these rate allocations to develop a learning
strategy that learns more relevant distributions with higher pre-
cision, and thus tracks changes in the underlying distributions
of more relevant sensors with higher precision.

A. Energy-Constrained Classification Assuming Underlying
Parameters are Known and Fixed

We first provide a description of our energy-constrained clas-
sification strategies, and then (in Theorem 1) provide an inner
bound on the “energy-risk tradeoff” by quantifying the tradeoff
for our strategy.

At the fusion center, using a lossy reconstruction of
the data, we cannot outperform the case with full obser-
vation of the data points in terms of classification error-
probability. Therefore, we try to minimize the loss in classi-
fication accuracy due to use of the estimates of data points
{X̂(1), X̂(2), . . . , X̂(n)} instead of the observed sensor observa-
tions themselves {X(1), X(2), . . . , X(n)}, i.e.,

inf
Ei ,Di ,Ei

1

n

n∑
t=1

Pr
(

Ĉ
(

X̂(t)
)
�= Ĉ

(
X(t)

))

subject to
M∑

i=1

Ei ≤ Etotal .

(4)
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Since LDA only depends on the decision variable wT X, intu-
itively, a better approximation of wT X will lead to an improved
classification accuracy. This suggests the following approxima-
tion of (4):

inf
Ei ,Di ,Ei

1

n

n∑
t=1

E

[(
wT X(t) − wT X̂(t)

)2
]

subject to
M∑

i=1

Ei ≤ Etotal .

(5)

This approximation, while suboptimal (because source recon-
struction of even relevant sources may not be needed for
classification), motivates a parameter estimation and track-
ing algorithm in Section III-B where we use the estimates of
(parametrized) distributions of Xi to update the rate allocation.
It allows us to track the distributions of more relevant sensors
with higher precision.

Assuming that every sensor uses a blocklength n, we will
use quantization strategies at each sensor that achieve a distor-
tion Dn(Etotal), which denotes an achievable distortion-energy
function (defined analogously to distortion-rate function for
energy models in Section II-A) for blocklength n. We will use
“equidistortion” quantization strategies at each sensor, defined
as follows:

Definition 3 (Equidistortion quantization strategy): For an
iid source vector X = [X (1), . . . , X (n)], an equidistortion quan-
tization strategy is a vector quantization scheme for which the
average reconstruction error for the i-th element E[(X (i) −
X̂ (i))2] is the same for all i .

For equidistortion quantization strategies (at each sensor)
that achieve an overall distortion-energy function Dn(Etotal),
we now obtain the following result:

Theorem 1 (Energy-risk tradeoffs for classification): For
the problem stated in Section II-B, using a blocklength n
equidistortion quantization scheme at each sensor for quan-
tizing each X (t)

i (where the average distortion is equal for
all t = 1, 2, . . . , n for any fixed i) that achieves an aver-
age distortion-energy function Dn(Etotal), the classification
error-probability P(t)

e = Pr
(
C
(
X(t)

) �= Ĉ
(
X̂(t)

))
of the t-th

data-point is bounded as follows:

P(t)
e ≤ min

ξ>0
p1 Q

(
μw + ν − ξ

σ

)
+ p2 Q

(
μw − ν − ξ

σ

)
+ Dn(Etotal)

ξ2
, (6)

where p j is the probability that the underlying class
is Ct = j , j ∈ {1, 2}, μw = E[wT X(t)|Ct = 2], and σ 2 =
V ar [wT X(t)|Ct = 2].

Proof: Our decision rule for classifying X(t) at time t is
based on the reconstruction X̂(t):

Ĉt =
{

1, wT X̂(t) < ν,

2, wT X̂(t) > ν,
(7)

where ν is the threshold defined in (2) and Ĉt is the pre-
dicted class. Because μw = E[wT X(t)|Ct = 2], by symmetry,

E[wT X(t)|Ct = 1] = −μw. In the event that the underlying
class at time t is Ct = 2, the error-probability P(t)

e,2 can be
bounded as follows:

P(t)
e,2 = Pr(wT X̂(t) < ν|Ct = 2)

= Pr(wT X̂(t) < ν, |wT X(t) − wT X̂(t)| < ξ |Ct = 2)

+ Pr(wT X̂(t) < ν, |wT X(t) − wT X̂(t)| ≥ ξ |Ct = 2)

≤ Pr(wT X(t) < ν + ξ |Ct = 2)

+ Pr(|wT X(t) − wT X̂(t)| ≥ ξ |Ct = 2)

≤ Q

(
μw − ν − ξ

σ

)
+ Pr(|wT X(t) − wT X̂(t)| ≥ ξ |Ct = 2). (8)

From a similar equation for P(t)
e,1, we get

P(t)
e = p1 P(t)

e,1 + p2 P(t)
e,2

≤ p1 Q

(
μw + ν − ξ

σ

)
+ p2 Q

(
μw − ν − ξ

σ

)
+ Pr(|wT X(t) − wT X̂(t)| ≥ ξ). (9)

We now use6 Markov’s inequality to bound the third term in the
RHS of (9):

Pr(|wT X(t) − wT X̂(t)| ≥ ξ) ≤ E[|wT X(t) − wT X̂(t)|2]

ξ2

≤ Dn(Etotal)

ξ2
. (10)

Thus, from (9) and (10),

P(t)
e ≤ p1 Q

(
μw + ν − ξ

σ

)
+ p2 Q

(
μw − ν − ξ

σ

)
+ Dn(Etotal)

ξ2
. (11)

The theorem follows from the observation that (11) holds for
all values of ξ > 0. �

Remark 1: As a sanity-check, it is easy to observe that
the bound in Theorem 1 converges to the error-probability
of the unconstrained rate/energy problem in the limit of
Etotal →∞. To see this, note that for any n, as Etotal →∞,
Dn(Etotal)→ 0. Thus, setting ξ =

√
Dn(Etotal) in (6), and

letting Dn(Etotal)→ 0, we get

P(t)
e ≤ p1 Q

(
μw + ν

σ

)
+ p2 Q

(
μw − ν

σ

)
, (12)

which is the optimal error-probability with lossless data collec-
tion at the fusion center.

