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ABSTRACT 

Tunable circuit has emerged as a promising methodology to 
address the grand challenge posed by process variations. Efficient 
high-dimensional performance modeling of tunable analog/RF 
circuits is an important yet challenging task. In this paper, we 
propose a novel performance modeling approach for tunable 
circuits, referred to as Correlated Bayesian Model Fusion (C-
BMF). The key idea is to encode the correlation information for 
both model template and coefficient magnitude among different 
knob configurations by using a unified prior distribution. The 
prior distribution is then combined with a few simulation samples 
via Bayesian inference to efficiently determine the unknown 
model coefficients. Two circuit examples designed in a 
commercial 32nm SOI CMOS process demonstrate that C-BMF 
achieves more than 2× cost reduction over the traditional state-of-
the-art modeling technique without surrendering any accuracy. 
 
1. INTRODUCTION  

The advent of nanoscale technology makes analog/RF 
integrated circuit (IC) increasingly susceptible to process 
variations. Process variations, including inter-die variations and 
local mismatches, significantly impact the parametric yield of 
analog/RF circuit, and must be properly handled at all levels of 
design hierarchy [1]-[2]. Traditional approaches based on over-
design [3]-[4] are not sufficient to maintain high parametric yield 
[5]-[6], due to the large-scale process variations and aggressive 
design specifications at advanced technology nodes. 

In this context, tunable circuit has emerged as a promising 
methodology to address the variability issue [6]-[11]. It employs a 
set of tuning knobs (e.g., bias current) to facilitate post-silicon 
tuning. In particular, a tunable circuit possesses multiple ‘states’ 
associated with tuning knobs that can be adaptively selected after 
manufacturing. For each particular process corner and/or 
environmental condition, the tunable circuit is able to adaptively 
select the optimal state and, hence, achieve high parametric yield.  

Since tunable circuit closely interacts with process variations, 
the variability associated with tunable circuit must be 
appropriately modeled. Toward this goal, performance modeling 
is an important task where circuit-level performance (e.g. phase 
noise) is approximated as an analytical function (e.g. polynomial) 
of device-level variations (e.g. ΔVTH). The performance model, 
once built, can be applied to various important applications, such 

as yield estimation [12]-[13], corner extraction [14], design 
optimization [15], etc. Historically, the performance modeling 
problem of non-tunable circuit has been thoroughly studied [16]-
[18]. For tunable circuit, however, this fundamental modeling 
problem can be extremely difficult with the following 
characteristics: 
• High-dimensional variation space: A large number of device-

level random variables must be used to model the process 
variations associated with a tunable analog/RF system at 
advanced technology nodes. 

• Large number of knob configurations: To maximize tuning 
range and resolution, a large number of knob configurations 
(i.e. ‘states’) should be designed. This, however, significantly 
increases the complexity of performance modeling, since a 
unique performance model is required to accurately capture 
the variability at each state. 

• Correlated knob configurations: Since different states are 
associated with the same tunable circuit, the performance 
models of the different states are correlated. In particular, the 
model template and model coefficients are expected to be 
similar among these states. 
It is important to note that most traditional approaches [16]-

[21] are not fully equipped for performance modeling of tunable 
circuit. Taking sparse regression [16]-[17] as an example, the 
sparsity of model coefficients is explored to improve efficiency. 
However, no correlation is considered between different states. In 
other words, performance modeling is done for each state 
independently and the performance modeling cost would quickly 
become intractable as the number of states increases. Several 
other performance modeling methods (e.g., simultaneous 
orthogonal matching pursuit [19], multi-mode multi-corner sparse 
regression [20], group lasso [21], etc.) have been proposed to 
exploit the aforementioned correlation information. However, 
these methods only take into account the shared model template 
among different states and they ignore the correlation of 
coefficient magnitude. In Bayesian model fusion (BMF) [18], a 
prior distribution is defined to encode the prior knowledge. 
However, the prior distribution in [18] is not able to appropriately 
encode the correlation information for tunable circuit. 

