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ABSTRACT 
In this paper, we propose a novel analog circuit 
optimization methodology for achieving high parametric 
yield. We solve the statistical worst-case optimization 
problem by a sequence of linear programings where 
performance metrics are fitted using sparse regression to 
take into account a large number of device-level parameters 
modeling process variations. In addition, we propose a 
margining mechanism to ensure accurate yield optimization 
with consideration of modeling errors. The efficacy of this 
method is demonstrated using two circuit examples where 
the cost function is minimized and high parametric yield 
(e.g., around 90%) is achieved compared to other 
conventional approaches. 
 
1. INTRODUCTION 

With the expeditious evolution of communication 
systems and consumer electronics, demand for low power 
and high performance Integrated Circuits (IC) has 
increased tremendously [1]-[2]. Meanwhile, continuous 
scaling of IC technologies imposes new challenges facing 
these integrated systems. Particularly, process variations 
manifest themselves as uncertainties in the performance 
and reliability of analog/RF design blocks. Robust analog 
circuit optimization in modern manufacturing is becoming 
increasingly important to ensure high yield [1]-[4].  

Analog/RF circuit optimization has been extensively 
studied in literature [5]-[10]. Equation-based methods rely 
on analytical performance models to approximate circuit-
level performance (e.g. bandwidth, gain, etc.) as a function 
of design variables [5]. It is not trivial, however, to build 
analytical equations for complex performance metrics 
particularly in the presence of process variations, and 
designers often rely on circuit-simulation based 
optimization [8]-[7]. Nominal optimization typically 
minimizes a cost function by pushing other performance 
constraints to their boundaries. However, due to process 
variations a nominally-optimized design can easily violate 
performance specifications. To overcome this problem, 
corner-based optimization was introduced. It optimizes the 
design at all process corners representing the extreme 
values of process parameters [5]. However, it is not 
guaranteed that the worst-case performance takes place at 
any one of these corners. Statistical optimization relies on 
circuit simulations to build response surface models [11]-
[12] that represent performance as a function of the design 

variables and process variations [5]. Among these methods 
are the worst-case optimization and design-centering 
methods [8]-[9]. The worst-case method aims at optimizing 
the worst-case performance under process variations [8], 
whereas the design centering tries to find the design point 
furthest from all constraints boundaries [5]. Such methods 
are used in an iterative local optimization framework [8], 
[18]. Thus, at each iteration the performance models are 
built and a local optimization is performed over a small 
design sub-space, and the subspace is moved in the 
direction of the local optimum. This way, regression-based 
models, built over small subspaces, are able to accurately 
capture the performance behavior. In the past, these 
methods were able to efficiently optimize the analog 
design; however, today they suffer from the dimensionality 
problem. With hundreds to thousands of process variation 
parameters affecting a typical design, building the 
performance models using an over-determined system of 
equations requires a huge number of circuit simulations. 
Hence, facing the dimensionality challenge, conventional 
approaches seem ill-equipped to efficiently optimize analog 
designs.    

In this paper, we propose a novel sparse regression 
based statistical optimization framework with an error 
margining mechanism to address the aforementioned 
challenges. We adopt sparse regression techniques to build 
the linear performance models using a small number of 
simulations [12]-[19]. These process-variation dependent 
models are then used to derive worst-case performance 
models which in turn are used in the local optimization 
framework [5], [8].  

However, a new challenge arises due to modeling error. 
In practice, this error can lead to a discrepancy between the 
model estimation and the circuit behavior thereby affecting 
the true parametric yield. In [20], the authors map the error 
of posynomial performance models to an uncertainty set for 
robust optimization. In this paper, we adopt an error 
margining mechanism for the performance models based 
on error statistics to ensure high parametric yield. 

The remainder of this paper is organized as follows. In 
Section 2, we provide a background review of sparse 
regression. We present the proposed statistical optimization 
framework in Section 3. The results and analysis are 
presented in Section 4, and the conclusions are presented in 
Section 5. 