6Note that the event |wT X(t) − wT X̂(t)| ≥ ξ for ξ >

√
Dn(Etotal ) is an

“excess distortion” event [30], i.e., the event in which the distortion at the t-
th coordinate exceeds the average distortion. However, because we are dealing
with coordinate-wise distortion, the probability of this event does not converge

to zero for ξ >

√
Dn(Etotal ), unlike for distortion averaged over time for any

sensor. Thus, it does not seem straightforward to tighten this inequality.
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In Lemmas 1 and 2 that follow, we provide upper bounds
on Dn(Etotal) for the two models of energy consumption.
These upper bounds are obtained by examining the asymp-
totic limit n→∞. Lemma 1, which is for the linear model,
provides an intuitively pleasing reverse water-filling-type rate
allocation. That is, a constant λ′ is chosen appropriately (based
on available total energy), and all features with parameter
w2

i

(
σ 2

i + μ2
i

)
larger than λ′ are described with equal distor-

tion, but no rate is allocated to features with the parameter
less than λ′. It turns out that the solution for the expo-
nential model (Lemma 2) is not a reverse-waterfilling-type
solution, and the sensors are always consuming energy sim-
ply because Ri = 0 still corresponds to Ei = 1. Even though
these rate allocations are derived from the asymptotic case,
in Section IV, we use them as guidance for rate allocations
for finite-length (scalar) strategies. In Section V, we discuss
the possibility of obtaining parallel results for the finite-length
problem.

Lemma 1 (Linear Model): For the problem stated in
Section II-B and the Linear Model of sensor energy consump-
tion, for a given total energy Etotal , an upper bound on the
asymptotic distortion-energy function D(Etotal) (asymptoti-
cally achievable distortion for a given total energy Etotal in (5))
is given by:

D(Etotal) ≤
M∑

i=1

Di , (13)

where

Di =
{

λ′, λ′ ≤ �2
i ,

�2
i , λ′ > �2

i ,
and Ri = 1

2
log

(
�2

i

Di

)
, (14)

where �i = wi

√
σ 2

i + μ2
i , and where λ′ satisfies

∑M
i=1 Ei =∑M

i=1 Ri = Etotal .
Proof overview: We use a Gaussian upper bound for the

mixture-Gaussian random variable. That is, we use the fact
that for a given second moment, the distortion-rate function
for any source – and hence our Gaussian mixture source –
is upper bounded by that of the Gaussian source. To attain
this rate-distortion tradeoff, however, requires the errors in
reconstruction of different sensor observations to be uncorre-
lated. This is necessitated by the induced correlation in sensor
observations by the underlying class, even when the sensor
observations are conditionally independent (conditioned on the
class). Therefore, we first use a lattice-quantization strategy
with subtractive-dither [31] to ensure that the quantization
errors are statistically independent of the sources being quan-
tized [32]. Because the correlation is induced by the sources,
and the errors are independent of the respective sources, the
errors are mutually independent, and hence pairwise uncorre-
lated. Ensuring this uncorrelatedness, we carry out a derivation
paralleling the classical reverse-waterfilling result. Detailed
proof appears in Appendix A.

Lemma 2 (Exponential Model): For the problem stated in
Section II-B, for a given total energy Etotal in the Exponential
Model, an upper bound on the asymptotic distortion-energy
function D(Etotal) (asymptotically achievable distortion for a

given total energy Etotal in (5)) is given by:

D(Etotal) ≤
M∑

i=1

Di , (15)

where

Di =
{

3
√

λ2�2
i

4 , λ ≤ 2�2
i ,

�2
i , λ > 2�2

i ,
(16)

and Ri = max

{
1

3
log

(
2�2

i

λ

)
, 0

}
, (17)

where �2
i = w2

i (μ2
i + σ 2

i ), and the value of λ (and hence also

of Ri ) is obtained by solving
∑M

i=1 Ei =∑M
i=1 2Ri = Etotal .

Proof: Notice that, unlike for the traditional reverse-
waterfilling solution (and the solution to Lemma 1), the dis-
tortion is different for different sensors. The proof is analogous
to that of Lemma 1, and is included in Appendix B. We remark
that the expression on Ri is written in a slightly different form
than in Lemma 1 to more explicitly bring out how the total
energy constraint can be utilized to solve for λ. �

Remark 2: We note that if a strategy is not an equidistor-
tion strategy, one can easily obtain an equidistortion strategy
by randomly permuting the strategy uniformly across all time
(but not sensor) indices {1, 2, . . . , n}. The resulting strategy is
a probabilistic equidistortion strategy.

