

Efficient Performance Modeling of Analog Integrated Circuits via
Kernel Density Based Sparse Regression

Chenlei Fang1, Qicheng Huang1, Fan Yang1,*, Xuan Zeng1,*, Dian Zhou1,2, and Xin Li1,3
1State Key Lab of ASIC & System, Microelectronics Department, Fudan University, Shanghai, P. R. China

2Electrical Engineering Department, University of Texas at Dallas, Richardson, TX, USA
3Electrical & Computer Engineering Department, Carnegie Mellon University, Pittsburgh, PA, USA

ABSTRACT
With the aggressive scaling of integrated circuit technology,
analog performance modeling is facing enormous challenges due
to high-dimensional variation space and expensive transistor-level
simulation. In this paper, we propose a kernel density based sparse
regression algorithm (KDSR) to accurately fit analog performance
models where the modeling error is not simply Gaussian due to
strong nonlinearity. The key idea of KDSR is to approximate the
non-Gaussian likelihood function by using non-parametric kernel
density estimation. Furthermore, we adopt Laplace distribution as
our prior knowledge to enforce a sparse pattern for model
coefficients. The unknown model coefficients are finally
determined by using an EM type algorithm for maximum-a-
posteriori (MAP) estimation. Our proposed method can be viewed
as an iterative and weighted sparse regression algorithm that aims
to reduce the estimation bias for model coefficients due to outliers.
Our experimental results demonstrate that our proposed KDSR
method can achieve superior accuracy over the conventional
sparse regression method.

1. INTRODUCTION

As device size scales down into nanoscale region, variations
introduced by manufacturing process start to affect analog circuit
performance significantly. Such variations are closely related to
yield deterioration and, hence, need careful modeling and analysis
to guarantee circuit quality [1]-[2]. Over the past two decades,
performance modeling techniques have been developed to address
this variability issue [3]-[6]. These methods attempt to
approximate the circuit performance of interest (e.g., power of an
amplifier) as an analytical function of process variations (e.g.,

Vth, W, etc.). Once the performance models are created, they
can be used to guide circuit optimization [7]-[11], find worst-case
corners [12] and estimate parametric yield [13].

Although performance modeling has been successfully
applied to many practical applications, several recent trends of IC
design pose a number of new technical challenges in this area.
Because of the new design methodologies adopted by analog
designers, today’s analog circuits and systems are increasingly
complex with enormous number of devices, thereby leading to a
two-fold consequence. First, the variation space becomes high-
dimensional due to the large number of independent random
variables that must be used to capture device mismatches. Second,

the computational cost of transistor-level simulation significantly
increases and is prohibitively expensive for complex analog
circuits and systems.

Several advanced modeling techniques have recently been
proposed in the literature to address this complexity issue. For
instance, elastic net regularized learning [5] and Orthogonal
Matching Pursuit (OMP) [6] exploit the underlying sparse pattern
to solve a large number of model coefficients from few training
samples without over-fitting. Bayesian Model Fusion (BMF) takes
advantage of the data collected at an earlier stage to further
improve modeling efficiency [15].

However, most existing performance modeling methods
assume that the modeling error simply follows a Gaussian
distribution so that an exponential likelihood function can be
derived and used to solve the unknown model coefficients. Such a
simple assumption, however, does not necessarily hold in practice.
For instance, if process variations are extremely large and the
transistors of an operational amplifier are no longer biased in the
saturation region, the amplifier gain can be extremely small. Due
to this reason, when we sample the variation space to generate
training samples, a small number of training samples may become
outliers and, therefore, make the simple Gaussian assumption
invalid. If these outliners are not appropriately handled, they can
strongly bias the modeling coefficients and prevent us from
generating accurate performance models.

