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ABSTRACT 
With the aggressive scaling of integrated circuit technology, 
analog performance modeling is facing enormous challenges due 
to high-dimensional variation space and expensive transistor-level 
simulation. In this paper, we propose a kernel density based sparse 
regression algorithm (KDSR) to accurately fit analog performance 
models where the modeling error is not simply Gaussian due to 
strong nonlinearity. The key idea of KDSR is to approximate the 
non-Gaussian likelihood function by using non-parametric kernel 
density estimation. Furthermore, we adopt Laplace distribution as 
our prior knowledge to enforce a sparse pattern for model 
coefficients. The unknown model coefficients are finally 
determined by using an EM type algorithm for maximum-a-
posteriori (MAP) estimation. Our proposed method can be viewed 
as an iterative and weighted sparse regression algorithm that aims 
to reduce the estimation bias for model coefficients due to outliers. 
Our experimental results demonstrate that our proposed KDSR 
method can achieve superior accuracy over the conventional 
sparse regression method. 
 
1. INTRODUCTION 

As device size scales down into nanoscale region, variations 
introduced by manufacturing process start to affect analog circuit 
performance significantly. Such variations are closely related to 
yield deterioration and, hence, need careful modeling and analysis 
to guarantee circuit quality [1]-[2]. Over the past two decades, 
performance modeling techniques have been developed to address 
this variability issue [3]-[6]. These methods attempt to 
approximate the circuit performance of interest (e.g., power of an 
amplifier) as an analytical function of process variations (e.g., 

Vth, W, etc.). Once the performance models are created, they 
can be used to guide circuit optimization [7]-[11], find worst-case 
corners [12] and estimate parametric yield [13]. 

Although performance modeling has been successfully 
applied to many practical applications, several recent trends of IC 
design pose a number of new technical challenges in this area. 
Because of the new design methodologies adopted by analog 
designers, today’s analog circuits and systems are increasingly 
complex with enormous number of devices, thereby leading to a 
two-fold consequence. First, the variation space becomes high-
dimensional due to the large number of independent random 
variables that must be used to capture device mismatches. Second, 

the computational cost of transistor-level simulation significantly 
increases and is prohibitively expensive for complex analog 
circuits and systems. 

Several advanced modeling techniques have recently been 
proposed in the literature to address this complexity issue. For 
instance, elastic net regularized learning [5] and Orthogonal 
Matching Pursuit (OMP) [6] exploit the underlying sparse pattern 
to solve a large number of model coefficients from few training 
samples without over-fitting. Bayesian Model Fusion (BMF) takes 
advantage of the data collected at an earlier stage to further 
improve modeling efficiency [15].  

However, most existing performance modeling methods 
assume that the modeling error simply follows a Gaussian 
distribution so that an exponential likelihood function can be 
derived and used to solve the unknown model coefficients. Such a 
simple assumption, however, does not necessarily hold in practice. 
For instance, if process variations are extremely large and the 
transistors of an operational amplifier are no longer biased in the 
saturation region, the amplifier gain can be extremely small. Due 
to this reason, when we sample the variation space to generate 
training samples, a small number of training samples may become 
outliers and, therefore, make the simple Gaussian assumption 
invalid. If these outliners are not appropriately handled, they can 
strongly bias the modeling coefficients and prevent us from 
generating accurate performance models. 

In this paper, we propose a novel modeling method, referred 
to as Kernel Density based Sparse Regression (KDSR), to 
accurately estimate performance models with consideration of 
outliers (i.e., non-Gaussian error distribution). Our key idea is to 
approximate the non-Gaussian likelihood function by using non-
parametric kernel density estimation based upon the recent 
advances in statistics theory [14]. Furthermore, we adopt Laplace 
distribution as our prior knowledge to enforce a sparse pattern for 
model coefficients. Finally, a novel Expectation-Maximization 
(EM-type) algorithm is used to solve the unknown model 
coefficients by maximum-a-posteriori (MAP) estimation. Our 
proposed method can be viewed as an iterative and weighted 
sparse regression algorithm that is particularly developed to 
address the outlier issue for performance modeling. Our 
experimental results demonstrate that the proposed KDSR method 
substantially improves the modeling accuracy over the 
conventional sparse regression approach. 

The remainder of this paper is organized as follows. In 
Section 2, we briefly review the background of performance 
modeling. The KDSR method is presented in Section 3. The 
efficacy of our proposed method is demonstrated by several 
experimental examples in Section 4. Finally, Section 5 concludes 
the paper. 
 