In this paper, we propose a new Correlated Bayesian model 
fusion (C-BMF) technique to facilitate large-scale performance 
modeling of tunable analog/RF circuit. The proposed C-BMF 
method is motived by the fact that performance models associated 
with different states are correlated. Our key idea is to encode the 
correlation information for both model template and coefficient 
magnitude among different states by using a unified prior 
distribution. The prior distribution is then combined with a few 
simulation samples via Bayesian inference [22]-[23] to efficiently 
determine the unknown model coefficients. In addition, efficient 
and robust hyper-parameter inference is proposed to solve a large 
number of hyper-parameters associated with C-BMF. It consists 
of two major steps: (i) estimating the hyper-parameters to obtain 
an initial guess using a heuristic approach, and (ii) optimizing the 
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hyper-parameter values using an expectation-maximization 
algorithm [22]. As will be demonstrated by our numerical 
examples in Section 4, the proposed C-BMF approach is able to 
achieve 2× runtime speedup over the state-of-the-art modeling 
technique without surrendering any accuracy. 

The remainder of this paper is organized as follows. We 
briefly review the background of performance modeling for 
tunable circuit in Section 2, and then describe the proposed C-
BMF approach in Section 3. Two circuit examples are presented 
to demonstrate the efficacy of C-BMF in Section 4. Finally, we 
conclude in Section 5. 
 
2. BACKGROUND  

Given a tunable analog/RF circuit (e.g. a down-conversion 
mixer) with totally K states (i.e. knob configurations), the 
performance model of the k-th state can be represented by an 
analytical function (e.g., polynomial) of device-level variations 
(e.g., ΔVTH): 
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where {yk; k = 1, 2, ⋅⋅⋅, K} contains the performance of interest 
(PoIs) associated with the K states, x is a vector representing the 
device-level variations, fk(x) denotes the performance model of 
interest which establishes a mapping from x to yk, { k,m; m = 1, 2, 
..., M} contains the model coefficients of fk(x), {bm(x); m = 1, 2, 
..., M} contains the basis functions (e.g., linear or quadratic 
polynomials), and M denotes the total number of basis functions. 
Without loss of generality, we assume that the same set of basis 
functions {bm(x); m = 1, 2, ..., M} are shared among all the states. 

In order to determine the performance models in (1), we need 
to find the model coefficients { k,m; k = 1, 2, …, K; m = 1, 2, ..., 
M}. Toward this goal, the traditional least-squares fitting method 
first collects a number of sampling points of x and {yk; k = 1, 2, ⋅⋅⋅, 
K} for all K states, and then solves the model coefficients from the 
following optimization problems: 
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In (3)-(5), xk(n) is the value of x at the n-th sampling point of the k-
th state, yk(n) is the value of yk at the n-th sampling point, ||•||2 
stands for the L2-norm of a vector, and N represents the total 
number of sampling points collected for each state. To avoid over-
fitting, the number of sampling points must be substantially 
greater than the number of unknown coefficients. 

To reduce the number of samples required for performance 
modeling, the simultaneous orthogonal matching pursuit (S-OMP) 
algorithm [19] has been proposed in the literature. The key idea of 
S-OMP is to explore the sparse property and the correlation of 
model template between different states. As an extension of the 
orthogonal matching pursuit (OMP) algorithm [16], S-OMP 

naturally inherits the assumption of sparse regression. In other 
words, S-OMP exploits the fact that only a small number of basis 
functions in {bm(x); m = 1, 2, ..., M} are important and, hence, 
should be used to approximate {yk; k = 1, 2, ⋅⋅⋅, K}. More 
importantly, S-OMP also explores the correlation of model 
template among {yk; k = 1, 2, ⋅⋅⋅, K}. In particular, S-OMP 
assumes that different states possess the same set of important 
basis functions. This is usually a valid assumption in practice, 
because different states are associated with the same tunable 
circuit. 