In this paper, we propose a novel modeling method, referred
to as Kernel Density based Sparse Regression (KDSR), to
accurately estimate performance models with consideration of
outliers (i.e., non-Gaussian error distribution). Our key idea is to
approximate the non-Gaussian likelihood function by using non-
parametric kernel density estimation based upon the recent
advances in statistics theory [14]. Furthermore, we adopt Laplace
distribution as our prior knowledge to enforce a sparse pattern for
model coefficients. Finally, a novel Expectation-Maximization
(EM-type) algorithm is used to solve the unknown model
coefficients by maximum-a-posteriori (MAP) estimation. Our
proposed method can be viewed as an iterative and weighted
sparse regression algorithm that is particularly developed to
address the outlier issue for performance modeling. Our
experimental results demonstrate that the proposed KDSR method
substantially improves the modeling accuracy over the
conventional sparse regression approach.

The remainder of this paper is organized as follows. In
Section 2, we briefly review the background of performance
modeling. The KDSR method is presented in Section 3. The
efficacy of our proposed method is demonstrated by several
experimental examples in Section 4. Finally, Section 5 concludes
the paper.

2. BACKGROUND

Performance model is a broadly used approach to approximate
the circuit performances with respect to the process variations. In
this section, we briefly review the formulation of performance

* Corresponding authors: {yangfan, xzeng}@fudan.edu.cn.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
DAC '16, June 05-09, 2016, Austin, TX, USA
© 2016 ACM. ISBN 978-1-4503-4236-0/16/06…$15.00
DOI: http://dx.doi.org/10.1145/2897937.2898013

modeling, along with existing model fitting methods and their
limitations.

2.1 Performance Modeling

A performance model aims to approximate the circuit
performance as an analytical function of variations with M basis
functions:

1 () ()
1

M

m m
m

y gβ
=

≈ ⋅x x . (1)

where y is the model function of the performance, x denotes the
random variables representing device-level variations, { m;
m=1…M} mean the model coefficients, and {gm(x); m=1…M }
are the M basis functions of the random variables (e.g., linear or
quadratic polynomials).

A performance model is specifically defined by the model
coefficients. Once the model coefficients are determined, the
model can be further used to estimate parametric yield, find
worst-case corners, optimize circuit design, etc.

2.2 Least-Squares Fitting

In order to find model coefficients defined in (1), least-
squares (LS) fitting method collects simulation samples and
constructs the following linear equation:
2 ⋅G = y , (2)
where
3 []1 2

T
Mβ β β= ⋅ ⋅ ⋅ , (3)

4 () () ()1 2 TNy y y= ⋅ ⋅ ⋅y , (4)

5

()() ()() ()()
()() ()() ()()

()() ()() ()()

1 1 1
1 2

2 2 2
1 2

1 2

M

M

N N N
M

g g g

g g g

g g g

⋅ ⋅ ⋅

⋅ ⋅ ⋅
=

⋅ ⋅ ⋅

x x x

x x x
G

x x x

. (5)

In (3)-(5), {x(n), y(n)} represent the n-th sampling point. There are
N samples collected by circuit simulations in total. LS fitting
requires the number of sampling points to be greater than the
number of equations, because it aims to solve an over-determined
equation.

We can also view the process of finding the model
coefficients as a maximum likelihood estimate (MLE). LS fitting
method models the regression error as a zero-mean Gaussian
distribution with variance :

6 () ()
1

M

m m
m

y gβ ε
=

= ⋅ +x x , (6)

7 ()
2

2 2
0 0

1 exp
2 2

pdf
εε

πσ σ
= ⋅ − . (7)

The log-likelihood of observing the N samples {x(n), y(n), n=1,
2, … N} can thus be expressed as:

8 () ()()
2

2
1 10

1const
2

N M
n n

m m
n m

y g xβ
σ = =

− − ⋅ . (8)

where

9 2
0

1const= log
2

N
πσ

.