2. BACKGROUND 

Performance model is a broadly used approach to approximate 
the circuit performances with respect to the process variations. In 
this section, we briefly review the formulation of performance 
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modeling, along with  existing model fitting methods and their 
limitations. 
 
2.1 Performance Modeling 

A performance model aims to approximate the circuit 
performance as an analytical function of variations with M basis 
functions: 

1 ( ) ( )
1

M

m m
m

y gβ
=

≈ ⋅x x . (1) 

where y is the model function of the performance, x denotes the 
random variables representing device-level variations, { m; 
m=1…M} mean the model coefficients, and {gm(x); m=1…M } 
are the M basis functions of the random variables (e.g., linear or 
quadratic polynomials).  

A performance model is specifically defined by the model 
coefficients. Once the model coefficients are determined, the 
model can be further used to estimate parametric yield, find 
worst-case corners, optimize circuit design, etc. 
 
2.2 Least-Squares Fitting 

In order to find model coefficients defined in (1), least-
squares (LS) fitting method collects simulation samples and 
constructs the following linear equation:   
2 ⋅G = y , (2) 
where  
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In (3)-(5), {x(n),  y(n)} represent the n-th sampling point. There are 
N samples collected by circuit simulations in total. LS fitting 
requires the number of sampling points to be greater than the 
number of equations, because it aims to solve an over-determined 
equation.  

We can also view the process of finding the model 
coefficients as a maximum likelihood estimate (MLE). LS fitting 
method models the regression error  as a zero-mean Gaussian 
distribution with variance : 
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The log-likelihood of observing the N samples {x(n),  y(n), n=1, 
2, … N} can thus be expressed as: 
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where 
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The idea of LS fitting is maximizing the log-likelihood (8), 
which is equivalent to the following problem: 
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If the modeling error does follow Gaussian distribution, LS 
regression gives exactly the same results as MLE. However, if the 
error distribution is not Gaussian, MLE would achieve higher 
accuracy compared with LS method. 

For instance, assume that the “real” error follows the 
distribution demonstrated in Figure 1, which is far from Gaussian 
distribution. Instead, it has a heavy tail. 

 

 
Figure 1.  Error distribution with heavy tail 

 
The sampling points around the tail (inside the red circle) 

have a larger deviation from zero. Because LS fitting tries to 
minimize the squares of fitting errors at each sampling point, 
these points around the tail will significantly impact the model 
coefficients. The fitted modeling error will be “shifted” to the tail 
from the real distribution. In other words, LS regression suffers 
from loss of accuracy in such scenario. 

 
2.3 Sparse Regression and Bayesian Model Fusion 

Another limitation related with least-squares fitting is that it 
requires the number of samples (i.e., N) to be larger than the 
number of coefficients (i.e., M). Due to the high simulation cost 
and the increasingly high dimension, this prerequisite becomes 
challenging.  

Several advanced modeling approaches have been proposed to 
reduce the required sample size, aiming to take advantage of extra 
prior knowledge of model coefficients.  

The first piece of prior knowledge is the sparsity. In real 
applications, only a few of the basis functions are actually 
required to approximate the performance model, which means 
many of the model coefficients are nearly zero. SR proposed in [5] 
exploits the underlying sparsity and solves the following convex 
optimization problem: 
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where 1 and 2 are parameters controlling the regulation term. 
OMP, on the other hand, solves the following L1-norm 

regularization problem [6]: 
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 Another piece of prior information comes from the early-stage 
of circuit design, such as pre-layout simulation data. BMF [15] 
encodes the similarity of early-stage and late-stage data and gives 
the maximum-a-posteriori estimate: 

pdf
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where  denotes the parameter controlling the regulation, and D 
means the covariance matrix learned from prior knowledge. 
       All the previous methods effectively reduce the sampling 
points needed for model fitting. However, the first terms in (10)-
(12) are all the sum of error squares at every sampling point, 
which means that they suffer from the same issue with LS fitting.  
3. PROPOSED APPROACH 

In this section, we develop our proposed kernel density based 
sparse regression method. It is derived from a recently proposed 
kernel density based regression estimate (KDRE) in statistical 
field [14]. We further apply Laplace prior distribution to exploit 
the sparsity of model coefficients. 
 