 

978-1-5090-1213-8/16/$31.00 ©2016 IEEE                            410                  17th Int'l Symposium on Quality Electronic Design





 

2. BACKGROUND REVIEW 
In a traditional linear regression framework, a function 

f(x) is modeled as a linear combination of the independent 
variables vector x [12] as follows: 
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where {αi; i = 1, 2, 3,…, D} are the model coefficients, 
x={xi; i = 1, 2, 3,…, D} represents the D-dimensional 
variable vector, and C is a constant term. Given N sample 
points, the set of equations used to solve for the model 
coefficients in equation (1) is given by:  
    2 C⋅ + =X α F , (2) 
where  

    3 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2 1
1 2

2 2 2
1 2

1 2

D

D

N N N
D

x x x

x x x

x x x

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

X

"

"
# # # #

"

 (3) 

      4 [ ]1 2
T

Dα α α=α "  (4) 

           5 ( ) ( ) ( )1 2 TNf f f⎡ ⎤= ⎣ ⎦F " , (5) 

and f(n) and x(n) stand for the values of f and x at the nth 
sample point respectively. Typically, N > D, and the system 
of equations (2) is overdetermined and the model 
parameters are determined via least squares method [21]. 
 
2.1 Sparse Regression 

Hundreds of process variation variables affect state-of-
the-art designs and pose a challenge to the modeling 
problem thereby requiring an unreasonably large number of 
sample points to fit the model using least squares method. 
The high-dimensional challenge, however, is accompanied 
by the special feature of sparsity [12]. Different methods 
have been proposed in literature to make use of this feature 
in model fitting [12]- [18]. Indeed, although the size of α is 
large due to the large number of variables, only few of 
these variables are required to estimate f, and the fitted 
coefficients’ vector is expected to have only few non-zero 
elements. Therefore, it is possible to solve for the model 
coefficients from an under-determined system of equations 
using sparse regression. The problem can be formulated 
mathematically as an L0-norm regularization [12]: 
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where ||•||0 and ||•||2 stand for the L0-norm and L2-norm 
respectively. The L0-norm regularization problem in (6) is 
NP hard, and L1-norm regularization is usually used instead 
to solve for a sparse solution as presented in (7). 
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||•||1 is the L1-norm of a vector and represents the sum of 
the absolute values of the elements of the vector, and (7) 
can be restated by introducing slack variables as the convex 

optimization problem in (8) [21]. 
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 However, Parameter λ is not known apriori, and its 
optimal value is determined by solving the optimization 
problem (8), for example using the interior point method, 
for different values of λ. This can be costly. Alternatively, 
orthogonal matching pursuit can be used [12] to identify 
the critical variables iteratively as described in Algorithm 
1. Thus, the importance of a variable is determined by 
computing its correlation with F: 
    9 ( )1, 2, ,T

i ic i D= ⋅ =X F " , (9) 
where Xi is the normalized ith column of matrix X. The 
vector Xs with the highest correlation is chosen and least 
squares fitting is used to estimate F: 
    10 1 s Cφ≈ +F X . (10) 
After that, the residual R is computed using: 
    11 1 sφ= −R F X , (11) 
and the correlation between R and the remaining vectors of 
X is computed to get the next most correlated vector and 
include it in the model and so on until λ vectors are chosen. 
This method is further repeated for different values of λ. 

Algorithm 1: Orthogonal Matching Pursuit (OMP) 
1. Start by setting R = F and Ω = {}. Initialize the index k 

= 0. 
2. Compute the correlation between R and vectors of X 
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3. Identify index s of the largest value cs. Ω = Ω ∪{s}. 
4. Estimate F as a linear combination of all elements in Ω:  
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i
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6. If k < λ, set k = k + 1 and go to Step 2. Otherwise, stop. 

 
3. PROPOSED OPTIMIZATION FLOW 

The objective of optimizing an analog circuit is to find 
the optimal design point that meets required performance 
specification while minimizing the cost represented usually 
by power and/or area. The optimization problem can be 
formulated as follows: 
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where, x, and p={ pi; i = 1, 2, 3,…, Dp} are the design 
variables vector and vector of normalized process 
variations respectively. f(x,p) is the performance metric to 
be minimized (e.g. power consumption), {gm(x,p); m = 1, 2, ⋅⋅⋅, M} contains the performance metrics (e.g. gain) 



 

constrained by the specifications {Gl
m and Gu

m; m = 1, 2, ⋅⋅⋅, M}, and {ld; d = 1, 2, ⋅⋅⋅, D} and {ud; d = 1, 2, ⋅⋅⋅, D} 
define the lower and upper bounds for the dth design 
variable respectively. 
  