The idea of LS fitting is maximizing the log-likelihood (8),
which is equivalent to the following problem:

10 () ()()
2

1 1
min

N M
n n

m m
n m

y gβ
= =

− ⋅ x . (9)

If the modeling error does follow Gaussian distribution, LS
regression gives exactly the same results as MLE. However, if the
error distribution is not Gaussian, MLE would achieve higher
accuracy compared with LS method.

For instance, assume that the “real” error follows the
distribution demonstrated in Figure 1, which is far from Gaussian
distribution. Instead, it has a heavy tail.

Figure 1. Error distribution with heavy tail

The sampling points around the tail (inside the red circle)

have a larger deviation from zero. Because LS fitting tries to
minimize the squares of fitting errors at each sampling point,
these points around the tail will significantly impact the model
coefficients. The fitted modeling error will be “shifted” to the tail
from the real distribution. In other words, LS regression suffers
from loss of accuracy in such scenario.

2.3 Sparse Regression and Bayesian Model Fusion

Another limitation related with least-squares fitting is that it
requires the number of samples (i.e., N) to be larger than the
number of coefficients (i.e., M). Due to the high simulation cost
and the increasingly high dimension, this prerequisite becomes
challenging.

Several advanced modeling approaches have been proposed to
reduce the required sample size, aiming to take advantage of extra
prior knowledge of model coefficients.

The first piece of prior knowledge is the sparsity. In real
applications, only a few of the basis functions are actually
required to approximate the performance model, which means
many of the model coefficients are nearly zero. SR proposed in [5]
exploits the underlying sparsity and solves the following convex
optimization problem:

11 () ()()
2

2
1 21 2

1 1
min

N M
n n

m m
n m

y gβ λ λ
= =

− ⋅ + +x , (10)

where 1 and 2 are parameters controlling the regulation term.
OMP, on the other hand, solves the following L1-norm

regularization problem [6]:

12
() ()()

2

1 1

1

min

subject to

N M
n n

m m
n m

y gβ

λ
= =

− ⋅

≤

x . (11)

 Another piece of prior information comes from the early-stage
of circuit design, such as pre-layout simulation data. BMF [15]
encodes the similarity of early-stage and late-stage data and gives
the maximum-a-posteriori estimate:

pdf

13 () ()()
2

1 1
min

N M
n n T

m m
n m

y gβ λ
= =

− ⋅ + ⋅ ⋅ ⋅x D , (12)

where denotes the parameter controlling the regulation, and D
means the covariance matrix learned from prior knowledge.
 All the previous methods effectively reduce the sampling
points needed for model fitting. However, the first terms in (10)-
(12) are all the sum of error squares at every sampling point,
which means that they suffer from the same issue with LS fitting.
3. PROPOSED APPROACH

In this section, we develop our proposed kernel density based
sparse regression method. It is derived from a recently proposed
kernel density based regression estimate (KDRE) in statistical
field [14]. We further apply Laplace prior distribution to exploit
the sparsity of model coefficients.

3.1 Kernel Density Estimation

We assume f (t) to be the probability density of in (6). If f (t)
is known, MLE gives the estimation of model coefficients by
maximizing the log-likelihood:

14 () ()()
1 1

max log
N M

n n
m m

n m

f y gβ
= =

− ⋅ x . (13)

However, f (t) is hardly available in practice, so (13) cannot be
applied directly. Instead, the kernel density estimate finds a way
to approximate the “real” error distribution based some initial
parameter estimate.

Let (0) be an initial estimate of model coefficients (e.g. by LS
fitting), and the residuals are given by:

15 () () () ()()0 0

1

M
n n

n m m
m

y gε β
=

= − ⋅ x , (14)

Kernel density based method estimates the error distribution
f (t) as a combination of kernel densities:

16 () ()()0

1

1 N

h n
n

f t K t
N

ε
=

= − , (15)

where Kh(t) = h-1K(t/h). K() is called a kernel function. It is a
non-negative function integrating to one with zero mean. The
tuning parameter h>0 is called bandwidth. In this paper, we use
the Gaussian kernel:

17 ()
21 exp

22
x

K x
π

= − . (16)

Figure 2. Error estimated with Gaussian Kernel

 Figure 2 shows an example of kernel density estimation of
error distribution. Markers on x-axis demonstrate initial residuals
{ n(0), n=1,2,…,N}. Red curves show N kernel densities {Kh(t -

n(0)), n=1,2,…,N}, each centering at an residual value. The blue
curve shows linear combination of those kernel densities,

corresponding to (15). As shown in Figure 2, kernel density
estimate is a non-parametric way to estimate the probability
density function with any shape.