Remark 3: As seen in Lemmas 1 and 2, the rate allocated
to the i-th feature is dependent on the parameter �2

i . Using
(2), we have w = �−1(μ2 − μ1) = �−1(2μ), where we have
used the assumption that μ1 = −μ2. Therefore, wi = 2μi

σ 2
i

. In

Lemmas 1 and 2, the rate allocated to each sensor is dependent
on the parameter �2

i = w2
i

(
σ 2

i + μ2
i

)
, which can be written as

follows:

�2
i = w2

i

(
σ 2

i + μ2
i

)
= w2

i σ 2
i

(
1+ μ2

i

σ 2
i

)

= 4μ2
i

σ 2
i

(
1+ μ2

i

σ 2
i

)
= F Si

(
1+ F Si

4

)
, (18)

which is a function of Fisher score of the i-th feature, F Si =
4μ2

i

σ 2
i

. Traditionally, Fisher score is used to determine the most

discriminant features so that the features with the highest Fisher
scores are deemed to be more relevant and are selected for
further processing (this feature selection is a form of dimen-
sionality reduction). Thus, under certain (“naive Bayes”-type
[4]) assumptions, our rate allocation strategies are soft gener-
alizations of feature selection using Fisher score where each
feature, instead of receiving a hard decision (relevant or irrele-
vant), is assigned a soft “degree of relevance” quantified by the
rate/energy allocated to it.

B. Energy-Constrained Supervised Learning for Classification

In Section III-A, we proposed a data-compression strategy
that compresses the data streams based on their relevance.
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There are two issues with this strategy: we assumed that the
underlying distribution of data is (i) known in advance; and
(ii) fixed over time. In general, neither of these assumptions
is true: training is needed to estimate the parameters of the dis-
tribution, and the distribution keeps evolving over time (e.g., in
BCI applications due to neuroplasticity [33]). Here we address
these issues by proposing algorithms to learn the parameters
that characterize marginal distributions at the sensors in a super-
vised manner, i.e., using labeled data. Further, we provide
algorithms to test when the learned distributions have evolved
significantly so that the sensors can retrain themselves in that
case. The novelty of our algorithms is that we learn the param-
eters in an energy-constrained manner, and they can thus be
executed with lower energy requirements in both communi-
cation (through reduced rates) and sampling (through reduced
ADC precision).

The core idea we bring in is that for estimations using a small
sample size we need some form of “regularization” or ability to
backtrack in the learning algorithm to adapt to large-deviation
events or to evolving parameters. The algorithm should allow
the rate allocation algorithm to backtrack when it settles into a
local minimum (e.g., when most relevant sensors are turned off
because of large-deviation events).

We now proceed to provide our algorithms. The algorithms
have a “stabilization” aspect, and a “regularization” aspect. The
stabilization aspect of each algorithm stabilizes it against large-
deviation events by using a simple moving average-type filter.
The regularization aspect reduces overfitting to data, and thus
reduces the variance of the training algorithm, enabling bet-
ter generalization. In the following, we detail the algorithms,
emphasizing on the role these aspects play.

1) Energy-Constrained Learning Algorithm for Unknown
but Fixed Distributions: The challenge lies in learning the
rate allocation using data received at the fusion center that is
(i) quantized; and (ii) finite sample size. Both aspects introduce
errors in parameter estimation, and hence in classification.

In the first learning step, an “ambivalent rate vector” — that
allocates equal number of bits to each sensor — is chosen. This
initial rate vector is ambivalent in that it prefers no sensor to any
other. Based on S samples of quantized data received from the
sensors, the fusion center estimates parameters of these distri-
butions, and computes a new rate allocation (using strategies
in Section III-A) by assuming that the distributions are per-
fectly estimated. It computes this rate allocation, but does not
send it to the sensors. Allocating rates based on this new rate
vector would make the rate vector very sensitive to noise. So
instead of sending this rate vector, it sends back a uniform aver-
age of the new “suggested” rate allocation and previous rate
allocations (this average — and not the “suggested” rate allo-
cation — is the actual rate allocation sent to the sensors). In
this manner, the algorithm stabilizes itself while still modifying
rate allocation to assign higher rates to more relevant sensors
by obtaining improved resolution observations of these sensors.
The process is detailed in Algorithm 1. Note that each learning
step in the algorithm consists of multiple observations at each
sensor (depending on the blocklength used by each sensor).

Algorithm 1 also compensates for burst noise: it is possible
that due to noise in the data, some of the sensors receive low

Algorithm 1. Learning For Fixed Distributions On Labeled
Data

1: procedure LEARNINGFORFIXEDDISTRIBUTIONS (L ,

M, S) � L = # learning steps, M = # sensors, S = # data
points per learning step

2: R← zero matrix of size (L , M) � R stores the rate
vector of each learning step in one of its rows.

3: Ambivalence← [ R
M , R

M , . . . , R
M

]
4: i← 1, i prev ← 1
5: R(1, :)← [ R

M , R
M , . . . , R

M

]
� R(1, :) is set to

the ambivalent rate vector.
6: for i = 1, 2, . . . , L do
7: Fusion center sends R(i, :) to sensors.
8: Sensors transmit data points X((i−1)S+1), . . . , X(i S)

to fusion center quantized according to R(i, :).
9: Compute R̃(i + 1, :) � Fusion

node computes preliminary R̃(i + 1, :) based on parameter
estimates from quantized data in the i-th step and using
Lemma 1 or Lemma 2.

10: R(i + 1, :)← 1
i+2−i prev

∑i+1
j=i prev

R̃( j, :) �
Stabilize rate vector by uniform averaging starting from the
previous backtrack.

11: Compute error-rate perr during training. �
Averaged over a sliding window of one learning step.

12: if i > 1 and ( Metric(i)
Metric(i−1)

≥ ρ or Metric(i)
Metric(i−1)

≤ 1
ρ

)
then � Condition for backtracking.