While S-OMP has been successfully applied to many practical 
applications (e.g. wafer spatial pattern analysis [19]), it is possible 
to explore other correlation information between states to further 
improve the efficiency of performance modeling for tunable 
circuits. Motivated by this observation, we will propose a novel 
C-BMF approach that takes advantage of the correlation of 
coefficient magnitude in Section 3. 
 
3. PROPOSED APPROACH  

Similar to S-OMP, the proposed C-BMF method relies on two 
assumptions: (i) the sparsity of model template, and (ii) the 
correlation of model template. However, unlike S-OMP which 
ignores the correlation of coefficient magnitude among different 
states, C-BMF also encodes such magnitude correlation to 
improve modeling accuracy. In what follows, we will discuss the 
mathematical formulation of C-BMF in detail. 

 
3.1 Prior Knowledge Definition 

To start with, we consider the performance models of K states 
in a tunable circuit as defined in (1). We rewrite their model 
coefficients in a concatenated form as: 

6 1 2
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{ k,m; k = 1, 2, ..., K; m = 1, 2, ..., M} are the model coefficients 
defined in (1), and  is the combined column vector with size of 
M·K. In (6), the model coefficients are organized such that the 
coefficients associated with the m-th basis function are grouped 
together in m (m = 1, 2, ..., M). Since the model coefficients in m 
are related to the same basis function, we assume that they are 
statistically correlated and define their prior distribution as: 
 8 ( ) ( ) ( )~ , 1,2, ,m m mpdf N m Mλ ⋅ =0 R . (8) 
In (8), { m; m = 1, 2, ..., M} are the hyper-parameters that control 
the sparsity of the basis functions, and {Rm; m = 1, 2, ..., M} are 
the positive definite matrices that quantify the correlation among 
model coefficients. 

Studying (8) yields several important observations. First, the 
sparse property is naturally encoded in { m; m = 1, 2, ..., M}. To 
understand this, we consider the m-th basis function where m is 
zero. In this case, the variance of the zero-mean Gaussian 
distribution in (8) is also zero. As such, the coefficients m can 
only take zero values based on their prior distribution, thereby 
implying the sparsity of m. Second, the correlation of model 
template is also encoded by the mathematical representation in (8). 
In particular, all the model coefficients in m share the same 
sparse pattern, because their prior distribution is controlled by the 
same hyper-parameter m. Third, but most importantly, the 
correlation of coefficient magnitude is also encoded by this prior 
definition, as long as the covariance metrics {Rm; m = 1, 2, ..., M} 



 

are not diagonal. In this paper, we further assume that: 
9 1 2 M= = =R R R R , (9) 
in order to reduce the number of hyper-parameters and avoid 
overfitting. 

As shown in Figure 1, the prior knowledge of sparsity and 
correlation is encoded by the hyper-parameters. To complete the 
definition of prior distribution for all model coefficients in , we 
further assume that i and j are statistically independent for any i 
≠ j. Therefore, the joint distribution can be represented as: 
10 ( ) ( )~ ,pdf N 0 A , (10) 
where 
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The independence assumption in (10)-(11) simply indicates 
that we do not know any correlation information between 
different basis functions as our prior knowledge. Such correlation 
will be learned from sampling points, when the posterior 
distribution is calculated from Bayesian inference in Section 3.2. 
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Figure 1.  The prior knowledge for model coefficients is 
illustrated. Each row (shown by the red box) represents the model 
coefficients of a particular state, while each column (shown by the 
blue box) represents the model coefficients associated with the 
same basis function. The hyper-parameters { m; m = 1, 2, ..., M} 
and R are defined to encode the sparsity and correlation 
respectively. 
 
