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Abstract—One important goal of creating smart buildings
is to offer highly comfortable services to the occupants at low
cost. Real-time temperature measurement and monitoring is a
critical task to facilitate high-quality service with low energy
consumption and, hence, cost. In this paper, we propose a novel
framework to accurately measure in-building temperature by
using a small number of sensors. The key idea is to combine
the prior knowledge on temperature statistics with a few sensor
measurements and then predict the spatial temperature distri-
bution by maximum-a-posteriori estimation. Our experimental
results demonstrate that the average estimation error is less than
0.3 degree with very few sensors.

Keywords—Smart building; Temperature estimation; Bayesian
model fusion

I. INTRODUCTION

Nowadays, smart buildings play an important role in every-
day lives of people. One of the most important goals of creating
smart buildings is to offer highly comfortable services to the
occupants at the lowest cost (e.g., the energy consumption) and
environmental impact. To increase the thermal comfort level
and energy efficiency of smart buildings, it is essential to build
an automatic temperature management system. As heating and
cooling account for 30% to 50% of the total building energy
consumption [1], efficiently implementing a smart temperature
management system can significantly reduce the energy cost.
The efficiency of such a system heavily relies on the monitored
or measured in-building temperature. As a result, accurate
temperature measurement and monitoring is a critical task for
the aforementioned temperature management system.

Building simulation is widely used at the design stage to
predict the thermal performance and energy consumption of
buildings [2]. Through building simulation, it is possible to
create temperature models to predict the in-building tempera-
ture. However, models created by building simulation are prior
models which are based on the prior knowledge obtained at the
design stage. It is difficult to consider real-time and real-world
information (e.g., weather and environment variations) when
creating models from building simulation. On the contrary,
using temperature sensors is a practical way to obtain such
information.

Using sensors to monitor temperature usually involves the
Internet of Things (IoT) and wireless sensor network (WSN)
techniques [3], [4]. In these approaches, all the sensory data are
transmitted by a wireless network to an Internet server which
processes the data and makes decisions based on the collected
data. IoT/WSN-based approaches always monitor real-time
temperature so the shortages of simulation-based approaches
are overcome. However, creating a large wireless network with

many sensors suffers from high cost and high complexity. It
requires a careful design for a scalable solution for network
architecture, network protocol, data processing algorithm, etc,
especially when integrating a large number of sensors into the
WSN.

In this paper, we propose a Bayesian model fusion
(BMF) [5]–[7] framework to accurately measure in-building
temperature. The key idea is to combine the prior knowl-
edge of temperature statistics obtained by building simulation
with a few sensor measurements and then predict the spatial
temperature distribution by maximum-a-posteriori estimation.
Consequently, the proposed approach takes advantages of both
the simulation-based and IoT/WSN-based approaches, and
thus, it is of low cost and high accuracy. We also propose to
use a modified Latin hypercube sampling method [8] to make
a good sensor placement to reduce the number of required
sensors. Our experimental results demonstrate that the average
estimation error can be less than 0.3 degree with very few
sensors.

The rest of this paper is organized as follows. In Section II,
we present the problem formulation for the proposed approach.
The BMF method is explained in detail in Section III. We
discuss how to place sensors to reduce measurement error in
Section IV. The efficiency of the proposed method is demon-
strated by a case study in Section V. Finally, we conclude in
Section VI.

II. PROBLEM FORMULATION

Given a building, its in-building temperature at different
locations depends on many factors. We use a vector X =
[x0, x1, x2, · · · , xK ]T to denote the independent factors (e.g.,
power consumption of the appliance in a room) that may
affect the in-building temperature, where x0 = 1 and K is
the number of independent factors. Let N be the number of
locations in the building. We consider the following linear
regression model [9] to approximate the temperature of each
location:

t(n) =

K∑
k=0

α
(n)
k xk = α

(n)
0 +

K∑
k=1

α
(n)
k xk, (1)

where t(n) is the temperature of the nth location (n =

1, 2, · · · , N ), and {α(n)
k ; k = 0, 1, · · · ,K} are the model

coefficients for the nth location. The linear regression model is
widely used in the literature [10], [11]. Eq. (1) can be converted
into a matrix form for all locations:

T = AX, (2)

978-1-4799-5341-7/16/$31.00 ©2016 IEEE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

950 

  



where A ∈ RN×(K+1) is a matrix containing all the model
coefficients, i.e., An,k = α

(n)
k , and T = [t(1), t(2), · · · , t(N)]T

is the temperature vector. The model coefficients A can be
approximately solved by least-squares fitting [12] based on
simulation data. For a practical building, we may not know
the exact value of X and, therefore, it is difficult to accurately
predict the in-building temperature by Eq. (2).

