
1096 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 7, JULY 2015

Fast Statistical Analysis of Rare Circuit Failure
Events via Scaled-Sigma Sampling for

High-Dimensional Variation Space
Shupeng Sun, Student Member, IEEE, Xin Li, Senior Member, IEEE, Hongzhou Liu, Kangsheng Luo, and Ben Gu

Abstract—Accurately estimating the rare failure rates for
nanoscale circuit blocks (e.g., static random-access memory,
D flip-flop, etc.) is a challenging task, especially when the varia-
tion space is high-dimensional. In this paper, we propose a novel
scaled-sigma sampling (SSS) method to address this technical
challenge. The key idea of SSS is to generate random samples
from a distorted distribution for which the standard deviation
(i.e., sigma) is scaled up. Next, the failure rate is accurately
estimated from these scaled random samples by using an ana-
lytical model derived from the theorem of “soft maximum.” Our
proposed SSS method can simultaneously estimate the rare fail-
ure rates for multiple performances and/or specifications with
only a single set of transistor-level simulations. To quantitatively
assess the accuracy of SSS, we estimate the confidence interval
of SSS based on bootstrap. Several circuit examples designed
in nanoscale technologies demonstrate that the proposed SSS
method achieves significantly better accuracy than the traditional
importance sampling technique when the dimensionality of the
variation space is more than a few hundred.

Index Terms—Importance sampling, Monte Carlo (MC)
analysis, parametric yield, process variation.

I. INTRODUCTION

W ITH aggressive technology scaling, process variation
has become a growing concern for today’s integrated

circuits (ICs) [2]. As a complex IC may integrate numer-
ous circuit components (e.g., millions of static random-access
memory (SRAM) bit-cells in a high-performance microproces-
sor), a rare failure of each component may induce a not-so-rare
failure for the entire system. Therefore, each component must
be designed to be extremely robust to large-scale process vari-
ations. For instance, the failure rate of an SRAM bit-cell
must be less than 10−8–10−6 so that the full microprocessor
system, containing millions of SRAM bit-cells, can achieve
sufficiently high yield [3], [4]. For this reason, efficiently

Manuscript received July 24, 2014; revised November 12, 2014; accepted
February 5, 2015. Date of publication February 20, 2015; date of current
version June 16, 2015. This work was supported by the National Science
Foundation under Contract CCF–1016890 and Contract CCF–1148778. This
paper was presented at the International Conference on Computer-Aided
Design in 2013 [1]. This paper was recommended by Associate
Editor S. K. Lim.

S. Sun and X. Li are with the Department of Electrical and Computer
Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 USA (e-mail:
shupengs@ece.cmu.edu).

H. Liu is with the Cadence Design Systems, Inc., Pittsburgh,
PA 15238 USA.

K. Luo is with the Cadence Design Systems, Inc., Beijing 100080, China.
B. Gu is with the Cadence Design Systems, Inc., Austin, TX 78759 USA.
Color versions of one or more of the figures in this paper are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TCAD.2015.2404895

simulating the rare failure events for circuit components and
accurately estimating their failure rates is an important task
for the IC design community.

To address this issue, a large number of statistical algo-
rithms and methodologies have been developed [5]–[15]. Most
of these traditional methods focus on failure rate estimation for
SRAM bit-cells that consist of few (e.g., 6–10) transistors. In
these cases, only a small number of (e.g., 6–20) independent
random variables are used to model process variations and,
hence, the corresponding variation space is low-dimensional.
However, several recent trends suggest us to revisit the afore-
mentioned assumption of low-dimensional variation space.

1) Dynamic SRAM Bit-Cell Stability Related to
Peripherals: It has been demonstrated that dynamic
SRAM bit-cell stability depends not only on the bit-
cell itself but also on its peripherals (e.g., other bit-cells
connected to the same bit-line) [17]. Hence, a large num-
ber of transistors from multiple SRAM bit-cells and
their peripherals must be considered to simulate the
dynamic stability. As a result, many independent ran-
dom variables must be used to model process variations,
including device mismatches, for these transistors.