3.1 Optimization Methodology Overview 
Figure 1 presents an overview of the proposed 
methodology. To enable statistical optimization, we 
propose to derive a worst case model for each of the 
performance metrics as a function of the design variables 
only. This requires first deriving models in the high-
dimensional process and design space using true circuit 
simulations.  Furthermore, the optimization may be 
impacted by the modeling error, and the true circuit yield 
may not adhere to that obtained from the model based 
optimization. To address this challenge, an error margining 
mechanism is adopted. Due to the nonlinearity of the 
underlying metrics, the approach aims at solving the given 
optimization problem over a local design sub-space in an 
iterative manner.  

 
Figure 1.  The flow chart summarizing the proposed optimization 
methodology is shown. 

 
3.1.1 Local Design Space Approach 

Most performance metrics are highly nonlinear over the 
entire design space and including the process parameters 
will introduce additional nonlinearity to the model [1]. In 
the proposed convex optimization framework, our goal is to 
represent the performance metrics with linear models. To 
address this challenge, we rely on a local design sub-space 
iterative optimization flow [5].The optimization starts from 
an initial design point and the design search space is 
defined by a design window around the starting point. Over 
this small sub-space, accurate transistor-level simulations 
obtained from Cadence environment are used to fit locally 
generated linear models to represent the performance 
metrics with good accuracy. This in turn enables solving a 
local optimization problem. The resulting local optimum 
would serve as the new center for the design sub-space of 
the next iteration. This method will continue spanning the 

design space until two consecutive local optima are very 
close; hence the method converges to the overall optimal 
design point. Without loss of generality, Figure 2 illustrates 
the iterative local design space approach for a two 
dimensional example. 

                             
Figure 2.  The iterative local optimization approach is shown for a 
two dimensional case. The optimization starts from A as the initial 
point, and the solid-line square as the local design search sub-
space. B and C represent the new design centers for iterations 2 
and 3 respectively.   
 
3.1.2 Sparse Linear Regression  

Due to the high dimensionality of the problem, we rely 
on the sparse regression based OMP method presented in 
Algorithm 1 for modeling the design performance metrics 
and cost functions. This enables accurate modeling with 
reduced number of transistor-level simulations, and is key 
to speeding up the optimization flow. The performance 
metrics, fi, are modeled as linear functions of both the 
design variables and process parameters according to (15).   
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{δi; i = 1, 2, 3, …, M} and {θi; i = 1, 2, 3, …, P} are the 
model coefficients associated with the design variables and 
process parameters respectively. Our goal is to find the 
smallest number of non-zero coefficients that guarantee the 
minimum modeling error; in practice, we sweep λ and 
select the value that results in the smallest modeling error.  

 
Figure 3.  Example of 3-fold cross validation. Data is split into 3 
different groups and error is estimated from 3 independent runs.  

To avoid over-fitting, we rely on K-fold cross-validation 
such that the modeling error is computed from an 
independent set that is not used in the fitting stage [12]. 
Thus, the available data set is divided into K sets, as shown 
in Figure 3 and regression is done K times where in each 
time one of the groups is used to estimate the modeling 
error and all the remaining groups are used for regression. 
This will result in having K values for the modeling error, 
and the overall modeling error is computed as the average 
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of the K error values. 
3.1.3 Worst Case Model 