Substitute f(t) in (13) with (15), the kernel density based linear
regression is given as:
18 ()maxQ , (17)

where Q() is the estimated log-likelihood function

19

() ()
() ()()

() ()() ()

1 1

0

1 1

log

log

1log

N M
n n

m m
n m

N M
n n

h m m j
n j n m

Q pdf

f y g

K y g
N

β

β ε

= =

= ≠ =

=

= − ⋅

= − ⋅ −

x,y |

x

x

. (18)

We use leave-one-out kernel density to remove the estimation bias
[14].
 It has been proved in [14] that KDRE is asymptotically as
efficient as the oracle MLE method that assumes we have already
known the “real” error distribution.

3.2 Prior Definition

The KDRE method proposed in [14] generally handles the
problem when error distribution is not Gaussian. However, the
initial estimate (0) comes from LS estimate and the computation
process still requires the number of sample points to be greater
than the variable dimension, which is impractical.

To address this problem, we encode prior knowledge of
performance modeling to improve the modeling efficiency. As
described in Section 2, performance model coefficients are
usually sparse. We can use Laplace prior distribution as our prior
knowledge of the model coefficients:
20 () ()1

exppdf κ∝ − ⋅ , (19)

where is a hyper-parameter. The Laplace distribution decays
when the L1-norm of parameter increases, thus imposes sparsity
on the model coefficients.

According to Baye’s theorem, the posterior distribution of
model coefficients is proportional to the product of prior
distribution and likelihood function [18]:
21 () () ()pdf pdf pdf∝ ⋅| x,y x,y | . (20)

MAP method estimates the model coefficients by finding the
value that maximizes the posterior distribution given by (20).
Combining (18)-(20), MAP estimation can be equivalently written
as the following optimization problem:

22 () ()() ()0
1

1 1

1max log
N M

n n
h m m j

n j n m

K y g
N

β ε κ
= ≠ =

− ⋅ − −x . (21)

 As for the initial parameter estimate (0), we can use the
traditional sparse regression method with L1-norm (SR-L1) [16]-
[17]. SR-L1 uses the likelihood function (7) and the Laplace prior
distribution(19), yielding the following optimization problem:

23
()

() () ()() ()
0

2
0 0

11 1
max

N M
n n

m m
n m

y gβ λ
= =

− − ⋅ −x , (22)

where is another hyper-parameter controlling the effect of L1-
norm item. Eq. (22) is convex and can be efficiently solved to find
the global optimum.
 Given the initial parameter estimate (0), we obtain the initial
residuals by (14). We can also determine the rule of thumb
bandwidth [14]:
24 ()01/51.06h N σ−= , (23)

de
ns

ity
 fu

nc
tio

n

where (0) is the standard deviation of the initial residuals.

3.3 Maximum-a-posteriori Estimation

Since the optimization problem described in (21) has a
mixture form and is not necessarily convex, we cannot directly
find its optimum with convex optimization algorithms. We
propose a novel Expectation-Maximization (EM) algorithm to
calculate the optimization problem. Given the initial residuals
estimation (0) from (14), we then update the estimate by the
following algorithm:

Algorithm 1: EM algorithm
Input: samples from simulation{(x(i), y(i)), i=1,2,…,N}, initial
residuals { n(0), n=1,2,…,N}, hyper-parameter , bandwidth h.
Output: Model coefficients
1: for k=1 kmax do
2: E-step: Calculate the classification probabilities:

25

()

() () ()() ()

() () ()() ()

() () ()() ()

0

1 1

0

1

0

1
,

M
i k i

h m m j
k m

ij M
i k i

h m m l
l i m

M
i k i

h m m j
m

K y g
p

K y g

K y g j i

β ε

β ε

β ε

+ =

≠ =

=

− ⋅ −
=

− ⋅ −

∝ − ⋅ − ≠

x

x

x

 (24)

3: M-step: Update (k+1), solve

26
()

() () () ()() () ()
1

1 1 0 1

11 1
max log

k

N M
k i k i k

ij h m m j
i j i m

p K y gβ ε κ
+

+ + +

= ≠ =

− ⋅ − −x (25)

which can be written as:

27
()

() () () ()() () ()
1

2
1 1 0 1

11 1
min

k

N M
k i k i k

i j m m j
i j i m

p y gβ ε κ
+

+ + +

= ≠ =
− ⋅ − +x (26)

4: If || (k+1) – (k)||1 < (is a pre-defined small value) then
5: break
6: end if
7: end for

It should be noted that (26) is convex and can be solved
efficiently by the convex optimization algorithms [19].

Studying (26), we can view the proposed method as a
weighted version of (22). Eq. (26) attempts to minimize the
weighted square difference between the new residual y(i)- Tx(i)
and the initial residual j(0) for all 1 i j N. The weights are
obtained by (24). If the j-th sampling point {(x(j), y(j))} is an outlier,

j(0) is quite large. For sampling points {(x(i), y(i)), i j}, pij is small
since we use Gaussian kernel. For the sampling points different
from the j-th sampling point {(x(j), y(j))}, the Gaussian kernel
decays rapidly. The effect of j(0) on determining (k+1) will thus be
small because the weights pij are small for the outlier {(x(j), y(j))}.
By using the EM algorithm, KDSR can be considered as an
iterative and weighted sparse regression, which is able to detect
outliers.

3.4 Hyper-parameter Estimation

In (21), hyper-parameter controls the effect of sparse
regulation. If is very large, the optimization process prefers
sparse solutions. Therefore, fewer effective basis functions are
chosen, creating a simple model but leaving large modeling error.
Such scenario is called under-fitting. On the other hand, if is
small, (21) is approximately the same as (17)-(18), and the
estimation result only depends on the sampling points. However,

if the sample size is not large enough, the obtained model may fit
the sample points very well but fails to generalize to new samples,
which causes over-fitting. Hyper-parameter affects (22) in a
similar way.

Due to the reasons explained above, we must properly decide
the hyper-parameter and to avoid either over-fitting or under-
fitting. We adopt the idea of L-fold cross-validation in statistical
field [18] to address this problem. The entire sample set is
partitioned into L groups. Algorithm 1 runs L times with each
candidate value of or . In each run, L-1 groups are used as
training group to give the estimation of model coefficients by (26).
The remaining group is considered as the testing group to estimate
the modeling error’s likelihood with kernel density estimate (15).

For each run, training groups and the testing group should not
overlap, thus over-fitting can be easily detected. Each run
produces a log-likelihood value. The modeling log-likelihood is
thus given by the sum of all L log-likelihood values {Ll,
l=1,2,…,L}.

After performing cross-validation with each candidate hyper-
parameter, the hyper-parameter producing the maximum log-
likelihood on testing group is chosen as the final hyper-parameter.

3.5 Summary

Algorithm 2 summarizes the major steps of our proposed
KDSR method.

Algorithm 2: Kernel Density Based Sparse Regression
Input: samples from simulation {(x(i), y(i)), i=1,2,…,N }
Output: Model coefficients
1: Use cross-validation to calculate the hyper-parameter in
(22).
2: Calculate the initial estimation of model coefficients (0) by

solving the convex optimization problem in (22).
3: Compute the initial residuals { n(0), n=1,2,…,N} and

bandwidth h by (14) and (23).
4: Apply cross-validation to determine the hyper-parameter .
5: Use Algorithm 1 to get the kernel density based estimation of

model coefficients .