2) Rare Failure Events for NonSRAM Circuits: In addition
to SRAM bit-cells, a complex IC system may contain
a large number of other circuit components that must
be designed with extremely low failure rates. Taking
D flip-flop (DFF) as an example, it typically contains
about 20 transistors [18] and the random mismatch of
a single transistor is often modeled by 10–40 inde-
pendent random variables at an advanced technology
node. Hence, the total number of independent ran-
dom variables can easily reach a few hundred for DFF
analysis.

The combination of these recent trends renders a
high-dimensional variation space that cannot be efficiently
handled by most traditional techniques. It, in turn, poses an
immediate need of developing a new CAD tool to accurately
capture rare failure events in a high-dimensional variation
space with low computational cost.

In this paper, we propose a novel scaled-sigma
sampling (SSS) method to estimate the rare failure rate
in a high-dimensional variation space. SSS is particu-
larly developed to address the following two fundamental
questions: 1) how to efficiently draw random samples from
the rare failure region and 2) how to estimate the rare failure
rate based on these random samples. Unlike the brute-force
Monte Carlo (MC) analysis [22] that directly samples the
variation space and therefore only few samples fall into the

0278-0070 c© 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

SUN et al.: FAST STATISTICAL ANALYSIS OF RARE CIRCUIT FAILURE EVENTS VIA SSS FOR HIGH-DIMENSIONAL VARIATION SPACE 1097

failure region, SSS draws random samples from a distorted
probability density function (PDF) for which the standard
deviation (i.e., sigma) is scaled up. Conceptually, it is
equivalent to increasing the magnitude of process variations.
As a result, a large number of samples can now fall into the
failure region.

Once the distorted random samples are generated,
an analytical model derived from the theorem of soft
maximum [23] is optimally fitted by applying maximum likeli-
hood estimation (MLE). Next, the failure rate can be efficiently
estimated from the fitted model. While most traditional tech-
niques (e.g., importance sampling) become inefficient as the
dimensionality increases, our proposed SSS approach does
not suffer from such a dimensionality problem, as will be
explained in the technical sections of this paper.

In addition, to make SSS of practical utility, several impor-
tant implementation issues are further studied. First, a heuristic
approach is developed to simultaneously estimate the fail-
ure rates for multiple performances and/or specifications by
extracting the information from the same set of transistor-level
simulations. Note that most traditional techniques (e.g., impor-
tance sampling) must repeatedly run different transistor-level
simulations once the performance or its specification is
changed, thereby resulting in extremely expensive simulation
cost. From this point of view, SSS can efficiently facilitate
circuit designers to explore the trade-offs between the spec-
ification setup and the failure rate for multiple performance
metrics.

Second, to quantitatively assess the accuracy of SSS,
we estimate the confidence interval of SSS based on
bootstrap [20]. Our numerical experiments in Section VI
demonstrate that the bootstrap method can accurately evalu-
ate the estimation error for SSS, while the confidence interval
estimated by the traditional minimum-norm importance sam-
pling (MNIS) approach [11] is highly inaccurate and may
misguide the circuit designer in practice.

The remainder of this paper is organized as follows. In
Section II, we briefly review the background of rare fail-
ure event analysis. Next, we propose the SSS method for
Gaussian random variables in Section III and then extend
SSS to handle both Gaussian and uniform random variables
in Section IV. Several implementation issues are discussed
in detail in Section V. The efficacy of SSS is demonstrated
by a number of circuit examples in Section VI. Finally, we
conclude this paper in Section VII.