To address this challenge, we assume that M (M < N )
locations are equipped temperature sensors so we can obtain
accurate temperature measurements with a small error for these
locations. Let Y and N be the index sets for those locations
with and without sensors, respectively. For the locations with
sensors, we have the following equation:

A(Y )X = T(Y ). (3)

If X can be solved from Eq. (3), the temperature of the
locations without sensors can be simply predicted by a matrix
vector multiplication:

T(N ) = A(N )X. (4)

However, Eq. (3) is typically underdetermined, because M
is usually much smaller than K in practice. Hence, Eq. (3)
cannot be solved by a conventional linear solver. In this paper,
we will apply the BMF method to solve X from Eq. (3) by
maximum-a-posteriori estimation. As such, the temperature of
the locations without sensors can be predicted by Eq. (4).

III. BAYESIAN MODEL FUSION

The proposed BMF framework contains two core steps: 1)
statistically defining the prior knowledge learned from building
simulation, and 2) applying maximum-a-posteriori estimation
to predict temperature through Bayesian inference. In this
section, we will describe the mathematical details of the BMF
algorithm.

A. Prior Knowledge Definition

In the proposed BMF framework, we assume that the
prior distribution of each factor xk (k = 1, 2, · · · ,K) is
known, which is denoted as pdf(xk), where pdf(·) means the
probability density function. Unlike other conventional BMF
methods [5]–[7] where the prior distribution is modeled as a
Gaussian distribution, the prior distribution in this paper can
also be non-Gaussian (e.g., uniform distribution), making the
proposed BMF framework more practical.

Since all the factors that may affect the in-building temper-
ature are defined to be independent as mentioned in Section II,
the joint distribution of X is simply the product of all the
individual density functions, i.e.,

pdf(X) =

K∏
k=1

pdf(xk). (5)

After the prior distribution of X is defined, we can random-
ly generate S (S > K + 1) samples X(1),X(2), · · · ,X(S) by
Latin hypercube sampling [13] to perform building simulation.
Then, the regression model coefficients of the nth location
are solved by least-squares fitting [12] on the following over-
determined equation:

Y[α
(n)
0 , α

(n)
1 , · · · , α(n)

K ]T = [f (1)
n , f (2)

n , · · · , f (S)
n ]T , (6)

where Y = [X(1),X(2), · · · ,X(S)]T ∈ RS×(K+1), and f
(s)
n is

the simulated temperature of the nth location for the sample
X(s).

Consider the modeling error for the linear regression model
Eq. (2), i.e.,

AX = T+ e, (7)

where e = [e(1), e(2), · · · , e(N)]T is the modeling error of all
the locations. When the model coefficients are calculated, we
can also obtain the distribution of the modeling error. The
modeling error of the nth location of all the samples can be
obtained as follows:

En = Y[α
(n)
0 , α

(n)
1 , · · · , α(n)

K ]T − [f (1)
n , f (2)

n , · · · , f (S)
n ]T .

(8)
The components of En typically show a zero-mean Gaussian
distribution. Hence, we use a zero-mean Gaussian distribution
to model each e(n). The standard deviation of e(n) which is
denoted as σn equals to the numerically calculated standard
deviation of En. The correlation coefficient between e(i)

and e(j) which is denoted as ρi,j equals to the numerically
calculated correlation coefficient between Ei and Ej .