For statistical optimization, the worst case model for a 
given performance function is derived by adding the worst 
case variation of the process parameters to the constant 
term in the model. This results in the model being 
expressed as a function of the design variables only. From 
this perspective, no worst case model is needed for the cost 
function since the constant term does not play any role in 
the optimization. Thus, we focus on deriving the worst case 
model for the constraints. Given a general constraint  
16 ( ),l uG g G≤ ≤x p , (16) 
the worst case model ensures that the specifications are met 
even for large process variation-induced deviations. In fact, 
for the worst case optimization we target the 1% and 99% 
points of the metrics’ cumulative distribution functions 
Given that the process parameters are normalized and 
follow an independent standard normal distribution, the 
distribution of the process variation term in (15) is  
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Note that the standard deviation of the ith process parameter 
σi=1  ∀ i. σp can be used to compute the maximum 
deviation of the performance away from the nominal. Since 
the performance metric is bounded from both sides, the 
constraint in (16) is replaced by two constraints 
corresponding to the upper and lower bound respectively.  
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3.1.4 Error Margining 

The worst case optimization problem ensures a robust 
design with high yield under the assumption that the linear 
models, originally fitted using sparse regression, are 
accurate. However, this is not the case due to the modeling 
error which can result in a mismatch between the model-
based optimization results and the actual circuit behavior. 
In fact, the results of the model-based optimization may 
perfectly meet the required specifications, but, the actual 
circuit behavior may not match these results. To address 
this challenge, we propose to use a margining mechanism 
for the modeling error. Margining for the modeling error is 
achieved by assuming that the modeling error follows a 
normal distribution,  
20 2(0, )eerror N σ∼ , (20) 
where σe

2 is the variance of the residual between the 
simulation data and the data fitted according to (15).  

To illustrate, we consider the scatter plot in Figure 4 (a). 
It presents the plot of the fitted data ĝ(x) versus the 

simulation data for an arbitrary performance metric g(x). 
Without loss of generality, we will consider the case of the 
lower bound constraint: 
21 ( ) lg G≥x . (21) 

We notice that due to the modeling error, the points in 
the solid-line square which are considered ‘passing’ based 
on the model are ‘failing’ based on the actual simulation. 
We define 
22 ( ) ( )ˆ 3E eg g σ= −x x . (22) 

Figure 4 (b) shows that, with 99% confidence, the 
systematic shift for error margining allows the following 
relation to hold 
23 ( ) ( )ˆ l l

Eg G g G≥ ⇒ ≥x x . (23) 
 Hence, the simulation data will meet the specification 

if the fitted data with margining does. One can notice that 
the points in the solid-line square that were mispredicted as 
passing by the model in (a) are now pushed towards the 
failure region by the new model. With error margining, no 
points lie in the solid-line square in (b) which means that 
there is no mispredictions of fail by the model. The added 
margin in (22) ensures that: if a point meets the 
specifications from the model perspective then it also meets 
the specifications in actual circuit simulations.  

Figure 4.  Scatter plots of an arbitrary metric (a) before and (b) 
after error margining. Points meeting the specification at the 
model level will pass the simulation test after margining. 

In our methodology, the worst-case constraint in (19) is 
modified to account for error margining as follows:  
   24 ( ) ( ) 3l l l

WCE WC eg g Gσ≈ − ⋅ ≥x x . (24) 
Similar to the previous section, we are only interested in 
margining the constraint functions. The final version of the 
optimization problem with error margining is given by: 
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3.2 Algorithm Flow 

For a given iteration, the convex optimization problem 
is solved inside the local design sub-space using the worst 
case models with error margins. The new local optimum 
solution is compared with the previous solution and the 
optimization flow is terminated if both are within a certain 
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tolerance. Else, the new design sub-space is centered at the 
new solution and another optimization iteration is 
performed again including building new models and 
margining…etc. The overall optimization framework is 
summarized in Algorithm 2.  

Algorithm 2: Overall Optimization Framework  
1. Start from an initial design point x(0) derived from hand-

calculation, and set xs = x(0). 
2. Run Cadence simulations to get sample points. 
3. Build the linear models using sparse regression.  
4. Derive the worst case models using equations (19). 
5. Add the error margins according to equation (22). 
6. Solve the convex optimization for xnew over the local 

design sub-space. 
7. If |xnew � xs| ≥ ζ, where ζ is a user-specified tolerance, 

set xs = xnew, and update the design sub-space, and go to 
Step 2. Else, stop; the final solution is xs.  