II. BACKGROUND

In a commercial process design kit, a set of inde-
pendent random variables following Gaussian and/or uni-
form distributions are often defined. The device parame-
ters (e.g., VTH, TOX, W, L, etc.) are modeled as functions
of these independent random variables to capture process
variations. The mapping from the independent random vari-
ables to the device parameters is often nonlinear. Hence,
even though the independent random variables are Gaussian
and/or uniform, the device parameters may follow other dis-
tributions (e.g., Poisson distribution, log-normal distribution,
etc.), depending on the nonlinear mapping. Suppose that the
M-dimensional vector

x = [x1 x2 · · · xM]T (1)

contains all independent random variables with the joint PDF
f (x). The failure rate of a circuit can be mathematically
represented as

Pf =
∫

�

f (x) · dx (2)

where � denotes the failure region in the variation space,
i.e., the subset of the variation space where the performance
of interest does not meet the specification. Alternatively, the
failure rate in (2) can be defined as

Pf =
∫ +∞

−∞
I(x) · f (x) · dx (3)

where I(x) represents the indicator function

I(x) =
{

1 x ∈ �

0 x /∈ �.
(4)

A. MC Analysis

The failure rate Pf can be estimated by a brute-force MC
analysis. The key idea is to draw N random samples from f (x),
and then compute the mean of the indicator function I(x) based
on these samples

PMC
f = 1

N
·

N∑
n=1

I
[
x(n)

]
(5)

where x(n) is the nth random sample. The variance of the
estimator PMC

f in (5) can be approximated as [21]

vMC
f = PMC

f ·
(

1 − PMC
f

)/
N. (6)

When MC is applied to estimate Pf that is extremely small
(e.g., 10−8–10−6), most random samples drawn from the PDF
f (x) do not fall into the failure region �. Therefore, a large
number of (e.g., 107–109) samples are needed to accurately
estimate Pf . Note that each MC sample is created by run-
ning an expensive transistor-level simulation. In other words,
107–109 simulations must be performed in order to collect
107–109 samples. It, in turn, implies that MC can be extremely
expensive for our application of rare failure rate estimation.

B. Kernel Density Estimation

Without loss of generality, we consider a performance func-
tion y(x), where y is the performance of interest. If y is
continuous, we can estimate Pf defined in (2) by kernel den-
sity estimation (KDE). To clearly understand KDE, we first
rewrite Pf in (2) as

Pf =
∫

D
ρ(y) · dy (7)

where ρ(y) denotes the PDF of y and D denotes the fail-
ure region in the performance space, i.e., the subset of the
performance space where y does not meet its specification.
Unlike the failure region � that is often unknown in the vari-
ation space, D is explicitly specified by the circuit designer in
advance. For instance, consider a simple circuit example where
the delay of a sense amplifier is our performance of interest.
Namely, the performance y is the delay from the input to the
output of the sense amplifier. If y is larger than a predefined
value Delayspec, the sense amplifier is considered as “FAIL.”

1098 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 7, JULY 2015

In this example, we can easily determine the failure region D
as (Delayspec,+∞).

To calculate Pf from (7), we need to know ρ(y), which is,
unfortunately, not known in advance. The objective of KDE
is to estimate ρ(y). To this end, we first draw N random
samples {x(n); n = 1, 2, . . . , N} from the PDF f (x). After run-
ning transistor-level simulations, we obtain the corresponding
performance values

y =
[
y(1) y(2) · · · y(N)

]T
(8)

where y(n) denotes the performance value associated with the
nth random sample x(n). Based on the idea of MLE, KDE
approximates the PDF ρ(y) as [19]

ρ∗(y) = 1

N
·

N∑
n=1

1

h
· K

[
y − y(n)

h

]
(9)

where h is the kernel bandwidth that controls the smoothness
of the estimator ρ∗(y) and K(•) is the kernel function. In gen-
eral, it is nontrivial to find the optimal h and K(•) without
knowing the actual PDF of y, i.e., ρ(y). However, we can
often take advantage of our knowledge about the performance
of interest to appropriately choose h and K(•) in practice. For
example, if ρ(y) approximately follows a Gaussian distribu-
tion, K(•) can be chosen as a Gaussian PDF with the optimal
h as [19]:

hOPT = (4/3)1/5 · σy · N−1/5 (10)

where σy is the standard deviation of y.
Once the PDF ρ∗(y) in (9) is obtained, an estimator PKDE

f
can be built to estimate the failure rate Pf in (7)