3.2 Maximum-A-Posteriori Estimation 

Once the prior distribution pdf( ) is defined in (10)-(11), we 
will combine pdf( ) with a number of samples collected from K 
states {(xk(n), yk(n)); n = 1, 2, …, N; k = 1, 2, …, K} to solve the 
model coefficients  by maximum-a-posteriori (MAP) estimation. 
According to Bayes’ theorem, the posterior distribution is 
proportional to the prior distribution pdf( ) multiplied by the 
likelihood function, which can be represented as [22]: 
12 ( ) ( ) ( )| |pdf pdf pdf∝ ⋅y y . (12) 
In (12), pdf(y| ) is the likelihood function, where 
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is a vector containing N·K sampling points collected from K 
states. The likelihood function pdf(y| ) represents the probability 
of observing these samples given the model coefficients . 

To derive the likelihood function, we assume that the error 
associated with the performance model fk(x) follows a zero-mean 
Gaussian distribution. We therefore rewrite (1) as: 
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where  represents the modeling error with the distribution: 

15 ( ) ( )
2

2
02

00

1 exp ~ 0,
22

pdf N
εε σ
σπ σ

= ⋅ −
⋅⋅

. (15) 

In (15) the standard deviation σ0 controls the magnitude of the 
modeling error. Combining (14)-(15) yields the probability of 
observing a particular sampling point (xk(n), yk(n)): 
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Given that all sampling points are independently generated, 
the joint likelihood function pdf(y| ) can be written as: 
17 ( ) ( )2

0 0| , ~ ,pdf Nσ σy D I , (17) 

where D is a matrix with N·K rows and M·K columns. The 
matrix D can be obtained by permuting the rows and columns of 
the following block diagonal matrix: 
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where {Bk; k = 1, 2, ⋅⋅⋅, K} are defined in (3). Combining (10), (12) 
and (17), the posterior distribution can be calculated as [22]: 
19 ( ) ( )| ~ ,P ppdf Ny , (19) 

where 
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Since the Gaussian distribution reaches its maximum at the mean 
value, the MAP solution of the model coefficients  is: 
22 2

0
T

P pσ −= = D y . (22) 
While the proposed Bayesian inference has been illustrated, 

the hyper-parameters in the prior distribution (10) and the 
likelihood function (17) must be appropriately determined in order 
to solve the model coefficients . In the next section, we will 
further discuss a statistical inference to find the optimal hyper-
parameter values. 
 
3.3 Hyper-Parameter Inference 

The hyper-parameters of our proposed Bayesian inference are 
defined in Section 3.1 and Section 3.2:  = { 1, 2, …, M, R, σ0}. 
To determine these hyper-parameters, one possible approach is to 
apply cross-validation [22] which has been successfully used for 
various applications [16]-[18]. However, the cross-validation 
approach is not applicable to our Bayesian inference in this paper. 
It is well-known that the computational complexity of cross-
validation exponentially grows with the number of hyper-
parameters, and thus is only suitable to handle small-size 
problems. In this paper, our Bayesian inference involves a large 
number of hyper-parameters, since the number of basis functions 
(i.e., M) can easily reach several thousand due to the large number 
of device-level process parameters at an advanced technology 
node. Hence, an alternative approach must be developed to 
efficiently determine these hyper-parameters in . 

Statistically, the hyper-parameters can be determined by 
maximizing the conditional probability of observing the data set, 
i.e., the marginal likelihood: 
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The integration in (23) indicates that the effect of model 
coefficients  is averaged out in the marginal likelihood. Given 
that the two terms in the integration depend on different sets of 
hyper-parameters in , we can rewrite (23) as: 
24 ( ) ( ) ( )0 1| , | ,..., ,Ml pdf pdf dΩ = ⋅y Rσ λ λ . (24) 

By combining (10) and (17) and taking the negative logarithm for 
(24), we have: 
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The hyper-parameters can be found by minimizing the cost 
function in (25). However, minimizing (25) is not trivial, because 
the cost function is not convex. In this paper, we adopt an 
expectation-maximization (EM) algorithm to address this 
challenge. In particular, instead of directly minimizing (25), the 
EM algorithm approaches a local optimum of (25) by iteratively 
performing two operations [22]-[23], known as the expectation 
step and the maximization step respectively. 