4. NUMERICAL EXAMPLES
In this section, two circuit examples are used to verify the

efficiency of our proposed KDSR method. We build the
performance models of the circuits with two different methods: (i)
the sparse regression method based on L1-norm regularization
(SR-L1) (ii) our proposed kernel density based sparse regression
method (KDSR). The traditional SR-L1 method is demonstrated
in (22). In the experiments, we use linear functions of the random
variables as the basis functions {gm(x); m=1…M } in (1).

All experimental samples in this section are generated by
independent Monte Carlo simulations with random samplings. We
partition the data set into two non-overlapping parts, one as the
training set and the other as the testing set. The training set is used
for model fitting. The testing set estimates the modeling
likelihood. The same process is performed 10 times, with different
choices of training set and testing set to average randomness. All
experiments are performed on a server with 2.5GHz dual-core
CPU and 16GB memory.

4.1 Operational Amplifier

A two-stage operational amplifier designed in a commercial
45nm process is used in this example. Figure 3 shows a simplified
schematic of this circuit. There are 581 independent random

variables to represent inter-die variations and random mismatches.
We aim to model gain of the circuit as a linear function of

these random variables. In order to test the accuracy, we generate
5000 simulation samples. The histogram of gain is plotted in
Figure 4(a). It shows that the amplifier fails to work at some
sample points, and the corresponding gain values are extremely
small, resulting in a tail of the gain distribution.

Figure 3. Simplified schematic of operational amplifier

 (a) (b)

Figure 4. (a)The histogram of simulation data of gain (b)
probability density function of “golden” error

For comparison, kernel density based linear regression
estimate (KDRE) [14] is applied to the whole data set to obtain
the “golden” model coefficients real and error distribution:

28 () ()(),
1

M
n nn

real real m m
m

y gε β
=

= − ⋅ x (27)

where n=1,2,…,Ntotal. Ntotal is the size of the whole data set.
Given the “real” error samples, kernel density estimate can be

used to approximate the probability density function. The “golden”
error distribution is shown in Figure 4(b). It shows that the error
distribution is far away from Gaussian distribution.

In this example, we use 3000 samples as the testing group.
Two methods are applied for gain modeling: SR-L1 method and
KDSR method. After obtaining the corresponding model
coefficients SR-L1 and KDSR, we first calculate the fitting error of
the testing set:

29 () () ()()1 1,
1

M
i i i

SR L SR L m m test
m

y gε β− −
=

= − ⋅ x (28)

30 () () ()(),
1

M
i i i

KDSR KDSR m m test
m

y gε β
=

= − ⋅ x (29)

where i=1,2,…,Ntest. Ntest is the size of testing data set.
After we obtain the modeling errors of the testing set, we

interpolate the errors into kernel density estimation of the “golden”
error distribution as demonstrated in Figure 4(b). By doing this,
we get the likelihood of “observing” the modeling error, which
serves as a criteria of the estimation accuracy.

As Figure 5 shows, our proposed KDSR method achieves
higher likelihood. It means that the model coefficients estimated
by KDSR is closer to the MLE estimation if we already know the
oracle error distribution. The improvement is not quite significant,
because the number of samples that are deviated from the mean
value is not very large. In the following example, we will see a

larger improvement of likelihood.

Figure 5. Error likelihood of testing set

4.2 Analog-to-Digital Converter

A flash analog-to-digital converter designed in 0.18 m CMOS
process is considered in this example. There are 132 independent
random variables to model both inter-die variations and intra-die
mismatches. We aim to estimate power of the ADC as a linear
function of these random variables. For comparison, 1604 samples
are generated with schematic-level simulation.