PKDE
f =

∫
D

ρ∗(y) · dy. (11)

The variance of the estimator PKDE
f in (11) can be estimated

by bootstrap [20]. The key idea of bootstrap is to construct
a number of (i.e., NBoot) datasets {yn; n = 1, 2, . . . , NBoot}
with the same size, where each dataset is obtained by ran-
domly sampling the vector y. For each dataset, (9) and (11) are
used to calculate the corresponding failure rate PKDE(n)

f . Once

{PKDE(n)
f ; n = 1, 2, . . . , NBoot} are available, the variance of

{PKDE(n)
f ; n = 1, 2, . . . , NBoot} is calculated and considered as

the variance of the estimator PKDE
f in (11).

Unlike the MC analysis in (5) that only relies on the infor-
mation that whether the performance of interest meets the
predefined specification (i.e., “PASS” or “FAIL”), KDE takes
into account the continuous performance value when estimat-
ing the failure rate by (9) and (11). Intuitively speaking, KDE
explores the extra information from the performance values
and, therefore, can provide better accuracy than MC when the
number of samples (i.e., N) is small.

Finally, we should make two important clarifications about
the aforementioned KDE method. First, the performance y
must be continuous. Otherwise, KDE may not be accurate
because it assumes a smooth and continuous PDF for y.
Second, to accurately estimate Pf by (11), we need to col-
lect a number of random samples sitting in the failure region
(i.e., D). As explained in Section II-A, generating a fail-
ure sample is extremely expensive for our application of

rare failure rate estimation. Hence, directly applying KDE to
rare failure rate estimation is not appropriate. Instead, KDE
can be efficiently applied if and only if the failure rate is
sufficiently large.

C. Importance Sampling

To reduce the computational cost, several statistical algo-
rithms based on importance sampling have been proposed
in [5], [8], [11], [13], and [15]. The key idea is to sample
a distorted PDF g(x), instead of the original PDF f (x), so
that most random samples fall into the failure region �. Here,
g(x) is positive for all x in �. In this case, the failure rate can
be expressed as

Pf =
∫ +∞

−∞
I(x) · f (x)

g(x)
· g(x) · dx. (12)

If N random samples {x(n); n = 1, 2, . . . , N} are drawn
from g(x), the failure rate in (12) can be approximated by

PIS
f = 1

N
·

N∑
n=1

f
[
x(n)

]
· I
[
x(n)

]/
g
[
x(n)

]
. (13)

When a finite number of samples are available, the results
from (5) and (13) can be substantially different. If g(x) is prop-
erly chosen for importance sampling, PIS

f in (13) can be much
more accurate than PMC

f in (5). Theoretically, the optimal g(x)
leading to maximum estimation accuracy is defined as

gOPT(x) = f (x) · I(x)/Pf . (14)

Intuitively, if gOPT(x) is applied, PIS
f in (13) becomes a con-

stant with zero variance. Therefore, the failure rate can be
accurately estimated by PIS

f with very few samples.
Equation (14) implies that the optimal PDF gOPT(x) is

nonzero if and only if the variable x sits in the failure region.
We should directly sample the failure region to achieve max-
imum accuracy. Furthermore, gOPT(x) is proportional to the
original PDF f (x). In other words, the entire failure region
should not be sampled uniformly. Instead, we should sam-
ple the high-probability failure region that is most likely
to occur.

Applying importance sampling, however, is not trivial in
practice. The optimal PDF gOPT(x) in (14) cannot be eas-
ily found, since the indicator function I(x) is unknown. Most
existing importance sampling methods attempt to approximate
gOPT(x) by applying various heuristics. The key idea is to first
search the high-probability failure region and then a distorted
PDF g(x) is constructed to directly draw random samples from
such a high-probability failure region.