13: R(i + 1, :)← 1
2 (R(i + 1, :)+ Ambivalence)�

Do ambivalence-backtracking.
14: i prev← i

rates, or are simply turned off, even when their data is rele-
vant to classification. If such relevant sensors are never turned
on again, then the learned classifier would have a large vari-
ance and could result in overfitting. To address this issue, we
introduce a form of regularization on the algorithm using what
we call “ambivalence backtracking”: the sensors backtrack to
average the current rate vector with the ambivalent rate vector
(see Algorithm 2 for how this is implemented). The key is to
detect when to backtrack, and this can be done by simply com-
puting the average classification error-probability on labeled
data on a sliding time-window of one learning step. If the
error-probability exceeds a threshold, the algorithm performs
ambivalence backtracking. The advantage of stabilization and
backtracking is explored further through numerical examples in
Section IV. Because the selected rate-allocation is not changed
during testing, in this problem with fixed distributions, we only
need to backtrack during training (to reduce bias, we do not
train on unlabeled data). However, backtracking while testing
is a central issue in the case when the underlying distributions
can evolve, which we discuss next.

2) Energy-Constrained Learning Algorithm for Unknown
and Evolving Distributions: Training can be performed as in
Section III-B1, and the challenge lies in an unsupervised detec-
tion of change in the underlying parameters during testing.
Once the change is detected, the data-fusion center can sug-
gest a retraining to the control agent and the sensors, triggering
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Algorithm 2. Learning With Backtracking For Evolving
Distributions

1: procedure LEARNRATEVECTORFOREVOLVINGDISTRI-
BUTION(L , M, S) � L = # learning steps,
M = # sensors, S = # data points per learning step

2: R← zero matrix of size (L , M) � R stores the rate
vector of each learning step in one of its rows.

3: Metric← zero vector of size L � Initialize Metric to
zero.

4: Ambivalence← [ R
M , R

M , . . . , R
M

]
5: i ← 1, i prev ← 1 � i prev is the index of previous

backtracking learning step.
6: R(1, :)← [ R

M , R
M , . . . , R

M

]
� R(1, :) is

initialized to the Ambivalence vector.
7: for i = 1, 2, . . . , L do � i is the index of

learning step.
8: Fusion center sends R(i, :) to sensors
9: Sensors transmit data points X((i−1)S+1), . . . , X(i S)

to fusion center quantized according to R(i, :)
10: Compute w � Compute a new w based on newly

received data points.
11: Compute R̃(i + 1, :) � Fusion node computes

preliminary R̃(i + 1, :) based on parameter estimates from
quantized data in the i-th step and using Lemma 1 or
Lemma 2.

12: R(i + 1, :)← 1
i+2−i prev

∑i+1
j=i prev

R̃( j, :) �
Stabilize rate vector by uniform averaging starting from the
previous backtrack.

13: Metric(i)←∑i S
t=(i−1)S+1(w

T X(t) - ν � t is the
index of a data point during testing.

14: if i > 1 and ( Metric(i)
Metric(i−1)

≥ ρ or Metric(i)
Metric(i−1)

≤ 1
ρ

)
then � Condition for change detection.

15: R(i + 1, :)← 1
2 (R(i + 1, :)+ Ambivalence) �

Do ambivalence-backtracking.
16: i prev ← i

a supervised training stage of the algorithm where the fusion
center is supplied with labeled data. For simplicity of detec-
tion, and to reduce the amount of retraining, our algorithm
requires retraining only when estimated classification error-
probability becomes large. This error-probability is estimated
using the distance |wT X− ν| as a proxy. Intuitively, when
this distance becomes small for successive periods of time (or
has a large empirical variance with a small empirical mean),
retraining is needed. The resulting algorithm is provided in
Algorithm 2.

Numerical results that illustrate the utility of the stabiliza-
tion and backtracking strategies proposed here are provided in
Section IV-B.

IV. NUMERICAL RESULTS

In this section we numerically explore the performance of
our algorithms for energy-constrained supervised learning and
classification. The code for these numerical experiments is
available online at [34].

A. Numerical Results on Energy-Constrained Classification
When Underlying Parameters Have Been Perfectly Learned

In the following examples, while using the rate alloca-
tion strategies proposed in Lemma 1 and Lemma 2, we do
not use long blocklengths (unlike in some of our results in
Section III-A). In fact, we apply a scalar version of the strategy
to investigate savings in energy. This provides our numerical
results a greater degree of practicality7. Consequently, we round
the rate allocated to each sensor to the nearest integer in order
to obtain the corresponding number of bits for scalar quanti-
zation. The quantization points are chosen using the optimal
Lloyd’s algorithm [35].

In order to illustrate how inference-oriented communica-
tion can help reduce energy, we compare the classifica-
tion results using two different rate allocation strategies:
“inference-oriented” (using Lemma 1 or Lemma 2, depending
on the energy model) and “classical” (based on classical rate-
distortion theory). By classical rate allocation strategy, we mean
allocating bits to represent the sources themselves as well as
possible within the energy constraint, and not exploiting the fact
that a weighted function wT X needs to be represented. Thus,
features with higher (unconditional) variance receive the largest
number of bits. Thus, this is a close analog of the Principal
Component Analysis (PCA), and can be viewed as a soft PCA.
Therefore, in the rest of the paper, we refer to this strategy as
PCA-type rate allocation strategy. For instance, for the Linear
Model, the PCA-type rate allocation strategy is given as below:

Di =
{

λ λ ≤ σ 2
i + μ2

i ,

σ 2
i + μ2

i λ > σ 2
i + μ2

i ,
(19)

Ri = 1

2
log

(
σ 2

i + μ2
i

Di

)
, (20)

where λ is chosen such that
∑M

i=1 Ri = Etotal , and is eas-
ily obtained from Lemma 1. Similarly, the PCA-type rate
allocation for the Exponential Model can be obtained from
Lemma 2.