The histogram of power is shown in Figure 6(a). The “real”
distribution is obtained similarly to the op-amp example, and is
shown in Figure 6(b).

 (a) (b)

Figure 6. (a) The histogram of simulation data of power of ADC
(b) probability density function of “golden” error

In this example, we use 800 samples from the whole data set
as the testing group. We build the performance models with data
points in the training group by two different approaches: SR-L1
method and KDSR method.

Figure 7 shows the modeling error likelihood for SR-L1
method and our proposed method. It is shown that given the same
number of training samples, KDSR gives an estimation of model
coefficients with larger likelihood. Especially, KDSR takes 220
samples to achieve larger likelihood than SR-L1 does with 260
samples. Because the simulation time of a large circuit is much
longer than the execution time of the algorithm, our proposed
method reduces the total time to estimate the model coefficients.
In other words, to achieve the same accuracy, our proposed
method achieves over 1.2x speed-up

Figure 7. Error likelihood of testing set

gain(dB)
0 50 100

N
um

be
r o

f s
am

pl
es

0

500

1000

1500

2000

error of gain(dB)
-40 -20 0 20

D
en

si
ty

 fu
nc

tio
n

0

0.05

0.1

0.15

of training samples
700 800 900 1000

lo
g-

lik
el

ih
oo

d

-8

-7

-6

-5

SR-L1
KDSR

of training samples
160 180 200 220 240 260

lo
g-

lik
el

ih
oo

d

7

7.2

7.4

7.6

7.8

8

SR-L1
KDSR

1.2x

Compared to the first example of operational amplifier, the
error distribution of power has a larger ratio of samples that are
deviated away from the mean value. These samples are viewed as
outliers, and affect the model coefficients estimation to a great
extent. As a result, KDSR shows a larger performance
improvement in this ADC example, because it can detect these
outliers efficiently.

Since Algorithm 1 aims to maximize the posteriori
distribution as (21), we plot the value of this cost function after
each iteration in EM algorithm in Figure 8. The cost function is
normalized for clearance.

Figure 8. cost function with each iteration

As Figure 8 shows, each iteration of EM algorithm improves

(21) and the cost function gradually converges. This observation
is proved in [14] for kernel density based linear regression without
prior knowledge.

5. CONCLUSIONS

In this paper, we proposed a KDSR method for performance
modeling of AMS circuits with process variations. The proposed
KDSR method uses a non-parametric kernel density estimate to
approximate the likelihood function, and encodes the sparsity
prior knowledge with Laplace prior distribution. An EM type
algorithm is used to find the MAP estimation of model
coefficients. Experimental results show that KDSR achieves
higher accuracy than traditional sparse regression method. Our
further work will study the kernel density based estimate with
different prior information such as data collected at early-stage.

6. ACKNOWLEDGEMENTS

This work is supported partly by National Natural Science
Foundation of China research project 61574046, 61474026,
61376040 and 61574044, partly by the Recruitment Program of
Global Experts (the Thousand Talents Plan), partly by Shanghai
Chen Guang project supported by Shanghai Municipal Education
Commission and Shanghai Education Development Foundation
and National Science Foundation under contract CCF-1316363
and grant 1115556.

7. REFERENCES
[1] X. Li, J. Le and L. Pileggi, Statistical Performance Modeling
and Optimization, Now Publishers, 2007.
[2] Semiconductor Industry Associate, International Technology
Roadmap for Semiconductors, 2011.
[3] Z. Feng and P. Li, “Performance-oriented statistical parameter
reduction of parameterized systems via reduced rank regression,”
IEEE ICCAD, pp. 868-875, 2006.
[4] A. Singhee and R. Rutenbar, “Beyond low-order statistical
response surfaces: latent variable regression for efficient, highly