 
4. RESULTS AND ANALYSIS 

In this section, we demonstrate the efficacy of the 
proposed iterative optimization framework using two 
circuit examples: (i) a two-stage operational amplifier 
(OpAmp) and (ii) a low noise amplifier (LNA) presented in  
Figure 5 and Figure 6 respectively. Simulations are 
performed using Cadence 45nm gpdk. All analysis is 
performed on a 3.4GHz Linux server with 8GB memory. 

 
Figure 5.  The schematic of the two-stage OpAmp. 

Figure 6.  The schematic of the LNA used. 

The transistor sizes and resistors, capacitors, and/or 
inductors values represent the design variables to optimize 
for. The goal is to find the optimal design point that 
minimizes the total power (P) consumption while meeting 
certain performance metric specification criteria. For the 
OpAmp the performance metrics include the Unity Gain 
Frequency (UGF), Gain (G), Phase Margin (PM), Slew 
Rate (SR), Input Offset (IO), and Output Swing(OS). For 
the LNA the performance metrics include the Noise Figure 

(NF), Forward Reflection (S11), Forward Transmission 
(S21), and Reverse Reflection (S22).  
 
4.1 Performance Modeling 

The variables included in the performance models are 
the design variables and the corresponding process and 
mismatch variables. To build these models, 400 transistor-
level simulations are used to fit 2049 coefficients for the 
OpAmp design at each iteration. Likewise, 300 simulations 
are used to fit 569 coefficients for the LNA. Using sparse 
regression, the number of critical non-zero coefficients is 
found to range between 20 and 50. Figure 7 and Figure 8 
present scatter plots reflecting the modeling accuracy for 
different performance metrics within a local design space. 
Figure 9 presents the average relative error throughout all 
the optimization iterations for the different performance 
metric models. The average error ranges between 2%-8% 
and the models corroborate well with the simulations.    

Figure 7. Scatter plots for OpAmp performance metrics.

Figure 8.  Scatter plots for LNA performance metrics. 
 

4.2 Optimization Results 
We implement Algorithm 2, and we compare the 

following optimization flows. 
(i)  Nominal: reflecting design variable-based modeling 

only with no account for process variations. 
(ii) Statistical: traditional statistical worst-case 

optimization without error margining.  
(iii) Proposed: our proposed methodology. 

Table 1 and Table 2 present the optimization results in 
terms of the maximum power and the individual 
performance metrics yield for the OpAmp and LNA 
circuits respectively. It is clear that the proposed 
methodology is able to converge to a robust design point 
with high yield. Thus, we note 90%-94% yield 
improvement for the proposed methodology compared to 
the other two approaches. This comes at an extra cost of 
5% to 15% power consumption for the OpAmp and LNA 
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respectively. The runtime is of the same order as that of the 
statistical approach. 

Figure 9.  Average modeling error values for the different 
performance metrics.  

Table 1.  Final Optimization Results for OpAmp.  
 Nominal Statistical Proposed 

Maximum power (uW) 329.1 331.3 382 
UGF yield (%)  100 100 94 

G yield (%) 100 100 100 
PM yield (%) 0 0 100 
IO yield (%) 44 100 100 
OS yield (%) 100 100 100 
SR yield (%) 100 100 100 

Table 2.  Final optimization results for LNA. 
 Nominal Statistical Proposed 

Maximum power (mW) 14.65 14.68 15.44 
NF yield (%) 12 100 100 
S11 yield (%) 28 4 100 
S12 yield (%) 100 100 100 
S22 yield (%) 100 100 100 

 

5. CONCLUSIONS 
In this paper, we develop a novel optimization 

algorithm for analog circuits. Our objective is to find the 
optimal design point that maximizes the parametric yield 
and reduce a given cost function (e.g., power consumption). 
The aforementioned optimization problem is solved by a 
sequence of linear programings where the cost and 
constraint functions are approximated using sparse 
regression. Moreover, we propose a margining mechanism 
that takes into account modeling error during circuit 
optimization. Our experimental results of an OpAmp and 
an LNA demonstrate that the proposed technique can 
efficiently optimize the analog circuit while achieving high 
parametric yield compared to other conventional 
approaches.  
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