Simulated data: In the first example, we consider Gaussian
100-dimensional data points generated independently as fol-
lows: under the first class, the conditional mean vector is
μ1 = [−100,−99,−98, . . . ,−1] and under the second class,
the conditional mean vector is μ2 = −μ1. The conditional
standard deviation vector under both classes is equal to σ =
[100, 200, 300, . . . , 10000] and the features are (conditioned
on the class) mutually independent. Qualitatively, the relevance
of the features gradually decreases as the index of the feature
increases. Fig. 1 provides the tradeoff between classification
accuracy and total energy (total number of bits) in the Linear
Model using both inference-oriented (Lemma 1) and PCA-type
rate allocation strategies. Similarly, Fig. 2 provides this tradeoff
for the Exponential Model (Lemma 2). Note that in both cases,
the number of bits allocated to each feature is rounded to the
nearest integer.

7This scalar assumption also provides a better understanding of savings in
number of bits of ADCs used in measurement process itself.
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Fig. 1. Binary classification accuracy versus total number of bits achieved
by “inference-oriented” strategy under Linear Model (Lemma 1; energy and
number of bits are equivalent; red) and “PCA-type” (blue) rate allocation for
simulated data of the first setup where μi = 100− (i − 1) and σi = 100i, i =
1, . . . , 100 and the features are mutually (conditionally) independent. The
number of bits is spread across 100 Gaussian features with decreasing rele-
vance. The classification accuracy using unquantized features is about 89.6%.
However, we can achieve almost the same accuracy using quantized features
with just 25 total bits using our proposed rate allocation strategy.

Fig. 2. Binary classification accuracy versus total energy achieved by
“inference-oriented” strategy under Exponential Model (Lemma 2; red) and
“PCA-type” (blue) rate allocation for simulated data of the first setup where
μi = 100− (i − 1) and σi = 100i, i = 1, . . . , 100 and the features are mutu-
ally (conditionally) independent. The number of bits is spread across 100
Gaussian features with decreasing relevance. The classification accuracy using
unquantized features is about 89.6%. Again, the proposed rate-allocation
outperforms the classical PCA-type allocation substantially.

As a second example, we consider Gaussian 100-
dimensional data points generated independently as follows:
under the first class, the conditional mean vector is μ1 =
[−100,− 100

2 ,− 100
3 , . . . ,−1] and under the second class, the

conditional mean vector is μ2 = −μ1. The common standard
deviation under both classes is equal to 150 and the sensor
observations are (conditioned on the class) mutually indepen-
dent. Fig. 3 and 4 provide the tradeoff between classification
accuracy and total number of bits/energy allocated to features
using both inference-oriented (Lemmas 1 and 2) and PCA-type
rate allocation strategies for the Linear and the Exponential
Model.

Fig. 3. Binary classification accuracy versus total number of bits achieved by
“inference-oriented” strategy under Linear Model (Lemma 1; energy and num-
ber of bits are equivalent; red) and “PCA-type” (blue) rate allocation for simu-
lated data of the second setup where μi = 100/ i, σi = 150, i = 1, . . . , 100,
and the features are mutually (conditionally) independent. The number of
bits is spread across 100 Gaussian features with decreasing relevance. The
classification accuracy using unquantized features is about 80.1%. However,
we can achieve close-to-optimal accuracy using quantized features with just
35 total bits.

Fig. 4. Binary classification accuracy versus total energy achieved by
“inference-oriented” strategy under Exponential Model (Lemma 2; red) and
“PCA-type” (blue) rate allocation for simulated data of the second setup where
μi = 100/ i, σi = 150, i = 1, . . . , 100 and the features are mutually (condi-
tionally) independent. The number of bits is spread across 100 Gaussian
features with decreasing relevance. The classification accuracy using unquan-
tized features of 80.1% can be approached with using much less energy in
comparison with PCA-type rate allocation.

For both examples and in both models, our inference-
oriented strategies significantly outperform the PCA-type
strategies. By judiciously allocating more bits to more rele-
vant features, the classification accuracy quickly approaches the
energy-unconstrained case. Fig. 4 shows an interesting aspect:
there is a jump in accuracy in allocating the 101-st bit for the
PCA-type allocation (100 bits correspond to an energy of 200
units). As it turns out, the first 100 bits are allocated equally
among features in this model. The next (101-st) bit is allocated
to the most relevant (first) feature, which brings a substantial
improvement. In fact, there is a small dip in accuracy as energy
is increased from about 130 units to 200 units, which we believe
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Fig. 5. Binary classification accuracy versus total number of bits achieved
by “inference-oriented” strategy (Lemma 1; red) and the corresponding lower
bound (blue), which is 1− (upper bound) in Theorem 1, in the Linear Model
for simulated data where μi = 110− 10i and σi = 100, i = 1, . . . , 10, and the
features are mutually (conditionally) independent. The total number of bits is
spread across 10 Gaussian features with decreasing relevance. Notice that clas-
sification accuracy using unquantized features is about 97.2%. Note that if the
classification accuracy is less than 50% for a decision rule, we can rely on a
fair coin toss instead. Thus, whenever the lower bound on the classification
accuracy is less than 50%, it is replaced with 50%.

happens due to overfitting, and could be eliminated by proper
regularization.