While the traditional importance sampling methods have
been successfully applied to low-dimensional problems
(e.g., 6–20 random variables), they remain ill-equipped to
efficiently explore the high-dimensional variation space
(e.g., 102–103 random variables) that is of great importance
today. One major bottleneck lies in the high computational
cost of the search algorithm, as it cannot easily find the
high-probability failure region in a high-dimensional varia-
tion space. Such a computational cost issue is most pro-
nounced, when the failure region of interest has a complicated
(e.g., nonconvex or even discontinuous) shape. To the best of

SUN et al.: FAST STATISTICAL ANALYSIS OF RARE CIRCUIT FAILURE EVENTS VIA SSS FOR HIGH-DIMENSIONAL VARIATION SPACE 1099

our knowledge, there is no existing algorithm that can be gen-
erally applied to efficiently search a high-dimensional variation
space. It, in turn, motivates us to develop a new approach in
this paper to solve such high-dimensional problems.

III. SSS FOR GAUSSIAN DISTRIBUTION

In general, x may be modeled as a number of possible
probability distributions such as Gaussian distribution, uni-
form distribution, etc. In this section, we describe SSS for
Gaussian distribution. Namely, the random variable x fol-
lows a multivariate Gaussian distribution. In the next section,
we will further extend SSS to “Gaussian-uniform” distribu-
tion where the random variables {xm; m = 1, 2, . . . , M} are
mutually independent, a subset of these random variables
follow the standard Gaussian distributions and the other ran-
dom variables are uniformly distributed. Such a multivariate
Gaussian-uniform distribution has been used in many process
design kits today.

Without loss of generality, we assume that the random vari-
ables {xm; m = 1, 2, . . . , M} in the vector x are mutually
independent and follow standard Gaussian distributions:

f (x) =
M∏

m=1

[
1√
2π

· exp

(
−x2

m

2

)]
= exp

(−‖x‖2
2/2

)
(√

2π
)M (15)

where ‖ • ‖2 denotes the L2-norm of a vector. Any correlated
random variables that are jointly Gaussian can be transformed
to the independent random variables {xm; m = 1, 2, . . . , M}
by principal component analysis [22].

Unlike the traditional importance sampling methods that
must explicitly identify the high-probability failure region,
SSS takes a completely different strategy to address the fol-
lowing two fundamental questions: 1) how to efficiently draw
random samples from the high-probability failure region and
2) how to estimate the failure rate based on these random
samples. In what follows, we will derive the mathematical
formulation of SSS for Gaussian distribution and highlight its
novelties.

A. Statistical Sampling

For the application of rare failure rate estimation, f (x)
in (15) is often extremely small for a random sample x inside
the failure region. It implies that the failure region is faraway
from the origin x = 0, as shown in Fig. 1(a). Since the failure
rate is extremely small, MC cannot efficiently draw random
samples from the failure region. Namely, many MC samples
cannot reach the tail of f (x).

In this paper, we apply a simple idea to address the
aforementioned sampling issue. Given f (x) in (15) for the
M-dimensional random variable x, we scale up the standard
deviation of x by a scaling factor s (s > 1), yielding the
following distribution:

g(x) =
M∏

m=1

[
1√
2πs

· exp

(
− x2

m

2s2

)]
= exp

(−‖x‖2
2/2s2

)
(√

2π
)M

sM
.

(16)

Once the standard deviation of x is increased by a factor of s,
we conceptually increase the magnitude of process variations.

Fig. 1. Proposed SSS method for Gaussian distribution is illustrated by a
2-D example where the gray area � denotes the failure region and the circles
represent the contour lines of the PDF. (a) Rare failure events occur at the
tail of the original PDF f (x) and the failure region is faraway from the origin
x = 0. (b) Scaled PDF g(x) widely spreads over a large region and the scaled
samples are likely to reach the faraway failure region.

Hence, the scaled PDF g(x) widely spreads over a large region
and the probability for a random sample to reach the faraway
failure region increases, as shown in Fig. 1(b).

From an alternative viewpoint, the original random vari-
ables {xm; m = 1, 2, . . . , M} follow the independent standard
Gaussian distributions defined in (15). If we scale each of
them (say, xm) by a factor of s, the scaled random variables
{s · xm; m = 1, 2, . . . , M} follow g(x) in (16). Therefore,
when sampling g(x), we can first draw random samples from
f (x) and then scale each random sample by a factor of s. As
a result, the scaled samples will move faraway from the ori-
gin x = 0 and are likely to reach the failure region, as shown
in Fig. 1(b).