In the expectation step, we first calculate the posterior 
distribution pdf( |y, (old)) according to (19)-(21) based on (old), 
where (old) denotes the hyper-parameters calculated in the last 
iteration. Next, we define the following quantity [22]: 
26 ( )( ) ( )
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where the operator E represents the expectation of the log 
probability function with respect to the posterior distribution 
pdf( |y, (old)). Note that the expected value in (26) depends on 
the mean vector p and the covariance matrix p of the posterior 
distribution in (19). 

In the maximization step, we try to find  such that: 
27 ( )( )arg max | oldQ

Ω
Ω = Ω Ω . (27) 

The optimal solution of  corresponds to: 
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∂ Ω Ω =
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Combining (26) and (28), we can find the optimal solution  of 
(27) as a function of (old), resulting in the following rule for 
updating  [23]: 
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where pm corresponds to the m-th sub-vector in p with size of K, 
pm corresponds to the m-th diagonal block in p with size of 

K×K. The expectation step (19)-(21) and the maximization step 
(29)-(31) are performed iteratively until convergence is reached. 

Given that the EM algorithm only converges to a local 
optimum, the initial guess of  must be carefully chosen. Here we 
propose a modified S-OMP algorithm to achieve this goal. The 
key idea of the proposed algorithm is to (i) reduce the hyper-
parameter space by posing additional constraints on R, (ii) apply a 
greedy algorithm for basis function selection, and (iii) apply 
cross-validation to solve this simplified problem within the 
reduced hyper-parameter space. 

Following this idea, we first consider the parameterized 

covariance matrix R defined as: 
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where r0 < 1 is a non-negative hyper-parameter. The matrix in 
(32) has several implications. First, the correlation becomes small 
when two states (i.e., their indexes) are substantially different. 
Second, the same decaying rate r0 is used for all the states. This 
assumption often provides a good approximation, even though it 
is not highly accurate. However, since our goal here is to find a 
good initial guess of , a reasonably accurate approximation 
should suffice. As the covariance matrix R depends on a single 
parameter r0 in (32), we can now apply cross-validation to 
estimate its value with low computational cost. On the other hand, 
a greedy basis selection algorithm based on S-OMP [19] is used to 
infer the sparsity information that is encoded by the hyper-
parameters { 1, 2, …, M}. In this way, we do not have to directly 
estimate { 1, 2, …, M}, which is computationally expensive. 

At this point, the hyper-parameter space has been reduced to 
three variables: r0, σ0 and , where  denotes the number of 
selected basis functions. These three hyper-parameters can be 
efficiently determined using cross-validation [22]. Namely, we 
start from a candidate set {(r0(q), σ0(q), (q)); q = 1, 2, …, }, where 

 denotes the size of the set. At the q-th iteration step, we choose 
the hyper-parameter values (r0(q), σ0(q), (q)), estimate the model 
coefficients, and evaluate the modeling error. To solve the model 
coefficients with given (r0(q), σ0(q), (q)), we adopt a modified S-
OMP algorithm to iteratively identify the important basis 
functions. Similar to S-OMP [19], a single most important basis 
function is greedily chosen at each iteration step by maximizing 
the correlation between the selected basis function and the 
modeling residual over all states. The model coefficients are then 
calculated from the Bayesian inference in (10), (20)-(22) and (32) 
based on r0(q), σ0(q) and the currently selected basis functions. 
Different from the traditional S-OMP method, we take into 
account the correlation of coefficient magnitude when solving the 
unknown model coefficients. The aforementioned iteration 
continues until the number of chosen basis functions reaches (q). 
The modeling error can now be evaluated by cross-validation for 
the hyper-parameters (r0(q), σ0(q), (q)). Eventually, the optimal 
values of (r0, σ0, ) are chosen to minimize the modeling error, 
and they are used to initialize the hyper-parameters  for the 
iterative EM algorithm. 
 