We noted earlier that we expect the bound in Theorem 1 to be
loose. The theorem provides an upper bound on the achievable
classification error-probability, or equivalently, a lower bound
on the achievable classification accuracy. As an illustration,
Fig. 5 compares the bound with numerically computed accuracy
for a setup with 10-dimensional Gaussian data points generated
independently as follows: under the first class, the conditional
mean vector is μ1 = [−100,−90, . . . ,−10] and under the
second class, the conditional mean vector is μ2 = −μ1. The
common standard deviation under both classes is equal to 100,
and the features are mutually conditionally independent (condi-
tioned on the class). Qualitatively, the relevance of the features
decreases as the index of the feature increases. The gap between
numerical estimates using simulations and our bound is fairly
large. Nevertheless, both the bound and the numerical classifi-
cation accuracy approach the rate-unconstrained classification
accuracy as the total rate increases to infinity (as noted in
Remark 1).

Numerical results on recorded ECoG neural data
1) Data Description: In this study, the ECoG signals

recorded with a high-density 32-electrode grid over the hand
and arm area of the left sensorimotor cortex of a paralyzed
individual are used. The individual can activate his sensorimo-
tor cortex using attempted movements to the left or right. The
ECoG data set used, consists of 140 trials, 70 trials for each of
the movement directions. Each trial is 300 ms long and sampled
at 1.2 kHz frequency, resulting in 361 samples per trial. Given
a trial, we are interested in decoding the movement direction.

2) Data Preprocessing: We use discrete cosine transform
(DCT) as proposed in [36] which reduces the power con-
sumption in extracting brain-computer interface (BCI) features
substantially. Taking the DCT of the signals recorded by each

Fig. 6. Binary classification accuracy versus number of bits achieved by
”inference-oriented” (red) and ”PCA-type” (blue) rate allocation for neural
data. The available bits are spread across 3872 features for neural data of binary
movement decoding. Notice that an accuracy close to 84% is obtained with just
40 total bits. If relevance of features is disregarded, and the available bits are
distributed uniformly across all features with one bit for each feature, it would
still require 3872 bits, with barely any accuracy.

of the 32 channels for integer frequencies from 0 to 120, we
obtain a 3872-dimensional feature vector (121 frequencies for
32 channels) for each trial. Linear classification using the LDA
algorithm is performed on these 3872-dimensional data points.
To make the problem consistent with our problem formulation,
we view these 3872 features as different sensors, and hence
quantize them according to their relevance. This view, and our
models, are more applicable when computation of features con-
sumes significant power, as is discussed in a noisy computing
problem at the end of Section V.

3) Evaluating Classification Accuracy: First, as a form of
regularization, only the important features with Fisher scores
above a threshold (in this case 0.25) are kept and the other fea-
tures are removed. Then, in order to calculate the classification
accuracy, we perform a 5-fold cross-validation: we partition the
data points into 5 folds randomly where every fold consists of
14 trials of each class. For each fold, we train the LDA algo-
rithm on the other 4 folds to obtain the vector w as in (2), and
use the remaining fold for validation. Post-training, classifica-
tion is performed by first quantizing each of the remaining 28
features of a validation data point with the number of bits allo-
cated to that feature, and then performing the LDA algorithm on
these quantized DCT features. Finally, we compute the average
classification accuracy using the data labels.

The result, illustrated in Fig. 6, provides the tradeoff between
classification accuracy and total number of bits allocated to fea-
tures for both inference-oriented and PCA-type rate allocation
under the assumption that the DCT values for different frequen-
cies are independent. Even under this inaccurate assumption,
the resulting classifier works with about 84% accuracy with just
40 total bits allocated across 3872 features. This illustrates the
dramatic potential for energy savings: allocating only one bit
to represent each of 3872 features would need 3872 bits (130x
more energy) to be transmitted from the sensors, with barely
any classification accuracy. Also, it can be seen from Fig. 6 that
the inference-oriented rate allocation strategy outperforms the
PCA-type strategy.
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Fig. 7. Classification error-probability for fixed distribution of sensor-data with
and without ambivalence-backtracking and uniform averaging. Each learn-
ing step consists of S = 10 data points. The setup is as follows: μi = 100

i
and σi = 150, i = 1, 2, . . . , 10, and Etotal = 30. Learning with ambivalence-
backtracking and uniform averaging detects large fluctuations in the Metric and
backtracks to a more ambivalent state.

B. Energy-Constrained Learning for Classification

We limit our attention to the Linear Model of energy con-
sumption for succinctness.

Parameters fixed but unknown: We first explore learn-
ing for fixed but unknown distribution of sensor-data. We
consider 10-dimensional Gaussian data points generated inde-
pendently as follows: under the first class, the conditional
mean vector is μ1 = [−100,− 100

2 ,− 100
3 , . . . ,−10] and under

the second class, the conditional mean vector is μ2 = −μ1.
The common standard deviation under both classes is equal
to 150 and the features are conditionally mutually indepen-
dent. Qualitatively, the relevance of the features decreases as the
index of the feature increases. We also consider Linear Model
of energy consumption with total available energy (number of
bits) Etotal = 30.

When only a small number of data points is available, it is
much more important to stabilize and allow for backtracking for
regularization because the learning process becomes very sen-
sitive to noise or large-deviation events. In Fig. 7, we consider
5 data points of each of the two classes in each learning step
(and thus S = 10 data points total in each step), and a total of
L = 20 learning steps with and without uniform averaging and
backtracking. Choosing such a small value of S brings out the
effects of variability. In Fig. 7, we plot the error-probability with
ambivalence-backtracking and uniform averaging, and without
them. When no ambivalence-backtracking or uniform averag-
ing is used, the error-probability appears to get stuck in a local
maximum because it turns off relevant sensors due to noise,
quantization, and small number of data points.