On the other hand, it is important to note that the mean of
g(x) remains 0, which is identical to the mean of f (x). Hence,
for a given sampling location x, the likelihood defined by g(x)
remains inversely proportional to the length of the vector x
(i.e., ‖x‖2). Namely, it is more (or less) likely to reach the
sampling location x, if the distance between the location x and
the origin 0 is smaller (or larger). It, in turn, implies that the
high-probability failure region associated with f (x) remains the
high-probability failure region after the PDF is scaled to g(x),
as shown in Fig. 1(a) and (b). Scaling the PDF from f (x)
to g(x) does not change the location of the high-probability
failure region. Instead, it only makes the failure region easy
to sample.

Once the scaled random samples are drawn from g(x)
in (16), we need to further estimate Pf defined in (3). Since
g(x) and f (x) are different, we cannot simply average the ran-
dom samples generated by g(x) to calculate Pf defined by
f (x). A major contribution of this paper is to derive an analyt-
ical model to accurately estimate the failure rate Pf from the
scaled random samples, as will be discussed in detail in the
next section.

B. Failure Rate Estimation

Given N random samples {x(n); n = 1, 2, . . . , N} drawn
from g(x) in (16), one straightforward way to estimate Pf is
based upon the theory of importance sampling. Namely, since
the random samples are generated by g(x) that is different
from f (x), we can estimate the failure rate Pf by calculating

1100 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 7, JULY 2015

the average of f (x) · I(x)/g(x), as shown by the estimator PIS
f

in (13).
Such a simple approach, however, does not result in an accu-

rate failure rate, if the dimensionality of the variation space
(i.e., M) is large. To understand the reason, let us calculate the
variance of the importance sampling estimator PIS

f in (13)

var
(

PIS
f

)
= var

{
1

N
·

N∑
n=1

f
[
x(n)

]
· I
[
x(n)

]/
g
[
x(n)

]}
(17)

where var(•) denotes the variance of a random variable. Since
{x(n); n = 1, 2, . . . , N} are independently drawn from g(x)
in (16), (17) can be rewritten as

var
(

PIS
f

)
= var

[
f (x) · I(x)

/
g(x)

]/
N. (18)

In (18), var[f (x).I(x)/g(x)] can be expressed as [21]

var
[
f (x) · I(x)/g(x)

] = E
{[

f (x) · I(x)/g(x)
]2}

− {
E
[
f (x) · I(x)/g(x)

]}2 (19)

where E(•) denotes the expected value of a random variable.
We can rewrite (19) as

var
[
f (x) · I(x)/g(x)

] =
∫ +∞

−∞
f 2(x)

g2(x)
· I2(x) · g(x) · dx

−
[∫ +∞

−∞
f (x)

g(x)
· I(x) · g(x) · dx

]2

=
∫ +∞

−∞
f 2(x)

g(x)
· I(x) · dx

−
[∫ +∞

−∞
f (x) · I(x) · dx

]2

. (20)

Based on (3), (20) can be simplified as

var
[
f (x) · I(x)/g(x)

] =
∫ +∞

−∞
f 2(x)

g(x)
· I(x) · dx − P2

f . (21)

Since |I(x)| is less than or equal to 1, (21) is bounded by

var
[
f (x) · I(x)/g(x)

] ≤
∫ +∞

−∞
f 2(x)

g(x)
· dx − P2

f . (22)

At the right-hand side of (22), Pf is the failure rate
and, hence, the second term (i.e., Pf

2) is a constant. Based
on (15) and (16), the first term at the right-hand side of (22)
can be calculated as

∫ +∞

−∞
f 2(x)

g(x)
· dx = sM

(√
2 · π

)M ·
∫ +∞

−∞
exp

[
−
(
2 · s2 − 1

)
2 · s2

· x2

]
· dx

=
[
s4
/(

2 · s2 − 1
)]M/2

. (23)