B. Maximum-A-Posteriori Estimation

The key idea of BMF is to combine the prior knowledge
obtained from building simulation with a few sensor measure-
ments. For the locations with sensors, we can get the measured
temperature T(Y ). The goal of maximum-a-posteriori is to
solve X from Eq. (3) by maximizing the posterior distribution
pdf

(
X|T(Y )

)
.

Based on Bayes’ theorem, pdf
(
X|T(Y )

)
is proportional to

the product of the prior distribution pdf(X) and the likelihood
function pdf

(
T(Y )|X

)
, i.e.,

pdf
(
X|T(Y )

)
∝ pdf

(
T(Y )|X

)
pdf(X) (9)

The prior distribution pdf(X) is already given in Eq. (5).
According to Eq. (7) and the prior knowledge of the mod-
eling error defined in Section III-A, the likelihood function
pdf

(
T(Y )|X

)
can be expressed as a multivariate Gaussian

distribution which is related to the distribution of the modeling
error, i.e.,

pdf
(
T(Y )|X

)
=

1(√
2π

)M√
|Σ|

·

exp

[
−1

2

(
AX−T(Y )

)T

Σ−1
(
AX−T(Y )

)]
,

(10)

where Σ is the covariance matrix of the modeling error for
the locations with sensors, i.e., Σi,j = ρpi,pjσpiσpj , where pi
and pj are the ith and jth elements in the index set Y .

Combining Eq. (5), Eq. (9) and Eq. (10), the posterior
distribution is expressed as

pdf
(
X|T(Y )

)
∝

[
K∏

k=1

pdf(xk)

]
·

exp

[
−1

2

(
AX−T(Y )

)T

Σ−1
(
AX−T(Y )

)]
.

(11)

The goal of maximum-a-posteriori estimation is to solve X
from Eq. (11) such that pdf

(
X|T(Y )

)
is maximized. If X
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follows a multivariate Gaussian distribution, the right-hand-
side of Eq. (11) is also a multivariate Gaussian distribution,
and, therefore, pdf

(
X|T(Y )

)
reaches its maximum at the

mean value. However, if factors in X are non-Gaussian (e.g.,
uniform distributions), it may not be possible to derive an
analytical solution to maximize pdf

(
X|T(Y )

)
. In this case,

solving Eq. (11) is converted to an optimization problem and
must be solved by a numerical solver.

C. Summary

Algorithm 1 summarizes the major steps of the BMF
method for in-building temperature estimation. The efficacy
of our proposed algorithm will be demonstrated by the case
study in Section V.

Algorithm 1 BMF for in-building temperature estimation.

1: Define the prior distribution pdf(xk) and calculate Eq. (5).
2: Generate a set of samples and perform building simulation, and

then calculate the model coefficients A and the distribution of
the modeling error.

3: Collect M temperature values T(Y ) from M sensors.
4: Solve X from Eq. (11) such that pdf

(
X|T(Y )

)
is maximized.

5: Estimate the temperature of the locations without sensors by
Eq. (4).

IV. SENSOR PLACEMENT

The measured temperature values T(Y ) depend on the
locations of the M temperature sensors. In other words,
different sensor placements will provide different values of
T(Y ) and, hence, different results of the BMF algorithm. It,
in turn, motivates us to develop an efficient strategy to find a
“good” sensor placement.

A building naturally has a number of rooms. Let’s say
there are R rooms in the building. A simple idea is to evenly
distribute the M sensors over the R rooms, and in each room,
sensors are evenly distributed over all the locations in the
room. To achieve this goal, we use a modified Latin hypercube
sampling (M-LHS) method [8] to generate well-controlled
locations of temperature sensors. There are two main steps
to implement M-LHS:

1) Evenly distribute the M sensors over the R rooms.
If M is exactly divisible by R, then each room has
M/R sensors. Otherwise M%R (% is the modulo
operator) rooms have ⌊M/R⌋ + 1 sensors in each
and the other rooms have ⌊M/R⌋ sensors in each.
Randomly select the M%R rooms that will be placed
⌊M/R⌋ + 1 sensors in each. Let Sr be the number
of sensors in room r.