3.4 Summary 

Algorithm 1 summarizes the major steps of the correlated 
Bayesian model fusion (C-BMF) algorithm. It consists of two 
main components: (i) a modified S-OMP algorithm from Step 1 to 
Step 17 to find the initial guess of the hyper-parameters , and (ii) 
the EM algorithm from Step 18 to Step 20 to iteratively solve the 
optimal values of  where the model coefficients are updated at 
each iteration step. 

Algorithm 1: Correlated Bayesian Model Fusion Algorithm 
1. Start from a candidate set of hyper-parameters {(r0(q), σ0(q), 

(q)); q = 1, 2, …, }. Partition the sampling points into C 
groups with the same size for cross-validation. 

2. Set the candidate index q = 1. 
3. Set the cross-validation index c = 1. 
4. Assign the c-th group as the testing set and all other groups as 



 

the training set. 
5. Initialize the residual Resk = yk, the basis vector set  = {}, 

and the iteration index p = 1. 
6. Calculate the inner product values { k,m; k = 1, 2, …, K; m = 1, 

2, …, M} between Resk and all basis vectors bk,m for each 
state, where bk,m represents the m-th column of Bk in (3). 

7. Select the index s based on the following criterion: 

33 ,
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k m
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s ξ
=

= . (33) 

8. Update  =   s. 
9. By considering the basis functions in  and m = 1 where m ∈ 

, solve the model coefficients { k,m; k = 1, 2, …, K; m ∈ } 
using (10), (20)-(22) with r0(q), σ0(q) and R defined in (32). 

10. Calculate the residual: 
34 ( ), , 1,2, ,k k k m k m

m

Res k Kα
∈Θ

= − ⋅ =y B . (34) 

11. If p < (q), p = p + 1 and go to Step 6. 
12. Calculate the modeling error eq,c using the testing set. 
13. If c < C, c = c + 1 and go to Step 4. 
14. Calculate eq = (eq,1 + eq,2 + ... + eq,C)/C. 
15. If q < , q = q + 1 and go to Step 3. 
16. Find the optimal r0, σ0, and  among the set {(r0(q), σ0(q), (q)); 

q = 1, 2, …, } such that the modeling error eq is minimized. 
17. Initialize the matrix R using (32), m = 1 where m ∈ , and m 

= 10−5 where m ∉ . 
18. Calculate p and p based on the expectation step in (19)-(21). 
19. Update { m; m = 1, 2, …, M}, R and σ0 based on the 

maximization step using (29)-(31). 
20. If convergence is not reached, go to Step 18. Otherwise, stop 

iteration and calculate the model coefficients  by using (22). 
 
4. NUMERICAL EXAMPLES 

In this section, two circuit examples designed in a commercial 
32nm SOI CMOS process are used to demonstrate the efficacy of 
the proposed C-BMF algorithm. Our objective is to build the 
performance models for tunable circuits. For testing and 
comparison purposes, two different modeling algorithms are 
implemented: (i) S-OMP [19], and (ii) C-BMF. Here, S-OMP is 
chosen for comparison, as it is one of the state-of-the-art 
techniques in the literature. 

In each example, a set of random samples are generated by 
transistor-level Monte Carlo simulations. The data set is 
partitioned into two groups, referred to as the training and testing 
sets respectively. The training set is used for coefficient fitting, 
while the testing set is used for model validation. All numerical 
experiments are run on a 2.53GHz Linux server with 64GB 
memory. 
 
4.1 Low Noise Amplifier 

Figure 2(a) shows the simplified circuit schematic of a tunable 
2.4GHz low noise amplifier (LNA) designed in a commercial 
32nm SOI CMOS process. In this example, there are totally 1264 
independent random variables to model the device-level process 
variations, including both the inter-die variations and the random 
mismatches. The LNA is designed with 32 different knob 
configurations (i.e., states) controlled by a tunable current source. 
Our goal is to model three performance metrics, noise figure (NF), 
voltage gain (VG) and third-order intercept point (IIP3), as linear 
functions of all random variables for 32 states. The modeling error 
is estimated by using a testing set with 50 samples per state. 