Evolving parameters: Considering total available energy
(number of bits) per sample as Etotal = 50, we now explore
an example where the distribution parameters are evolving over
time. The simulation has a training period, followed by a testing
period. In the training period, our algorithm learns a rate vec-
tor adaptively as provided in Algorithm 2. During the ensuing
testing period, the classification weight w, which is computed
in training period, is kept constant. Each training period has

Fig. 8. Metric
∑i S

t=(i−1)S+1(wT X(t) − ν) for evolving distributions. There
are 100 data points for each class at each learning step. Total rate is 50. Means
of data distribution change from μi = 100

i to μi = 100
11−i while the common

standard deviation remains unchanged (σi = 150). Each training period con-
sists of up to 20 learning steps, and training and testing periods are performed
alternatively. Distribution changes at step 30 (10-th step of the testing period).

L = 20 learning steps and 100 data points of each class are
included in each learning step (a larger number of data points is
allowed because we are more interested in examining how the
algorithm performs when the underlying distribution changes).
The focus here is on backtracking: it is assumed that when the
fusion center decides to backtrack, it also asks the system-user
as well as the circuit for a retraining so that it is supplied with
labeled data for another training period. In a BCI, for e.g., this
retraining request could be sent to the BCI user who could in
response supply labeled data to retrain the system.

We consider the case when the distribution of sensor-data
changes during the testing period. The distribution is assumed
to remain unchanged during the training period, and change
at the 10-th step during the testing period (after L = 20 steps
of learning, a total of 30 steps). Specifically, the means of the
distribution change from μi = 100− 10i to μi = 10i (while
the common standard deviation remains the same), revers-
ing the relative-relevance of the sensors’ data. Ambivalence-
backtracking could be of help here: if sensors with low rele-
vance initially have low resolution or are turned off, the only
way to restore them is to have all sensors be turned on again.

Fig. 8 shows the normalized Metric
∑i S

t=(i−1)S+1(w
T X(t) −

ν) for this example with ambivalence-backtracking and with-
out. During the training period and first half of the testing
period, when the distribution of data does not change, the
performance with and without ambivalence-backtracking is
similar. When the distribution changes (at step 30), initially
the normalized Metric drops sharply in both cases. However,
learning with ambivalence-backtracking asks for retraining in
the very next testing step, and thus is able to update its rate vec-
tor through training on newly acquired labeled data. Learning
without ambivalence-backtracking does not backtrack and thus
cannot update rate vector for new distribution. Fig. 9 shows
the corresponding error-probability for classification with and
without ambivalence-backtracking.
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Fig. 9. Classification error-probability for the setup in Fig. 8. The algo-
rithm with ambivalence-backtracking is able to retrain itself to reduce error-
probability despite the distribution change at learning step 30. The testing
period starts at “learning” step 20, and at that point, the rate-allocation is
stabilized until detection of distribution change (which happens at learning
step 31).

Fig. 10. Feature computation can be noisy, with noise levels adjusted by
changing energy-level for each feature for a given total energy constraint.

V. DISCUSSIONS AND CONCLUSIONS

One of the strongest assumptions we make in the paper
is that the acquired data is iid Gaussian conditioned on the
class. How realistic is this assumption? The Gaussian aspect of
the assumption, while not accurate [28], is a well known and
widely used approximation for local field potentials (LFPs),
Electroencephalography (EEG), and ECoG data used here.
This assumption is thought to be a reasonable approximation
because these recordings are measuring sums of smaller activa-
tions (e.g. nearby dendritic activity), suggesting that the central
limit theorem is in action. What about the (conditional) inde-
pendence assumption in our model? For ECoG data considered
here, this assumption has often been used in neural decoding
algorithms (see, e.g. [36] and references therein). In compar-
ison, EEG signals recorded on the scalp (noninvasively) have
significantly higher spatial correlations, especially in nearby
electrodes [2]. This is because distance from the brain to the
scalp (where the EEG sensors are located) acts as a spatial low-
pass filter (as discussed in [2], [37]), introducing correlations
in EEG signals recorded at nearby electrodes that are gener-
ated by uncorrelated brain sources. In contrast, ECoG signals
are recorded on the brain surface and are influenced largely
by activity close to the electrodes. Thus, the results are more

directly applicable to ECoG data. However, even for EEG sig-
nals, our recent work has proposed differential-sensing strate-
gies that – as a by-product of reducing sensing energy – reduce
correlations in EEG signals (using a “hierarchical referencing”
strategy) [2]. Lastly, we view these results as a step towards a
broader understanding of energy-constrained distributed infer-
ence. Generalizing from this simplistic problem, it would be
of interest to extend these results to cases with conditionally
correlated measurements and multiclass classification.

Part of the novelty in this work lies in the assumption that
the sensors are energy-limited, adaptive, and can not do sophis-
ticated processing allowed in the information-theoretic works
(e.g. [12]). To obtain fundamental limits on the problem, we
need to bring in models of energy consumption in circuits as
constraints on the problem (e.g., [2], [38], [39]), which would
also bring our results closer to practice.

Our analysis on ECoG data also brings out a disconnect
between our model and a technique used commonly (e.g. in
[36]) for classifying ECoG data that relies on first taking a
Fourier transform of the data, and then viewing different fre-
quency components of different sensors as separate features.
Since the features are not directly the sensor observations, but
obtained from frequency analysis of time-series at each sen-
sor, the same sensor can generate multiple features. We believe
our results can extend to cover this case: intuitively, the more
relevant features a sensor has, the more bits it should receive.
Similarly, the results could extend to the case where data from
multiple sensors is used to obtain a feature. Our future work
will consider these problems as well.