3.1 Kernel Density Estimation 

We assume f (t) to be the probability density of  in (6). If f (t) 
is known, MLE gives the estimation of model coefficients  by 
maximizing the log-likelihood: 

14 ( ) ( )( )
1 1

max log
N M

n n
m m

n m

f y gβ
= =

− ⋅ x . (13) 

However, f (t) is hardly available in practice, so (13) cannot be 
applied directly. Instead, the kernel density estimate finds a way 
to approximate the “real” error distribution based some initial 
parameter estimate.  

Let (0) be an initial estimate of model coefficients (e.g. by LS 
fitting), and the residuals are given by: 
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Kernel density based method estimates the error distribution   
f (t) as a combination of kernel densities: 
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where Kh(t) = h-1K(t/h). K( ) is called a kernel function. It is a 
non-negative function integrating to one with zero mean. The 
tuning parameter h>0 is called bandwidth. In this paper, we use 
the Gaussian kernel: 
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Figure 2.  Error estimated with Gaussian Kernel 

 
 Figure 2 shows an example of kernel density estimation of 
error distribution. Markers on x-axis demonstrate initial residuals 
{ n(0), n=1,2,…,N}. Red curves show N kernel densities {Kh(t - 

n(0)), n=1,2,…,N}, each centering at an residual value. The blue 
curve shows linear combination of those kernel densities, 

corresponding to (15). As shown in Figure 2, kernel density 
estimate is a non-parametric way to estimate the probability 
density function with any shape. 

Substitute f(t) in (13) with (15), the kernel density based linear 
regression is given as: 
18 ( )maxQ , (17) 

where Q( ) is the estimated log-likelihood function 
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We use leave-one-out kernel density to remove the estimation bias 
[14].  
 It has been proved in [14] that KDRE is asymptotically as 
efficient as the oracle MLE method that assumes we have already 
known the “real” error distribution. 
 
3.2 Prior Definition 

The KDRE method proposed in [14] generally handles the 
problem when error distribution is not Gaussian. However, the 
initial estimate (0) comes from LS estimate and the computation 
process still requires the number of sample points to be greater 
than the variable dimension, which is impractical.  

To address this problem, we encode prior knowledge of 
performance modeling to improve the modeling efficiency. As 
described in Section 2, performance model coefficients are 
usually sparse. We can use Laplace prior distribution as our prior 
knowledge of the model coefficients: 
20 ( ) ( )1

exppdf κ∝ − ⋅ , (19) 

where  is a hyper-parameter. The Laplace distribution decays 
when the L1-norm of parameter increases, thus imposes sparsity 
on the model coefficients.  

According to Baye’s theorem, the posterior distribution of 
model coefficients is proportional to the product of prior 
distribution and likelihood function [18]: 
21 ( ) ( ) ( )pdf pdf pdf∝ ⋅| x,y x,y | . (20) 

MAP method estimates the model coefficients by finding the 
value that maximizes the posterior distribution given by (20). 
Combining (18)-(20), MAP estimation can be equivalently written 
as the following optimization problem: 
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 As for the initial parameter estimate (0), we can use the 
traditional sparse regression method with L1-norm (SR-L1) [16]-
[17]. SR-L1 uses the likelihood function (7) and the Laplace prior 
distribution(19), yielding the following optimization problem:  
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where  is another hyper-parameter controlling the effect of L1-
norm item. Eq. (22) is convex and can be efficiently solved to find 
the global optimum. 
 Given the initial parameter estimate (0), we obtain the initial 
residuals by (14). We can also determine the rule of thumb 
bandwidth [14]: 
24 ( )01/51.06h N σ−= , (23) 
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where (0) is the standard deviation of  the initial residuals. 
 
3.3 Maximum-a-posteriori Estimation 

Since the optimization problem described in (21) has a 
mixture form and is not necessarily convex, we cannot directly 
find its optimum with convex optimization algorithms.  We 
propose a novel Expectation-Maximization (EM) algorithm to 
calculate the optimization problem. Given the initial residuals 
estimation (0) from (14), we then update the estimate by the 
following algorithm: 
 
Algorithm 1: EM algorithm 
Input: samples from simulation{(x(i), y(i)), i=1,2,…,N}, initial 
residuals { n(0), n=1,2,…,N}, hyper-parameter , bandwidth h. 
Output: Model coefficients  
1: for k=1 kmax  do 
2:  E-step: Calculate the classification probabilities: 
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3:  M-step: Update (k+1), solve 
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which can be written as: 
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4:    If || (k+1) – (k)||1 <  (  is a pre-defined small value) then 
5:       break 
6:    end if 
7: end for 
 

It should be noted that (26) is convex and can be solved 
efficiently by the convex optimization algorithms [19]. 