Based on (18), (22), and (23), we have

var
(

PIS
f

)
≤
{[

s4
/(

2 · s2 − 1
)]M/2 − P2

f

}/
N. (24)

Equation (24) shows that the upper bound of the vari-
ance of the estimator PIS

f exponentially increases with the
dimensionality M when s is greater than 1. It, in turn,
implies that the variance of PIS

f can be prohibitively large in

a high-dimensional variation space. It is equivalent to say-
ing that the estimator PIS

f based on importance sampling
may not be sufficiently accurate when the variation space is
high-dimensional. It does not fit our need of high-dimensional
failure rate estimation in this paper.

Instead of relying on the theory of importance sampling,
our proposed SSS method attempts to estimate the failure rate
Pf from a completely different avenue. We first take a look at
the “scaled” failure rate corresponding to the scaled PDF g(x)

Pg =
∫ +∞

−∞
I(x) · g(x) · dx. (25)

Our objective is to study the relation between the scaled
failure rate Pg in (25) and the original failure rate Pf in (3).
Toward this goal, we partition the M-dimensional variation
space into a large number of identical hyper-rectangles with
the same volume and the scaled failure rate Pg in (25) can be
approximated as

Pg ≈
∑

k

I
[
x(k)

]
· g
[
x(k)

]
· �x (26)

where x(k) represents the center of the kth hyper-rectangle and
�x denotes the volume of a hyper-rectangle. The approxima-
tion in (26) is accurate, if each hyper-rectangle is sufficiently
small. Given (4), (26) can be rewritten as

Pg ≈
∑
k∈�

g
[
x(k)

]
· �x (27)

where {k; k ∈ �} represents the set of all hyper-rectangles
that fall into the failure region. Substituting (16) into (27), we
have

Pg ≈ �x(√
2π
)M

sM
·
∑
k∈�

exp

[
−
∥∥∥x(k)

∥∥∥2

2

/
2s2
]
. (28)

Taking the logarithm on both sides of (28) yields

log Pg ≈ log
�x(√
2π
)M − M · log s + lse

k∈�

[
−
∥∥∥x(k)

∥∥∥2

2

/
2s2
]

(29)

where

lse
k∈�

[
−
∥∥∥x(k)

∥∥∥2

2

/
2s2
]

= log

{∑
k∈�

exp

[
−
∥∥∥x(k)

∥∥∥2

2

/
2s2
]}

(30)

stands for the log-sum-exp function. The function lse(•)
in (30) is also known as the soft maximum from the
mathematics [23]. It can be bounded by

max
k∈�

[
−
∥∥∥x(k)

∥∥∥2

2

/
2s2
]

+ log(T) ≥ lse
k∈�

[
−
∥∥∥x(k)

∥∥∥2

2

/
2s2
]

≥ max
k∈�

[
−
∥∥∥x(k)

∥∥∥2

2

/
2s2
]

(31)

where T denotes the total number of hyper-rectangles in �.
To clearly understand (31), let us consider two extreme

cases. First, let us assume that all the hyper-rectangles {x(k);
k ∈ �} have the same distance to the origin 0. In this case, the
function lse(•) reaches its upper bound in (31). Second, we
assume that only one hyper-rectangle in the set {x(k); k ∈ �}
is close to the origin 0, and all other hyper-rectangles are

SUN et al.: FAST STATISTICAL ANALYSIS OF RARE CIRCUIT FAILURE EVENTS VIA SSS FOR HIGH-DIMENSIONAL VARIATION SPACE 1101

faraway from the origin 0. In this case, the function lse(•)
reaches its lower bound in (31). For our application of rare
failure event analysis, however, these two ideal cases rarely
occur. Therefore, we cannot simply use the lower or upper
bound in (31) to approximate the function lse(•) in (30).