2) For each room r, evenly distribute the Sr sensors
over all the locations in this room. Let Lr be the
number of locations in room r. Evenly partition
the Lr locations into Sr blocks. If Lr is exactly
divisible by Sr, then each block has Lr/Sr locations.
Otherwise Lr%Sr blocks have ⌊Lr/Sr⌋+1 locations
in each and the other blocks have ⌊Lr/Sr⌋ locations
in each. Randomly select the Lr%Sr blocks that have
⌊Lr/Sr⌋ + 1 locations in each. Finally, randomly
place one sensor in each block, resulting in M sensors
in total.

room

location

block

location with sensor

color

Fig. 1: A simple example is illustrated for the M-LHS method.

A simple example to illustrate the M-LHS method is shown
in Fig. 1, where 5 sensors are placed in a building with 2
rooms and 18 locations in total. The efficacy of M-LHS will
be further demonstrated by our case study in the next section.

V. CASE STUDY

A. Simulation Setup

In this section, we will use a building example to demon-
strate the efficiency of the proposed BMF method. A building
with R = 9 rooms and N = 144 locations is created. This
building has K = 264 independent factors associated with
temperature/weather, properties of materials, etc. Among them,
94 factors follow Gaussian distributions and the others follow
uniform distributions. We use the Latin hypercube sampling
method [13] to generate 1000 random samples for training
the temperature model (i.e., Eq. (2)) and 50 random samples
for error estimation. EnergyPlus [14] is used to simulate these
samples. For the 50 testing samples, the simulated results from
EnergyPlus are treated as the “actual” temperature. The sensor
noise is modeled by a Gaussian distribution with mean of
zero and standard deviation of 0.3 degree. In other words, the
measured temperature of a location with a sensor equals to
the simulated temperature plus a randomly generated Gaussian
noise.

In what follows, we will compare the estimation error of
the BMF method with random placement and the M-LHS
method proposed in Section IV. The estimation error is defined
as the root-mean-square (RMS) error of the locations we
are interested in (e.g., all locations or the locations without
sensors). The reported RMS error is the average value of the
50 testing samples.

B. Simulation Results

Fig. 2 shows how the estimation error for locations without
sensors varies with the number of sensors. For both the
random placement and the M-LHS method, the estimation
error of BMF decreases as the number of sensors increases.
The estimation error saturates at about 0.12 degree when there
are a sufficient number of sensors. It can be observed that given
the same number of sensors, M-LHS is able to achieve higher
accuracy than that of random placement, especially when only
a few sensors are available. For example, when there are 12
sensors, the estimation error of M-LHS is 0.1 degree smaller
than random placement. To achieve the same accuracy of M-
LHS using 12 sensors, random placement requires 23 to 24
sensors, which is 2× of the number of sensors required by
M-LHS. Fig. 3 shows the estimation error for all locations. It
shows a similar trend as Fig. 2. In practice, by using 10 to
20 sensors, the proposed BMF method can obtain reasonable
estimation accuracy (the estimation error is less than 0.3
degree) if the sensors are placed by the M-LHS method.
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Fig. 2: The estimation error for locations without sensors is
shown as a function of the number of sensors.
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Fig. 3: The estimation error for all locations is shown as a
function of the number of sensors.

It is worth explaining why the estimation error can be
smaller than the sensor noise. Sensor noises are completely
independent and random so they do not provide any useful in-
formation. When there are enough sensors, such measurement
noises can be filtered when solving Eq. (3) by maximum-a-
posteriori.

Fig. 4 compares the temperature profiles obtained by
random placement and M-LHS with the “actual” temperature
profile obtained by EnergyPlus simulation for one example.
16 sensors are used in this example. It provides an intuitive
view of the distribution of the in-building temperature. It
clearly shows that M-LHS obtains more accurate estimation
than random placement for this example.

VI. CONCLUSION

Temperature estimation for smart buildings is important for
offering comfortable services to the occupants and reducing
energy consumption of buildings. In this paper, we have pro-
posed a BMF framework for accurate in-building temperature
estimation by using a small number of sensors. An M-LHS
method is proposed to obtain a good sensor placement. Our
experimental results demonstrate that the average estimation
error of BMF with M-LHS is less than 0.3 degree with very
few sensors.
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