Studying (26), we can view the proposed method as a 
weighted version of (22). Eq. (26) attempts to minimize the 
weighted square difference between the new residual  y(i)- Tx(i) 
and the initial residual j(0) for all 1  i  j  N. The weights are 
obtained by (24). If the j-th sampling point {(x(j), y(j))} is an outlier, 

j(0) is quite large. For sampling points {(x(i), y(i)), i j},  pij is small 
since we use Gaussian kernel. For the sampling points different 
from the j-th sampling point {(x(j), y(j))}, the Gaussian kernel 
decays rapidly. The effect of j(0) on determining (k+1) will thus be 
small because the weights pij are small for the outlier {(x(j), y(j))}. 
By using the EM algorithm, KDSR can be considered as an 
iterative and weighted sparse regression, which is able to detect 
outliers. 

 
3.4 Hyper-parameter Estimation 

In (21), hyper-parameter  controls the effect of sparse 
regulation. If  is very large, the optimization process prefers 
sparse solutions. Therefore, fewer effective basis functions are 
chosen, creating a simple model but leaving large modeling error. 
Such scenario is called under-fitting. On the other hand, if  is 
small, (21) is approximately the same as (17)-(18), and the 
estimation result only depends on the sampling points. However, 

if the sample size is not large enough, the obtained model may fit 
the sample points very well but fails to generalize to new samples, 
which causes over-fitting. Hyper-parameter  affects (22) in a 
similar way. 

Due to the reasons explained above, we must properly decide 
the hyper-parameter  and  to avoid either over-fitting or under-
fitting. We adopt the idea of L-fold cross-validation in statistical 
field [18] to address this problem. The entire sample set is 
partitioned into L groups. Algorithm 1 runs L times with each 
candidate value of  or . In each run, L-1 groups are used as 
training group to give the estimation of model coefficients by (26). 
The remaining group is considered as the testing group to estimate 
the modeling error’s likelihood with kernel density estimate (15).  

For each run, training groups and the testing group should not 
overlap, thus over-fitting can be easily detected. Each run 
produces a log-likelihood value. The modeling log-likelihood is 
thus given by the sum of all L log-likelihood values {Ll, 
l=1,2,…,L}. 

After performing cross-validation with each candidate hyper-
parameter, the hyper-parameter producing the maximum log-
likelihood on testing group is chosen as the final hyper-parameter. 
 
3.5 Summary 

Algorithm 2 summarizes the major steps of our proposed 
KDSR method.  
 
Algorithm 2: Kernel Density Based Sparse Regression 
Input: samples from simulation {(x(i),  y(i)), i=1,2,…,N } 
Output: Model coefficients
1:   Use cross-validation to calculate the hyper-parameter  in 
(22). 
2:  Calculate the initial estimation of model coefficients (0) by 

solving the convex optimization problem in (22). 
3:   Compute the initial residuals { n(0), n=1,2,…,N} and 

bandwidth h by (14) and (23). 
4: Apply cross-validation to determine the hyper-parameter . 
5: Use Algorithm 1 to get the kernel density based estimation of 

model coefficients . 
 

4. NUMERICAL EXAMPLES 
In this section, two circuit examples are used to verify the 

efficiency of our proposed KDSR method. We build the 
performance models of the circuits with two different methods: (i) 
the sparse regression method based on L1-norm regularization 
(SR-L1) (ii) our proposed kernel density based sparse regression 
method (KDSR). The traditional SR-L1 method is demonstrated 
in (22).  In the experiments, we use linear functions of the random 
variables as the basis functions {gm(x); m=1…M } in (1). 

All experimental samples in this section are generated by 
independent Monte Carlo simulations with random samplings. We 
partition the data set into two non-overlapping parts, one as the 
training set and the other as the testing set. The training set is used 
for model fitting. The testing set estimates the modeling 
likelihood. The same process is performed 10 times, with different 
choices of training set and testing set to average randomness. All 
experiments are performed on a server with 2.5GHz dual-core 
CPU and 16GB memory. 

 
4.1 Operational Amplifier 

A two-stage operational amplifier designed in a commercial 
45nm process is used in this example. Figure 3 shows a simplified 
schematic of this circuit. There are 581 independent random 



  

variables to represent inter-die variations and random mismatches. 
We aim to model gain of the circuit as a linear function of 

these random variables. In order to test the accuracy, we generate 
5000 simulation samples. The histogram of gain is plotted in 
Figure 4(a). It shows that the amplifier fails to work at some 
sample points, and the corresponding gain values are extremely 
small, resulting in a tail of the gain distribution.  