nonlinear fitting,” IEEE DAC, pp. 256-261, 2007.
[5] T. McConaghy, “High-dimensional statistical modeling and
analysis of custom integrated circuits,” IEEE CICC, 2011.
[6] X. Li, “Finding deterministic solution from underdetermined
equation: large-scale performance modeling of analog/RF circuits,”
IEEE Trans. on CAD, vol. 29, no. 11, pp. 1661-1668, Nov. 2010.
[7] Z. Wang and S. Director, “An efficient yield optimization
method using a two step linear approximation of circuit performance,”
IEEE EDAC, pp. 567-571, 1994.
[8] A. Dharchoudhury and S. Kang, “Worse-case analysis and
optimization of VLSI circuit performance,” IEEE Trans. on CAD, vol.
14, no. 4, pp. 481-492, Apr. 1995.
[9] G. Debyser and G. Gielen, “Efficient analog circuit synthesis
with simultaneous yield and robustness optimization,” IEEE ICCAD,
pp. 308-311, 1998.
[10] F. Schenkel, M. Pronath, S. Zizala, R. Schwencker, H. Graeb
and K. Antreich, “Mismatch analysis and direct yield optimization by
spec-wise linearization and feasibility-guided search,” IEEE DAC, pp.
858-863, 2001.
[11] X. Li, P. Gopalakrishnan, Y. Xu and L. Pileggi, “Robust
analog/RF circuit design with projection-based performance
modeling,” IEEE Trans. on CAD, vol. 26, no. 1, pp. 2-15, Jan. 2007.
[12] X. Li, J. Le, P. Gopalakrishnan and L. Pileggi, “Asymptotic
probability extraction for nonnormal performance distributions,”
IEEE Trans. on CAD, vol. 26, no. 1, pp. 16-37, Jan. 2007.
[13] M. Sengupta, S. Saxena, L. Daldoss, G. Kramer, S. Minehane
and J. Cheng, “Application-specific worst case corners using response
surfaces and statistical models,” IEEE Trans. on CAD, vol. 24, no. 9,
pp. 1372-1380, 2005.
[14] W. Yao and Z. Zhao, “Kernel Density-Based Linear Regression
Estimate,” Communications in Statistics-Theory and Methods, 42(24),
4499-4512, 2013.
[15] F. Wang, W. Zhang, S. Sun, X. Li and C. Gu, “Bayesian model
fusion: large-scale performance modeling of analog and mixed-signal
circuits by reusing early-stage data,” IEEE DAC, pp. 1-6, 2013.
[16] F. Wang, et al., “Co-learning Bayesian model fusion: efficient
performance modeling of analog and mixed-signal circuits using side
information,” IEEE ICCAD, 2015 [in press].
[17] W. Zhang, X. Li, F. Liu, E. Acar, R. Rutenbar and R. Blanton,
“Virtual probe: a statistical framework for low-cost silicon
characterization of nanoscale integrated circuits,” IEEE Trans. on
CAD, vol. 30, no. 12, pp. 1814-1827, Dec. 2011.
[18] C. Bishop, Pattern Recognition and Machine Learning,
Prentice Hall, 2007.
[19] S. Boyd and L. Vandenberghe, Convex Optimization.
Cambridge University Press, 2004.
[20] X. Li, W. Zhang and Fa. Wang, “Large-scale statistical
performance modeling of analog and mixed-signal circuits,” IEEE
CICC, 2012.
[21] W. Zhang, T. Chen, M. Ting and X. Li, “Toward efficient
large-scale performance modeling of integrated circuits via multi-
mode/multi-corner sparse regression,” IEEE DAC, pp. 897-902, 2010.
[22] X. Li, “Finding deterministic solution from underdetermined
equation: large-scale performance modeling by least angle
regression,” IEEE DAC, pp. 364-36, 2009.
[23] X. Li and H. Liu, “Statistical regression for efficient high-
dimensional modeling of analog and mixed-signal performance
variations,” IEEE DAC, pp. 38-43, 2008.

of iteration
0 5 10

co
st

 f
un

ct
io

n(
lo

g)

0.992

0.994

0.996

0.998

1

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