The techniques and results obtained here could also be
applied to the problem of computation in presence of noise
(see Fig. 10) in the following fashion: consider the case where
the data is available in a centralized fashion but different fea-
tures need to be computed on the same data stream. This
is often the case in neural data analysis and other applica-
tions. One can imagine that different features can be computed
with different accuracy/noise levels, in particular using ana-
log feature-computation and dot-product computation systems
that are being built recently using emerging devices [40]. In
these systems, the accuracy of computation can be controlled by
energy expenditure on the fly: the larger the amount of energy
spent, the smaller is the distortion in computation. Our algo-
rithms, appropriately adapted to the energy models, can thus
be used to compute more relevant features with higher accu-
racy. This is an exciting research direction that deserves further
attention.

APPENDIX A
PROOF OF LEMMA 1

We use a dithered-lattice codebook with optimal lattice
quantizers [31] to ensure that the error in estimating Xi is
independent of the source Xi , is zero mean [32], and is asymp-
totically Gaussian distributed. We note that the error is shown to
be asymptotically Gaussian and white regardless of the source
distribution (i.e., the source need not be Gaussian). Thus the
results of [31] are applicable in our problem where the source
is mixture Gaussian.



MAHZOON et al.: ENERGY-CONSTRAINED DISTRIBUTED LEARNING AND CLASSIFICATION 1429

We first derive an upper bound on the target function in (5)
as follows:

E

[(
wT X(t) − wT X̂(t)

)2
]

(a)=
M∑

i=1

w2
i E

[(
X (t)

i − X̂ (t)
i

)2
]

,

(21)

where (a) requires the errors in the two reconstructions to
be uncorrelated and zero mean. The errors are uncorrelated
because of independence of errors and source in subtractive
dithered lattice quantization [32]. Thus, even though the sources
themselves are correlated (unconditionally), the errors are not.
Because errors in (subtractive dithered) lattice-quantization
are distributed uniformly in a Voronoi region [32], they are

zero mean as well. Using D(t)
i := E

[(
wT X(t) − wT X̂(t)

)2]
, (5)

becomes:

min
Ei ,Di ,Ri

1

n

n∑
t=1

D(t)
i subject to

M∑
i=1

Ri ≤ Etotal . (22)

Allowing codebook to be chosen by randomly permuting its
indices (to make it an equidistortion codebook), D(t)

i , is the
same for all t . Thus, we can drop superscript (t) and (22) can
be simplified to

min
Ei ,Di ,Ri

n∑
t=1

Di subject to
M∑

i=1

Ri ≤ Etotal . (23)

For a given second moment, the Gaussian source has the
largest distortion-rate function [41, Ch. 10], which provides a
convenient (if loose) way to upper bound the distortion-rate
function for our mixture Gaussian source. For a Gaussian mix-
ture random variable Xi ∼ 1

2N(−μi , σ
2
i )+ 1

2N(μi , σ
2
i ), the

second moment is:

E

[
X2

i

]
=

2∑
c=1

p(C = c)E
[

X2
i |C = c

]
= σ 2

i + μ2
i , (24)

where C represents whether Xi is taken from the first or
the second Gaussian component. Therefore, considering the
Gaussian random variable Yi ∼ N(0,E

[
X2

i

]
), the distortion-

rate function of the Gaussian mixture source Xi is bounded
by

Di ≤ w2
i V ar [Xi ]2

−2Ri = w2
i

(
σ 2

i + μ2
i

)
2−2Ri . (25)

Further, this can be achieved using the lattice-quantization
strategy proposed here, and the quantization noise will asymp-
totically be Gaussian distributed [31]. Thus, it remains to solve
the following optimization problem:

min
Ri

M∑
i=1

w2
i (σ 2

i + μ2
i )2
−2Ri s.t.

M∑
i=1

Ri = Etotal , (26)

which is precisely the source coding problem for parallel
Gaussian sources considered, e.g., in [41, Ch. 10], which has
the reverse-waterfilling solution given in Lemma 1.

APPENDIX B
PROOF OF LEMMA 2

Following steps in the proof of Lemma 1, approximating the
problem of minimizing the classification error-probability to
the problem of minimizing the mean-squared error in recon-
structing the decision variable wT X, the optimization problem
is:

min
Ri

M∑
i=1

w2
i (σ 2

i + μ2
i )2
−2Ri s.t.

M∑
i=1

2Ri ≤ Etotal , Ri ≥ 0,

(27)

Denoting 2Ri by xi , the problem can be transformed to:

min
xi

M∑
i=1

αi x−2
i s.t.

M∑
i=1

xi ≤ Etotal , xi ≥ 1 (28)

where αi = �2
i = w2

i (σ 2
i + μ2

i ), and xi = 2Ri . This is a convex
optimization problem, and can be solved using Lagrange mul-

tipliers. This results in xi =
(

2αi
λ−θi

) 1
3
. Substituting xi = 2Ri

back, we have Ri = 1
3 log 2αi

λ−θi
. From complementary slackness

conditions, θi (xi − 1) = 0 for all i . This means that either xi =
1 (i.e., Ri = 0), or θi = 0. Thus, Ri = max{ 13 log 2αi

λ
, 0}. The

value of λ can now be obtained by solving
∑M

i=1 2Ri = Etotal

resulting in Di = 2− 2
3 λ

2
3 [w2

i (μ2
i + σ 2

i )]
1
3 when Ri > 0.
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