Figure 2(b)-(d) show the performance modeling error for NF, 

VG and IIP3 respectively. Two important observations can be 
made here. First, for both S-OMP and C-BMF, the modeling error 
decreases when the number of samples increases. Second, with 
the same number of samples, C-BMF achieves significantly 
higher accuracy than S-OMP, because C-BMF takes into account 
the additional correlation information of coefficient magnitude. 

Table 1 further compares the performance modeling error and 
cost for S-OMP and C-BMF. The overall modeling cost consists 
of two major components: (i) the circuit simulation cost for 
collecting training samples, and (ii) the model fitting cost for 
solving all model coefficients. As shown in Table 1, the overall 
modeling cost is dominated by the simulation cost in this example. 
C-BMF achieves more than 2× cost reduction over S-OMP 
without surrendering any accuracy. 
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Figure 2.  A tunable 2.4GHz LNA is used as an example for 
performance modeling: (a) the simplified circuit schematic, and 
(b)-(d) the performance modeling error for NF, VG and IIP3 
respectively. 

Table 1.  Performance modeling error and cost for LNA 
 S-OMP C-BMF 

Number of training samples 1120 480 
Modeling error for NF 0.316% 0.285% 
Modeling error for VG 0.577% 0.566% 
Modeling error for IIP3 2.738% 2.497% 
Simulation cost (Hours) 2.72 1.16 
Fitting cost (Sec.) 1.32 316.13 
Overall modeling cost (Hours) 2.72 1.25 

 
4.2 Down-conversion Mixer 

Shown in Figure 3(a) is the simplified circuit schematic of a 
tunable 2.4GHz down-conversion mixer designed in a commercial 
32nm SOI CMOS process. In this example, there are totally 1303 
independent random variables to model the device-level process 
variations, including both the inter-die variations and the random 
mismatches. The mixer is designed with 32 different states 
controlled by two tunable load resistors. The performances of 
interest include NF, VG, and input referred 1dB compression 
point (I1dBCP). The modeling error is estimated by using a test 
set with 50 samples per state. 

Figure 3(b)-(d) show the performance modeling error for NF, 
VG and I1dBCP respectively. Note that C-BMF requires 
substantially less training samples than S-OMP to achieve the 



 

same modeling accuracy. In this example, C-BMF achieves more 
than 2× cost reduction over S-OMP, as shown in Table 2. 
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Figure 3.  A tunable 2.4GHz down-conversion mixer is used as an 
example for performance modeling: (a) the simplified circuit 
schematic, (b)-(d) the modeling error for NF, VG and I1dBCP 
respectively. 

Table 2.  Performance modeling error and cost for mixer 
 S-OMP C-BMF 

Number of samples 1120 480 
Modeling error for NF 0.173% 0.166% 
Modeling error for VG 2.758% 2.569% 
Modeling error for I1dBCP 2.401% 2.340% 
Simulation cost (Hours) 17.20 7.37 
Fitting cost (Sec.) 1.39 407.10 
Overall modeling cost (Hours) 17.20 7.48 

 
5. CONCLUSIONS 

In this paper, a novel C-BMF algorithm is proposed for 
efficient performance modeling of tunable analog/RF circuits. C-
BMF encodes the correlation information for both model template 
and coefficient magnitude among different states by a prior 
distribution. Next, the prior distribution is combined with very 
few simulation samples to accurately solve the model coefficients. 
An efficient and robust hyper-parameter inference is proposed to 
determine the large number of hyper-parameters associated with 
our proposed Bayesian inference. As is demonstrated by two 
circuit examples designed in a commercial 32nm SOI CMOS 
process, the proposed C-BMF method achieves more than 2× cost 
reduction compared to the state-of-the-art modeling technique. 
Finally, it is worth mentioning that C-BMF assumes a unified 
correlation model across all states. If the states are mutually 
different, such an assumption will no longer hold. In this case, a 
clustering algorithm is needed to group similar states into clusters 
before applying the proposed C-BMF algorithm. 
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