 

 
Figure 3. Simplified schematic of operational amplifier 

  

  
                        (a)                                          (b) 

Figure 4. (a)The histogram of simulation data of gain (b) 
probability density function of “golden” error 
 

For comparison, kernel density based linear regression 
estimate (KDRE) [14] is applied to the whole data set to obtain 
the “golden” model coefficients real and error distribution: 
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where n=1,2,…,Ntotal. Ntotal is the size of the whole data set. 
Given the “real” error samples, kernel density estimate can be 

used to approximate the probability density function. The “golden” 
error distribution is shown in Figure 4(b). It shows that the error 
distribution is far away from Gaussian distribution. 

In this example, we use 3000 samples as the testing group. 
Two methods are applied for gain modeling: SR-L1 method and 
KDSR method. After obtaining the corresponding model 
coefficients SR-L1 and KDSR, we first calculate the fitting error of 
the testing set: 
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where i=1,2,…,Ntest. Ntest is the size of testing data set. 
After we obtain the modeling errors of the testing set, we 

interpolate the errors into kernel density estimation of the “golden” 
error distribution as demonstrated in Figure 4(b). By doing this, 
we get the likelihood of “observing” the modeling error, which 
serves as a criteria of the estimation accuracy.  

As Figure 5 shows, our proposed KDSR method achieves 
higher likelihood. It means that the model coefficients estimated 
by KDSR is closer to the MLE estimation if we already know the 
oracle error distribution. The improvement is not quite significant, 
because the number of samples that are deviated from the mean 
value is not very large. In the following example, we will see a 

larger improvement of likelihood. 
 

 
Figure 5. Error likelihood of testing set 

 
4.2 Analog-to-Digital Converter 

A flash analog-to-digital converter designed in 0.18 m CMOS 
process is considered in this example. There are 132 independent 
random variables to model both inter-die variations and intra-die 
mismatches. We aim to estimate power of the ADC as a linear 
function of these random variables. For comparison, 1604 samples 
are generated with schematic-level simulation. 

The histogram of power is shown in Figure 6(a). The “real” 
distribution is obtained similarly to the op-amp example, and is 
shown in Figure 6(b). 

 

  
                       (a)                                              (b) 

Figure 6. (a) The histogram of simulation data of power of ADC 
(b) probability density function of “golden” error 

In this example, we use 800 samples from the whole data set 
as the testing group. We build the performance models with data 
points in the training group by two different approaches: SR-L1 
method and KDSR method.  

Figure 7 shows the modeling error likelihood for SR-L1 
method and our proposed method. It is shown that given the same 
number of training samples, KDSR gives an estimation of model 
coefficients with larger likelihood. Especially, KDSR takes 220 
samples to achieve larger likelihood than SR-L1 does with 260 
samples. Because the simulation time of a large circuit is much 
longer than the execution time of the algorithm, our proposed 
method reduces the total time to estimate the model coefficients. 
In other words, to achieve the same accuracy, our proposed 
method achieves over 1.2x speed-up 

 
Figure 7. Error likelihood of testing set 
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Compared to the first example of operational amplifier, the 
error distribution of power has a larger ratio of samples that are 
deviated away from the mean value. These samples are viewed as 
outliers, and affect the model coefficients estimation to a great 
extent. As a result, KDSR shows a larger performance 
improvement in this ADC example, because it can detect these 
outliers efficiently. 

Since Algorithm 1 aims to maximize the posteriori 
distribution as (21), we plot the value of this cost function after 
each iteration in EM algorithm in Figure 8. The cost function is 
normalized for clearance. 

 
Figure 8. cost function with each iteration 

 
As Figure 8 shows, each iteration of EM algorithm improves 

(21) and the cost function gradually converges. This observation 
is proved in [14] for kernel density based linear regression without 
prior knowledge. 

 
5. CONCLUSIONS 

In this paper, we proposed a KDSR method for performance 
modeling of AMS circuits with process variations. The proposed 
KDSR method uses a non-parametric kernel density estimate to 
approximate the likelihood function, and encodes the sparsity 
prior knowledge with Laplace prior distribution. An EM type 
algorithm is used to find the MAP estimation of model 
coefficients. Experimental results show that KDSR achieves 
higher accuracy than traditional sparse regression method. Our 
further work will study the kernel density based estimate with 
different prior information such as data collected at early-stage. 
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