In general, there exist a number of (say, T0) dominant
hyper-rectangles that are much closer to the origin 0 than
other hyper-rectangles in the set {x(k); k ∈ �}. Without loss of
generality, we assume that the first T0 hyper-rectangles {x(k);
k = 1, 2, . . . , T0} are dominant. Hence, we can approximate
the function lse(•) in (30) as

lse
k∈�

[
−
∥∥∥x(k)

∥∥∥2

2

/
2s2
]

≈ log

{ T0∑
k=1

exp

[
−
∥∥∥x(k)

∥∥∥2

2

/
2s2
]}

. (32)

We further assume that these dominant hyper-rectangles
{x(k); k = 1, 2, . . . , T0} have similar distances to the origin 0.
Thus, (32) can be approximated by

lse
k∈�

[
−
∥∥∥x(k)

∥∥∥2

2

/
2s2
]

≈ max
k∈�

[
−
∥∥∥x(k)

∥∥∥2

2

/
2s2
]

+ log(T0). (33)

Substituting (33) into (29) yields

log Pg ≈ α + β · log s + γ /s2 (34)

where

α = log

[
�x
/(√

2π
)M
]

+ log(T0) (35)

β = −M (36)

γ = max
k∈�

[
−
∥∥∥x(k)

∥∥∥2

2

/
2

]
. (37)

Equation (34) reveals the important relation between the
scaled failure rate Pg and the scaling factor s. The approxi-
mation in (34) does not rely on any specific assumption of
the failure region. It is valid, even if the failure region is
nonconvex or discontinuous.

While (35)–(37) show the theoretical definition of the model
coefficients α, β, and γ , finding their exact values is not
trivial. For instance, the coefficient γ is determined by the
hyper-rectangle that falls into the failure region � and is
closest to the origin x = 0. In practice, without knowing
the failure region �, we cannot directly find out the value
of γ . For this reason, we propose to determine the analyt-
ical model in (34) by linear regression. Namely, we first
estimate the scaled failure rates {Pg,q; q = 1, 2, . . . , Q} by
setting the scaling factor s to a number of different val-
ues {sq; q = 1, 2, . . . , Q}. As long as the scaling factors
{sq; q = 1, 2, . . . , Q} are sufficiently large, the scaled failure
rates {Pg,q; q = 1, 2, . . . , Q} are large and can be accurately
estimated with a small number of random samples. Next, the
model coefficients α, β, and γ are fitted by linear regres-
sion for the model template in (34) based on the values of
{(sq, Pg,q); q = 1, 2, . . . , Q}. Once α, β, and γ are known, the
original failure rate Pf in (3) can be predicted by extrapolation.
Namely, we substitute s = 1 into the analytical model in (34)

log PSSS
f = α + γ (38)

where PSSS
f denotes the value of Pf estimated by SSS.

Applying the exponential function to both sides of (38), we
have

PSSS
f = exp(α + γ). (39)

While the aforementioned discussions reveal the theoretical
framework of the proposed SSS method, a number of imple-
mentation issues must be carefully studied to make SSS of
practical utility. These implementation details will be further
discussed in Section V.

IV. SSS FOR GAUSSIAN-UNIFORM DISTRIBUTION

In Section III, we assume that all random variables in x are
mutually independent and follow the standard Gaussian dis-
tributions after applying principal component analysis. Such
an assumption, however, may not always hold for today’s
nanoscale IC technologies. Namely, {xm; m = 1, 2, . . . , M}
may be modeled as other probability distributions (e.g., uni-
form distribution, etc.) in many practical applications.

In this section, we further extend SSS to Gaussian-uniform
distribution. Without loss of generality, we rewrite x as

x =
[

xG
xU

]
(40)

where the vector xG = [xG,1xG,2, . . . , xG,MG]T includes MG
random variables following the standard Gaussian distribu-
tions, and the vector xU = [xU,1xU,2, . . . , xU,MU]T includes
MU random variables following the uniform distributions, and
M = MG + MU is the total number of these random vari-
ables. Since all random variables in the vector x are mutually
independent, we can express the joint PDF as

f (x) = fg(xG) · fu(xU) (41)

fg(xG) =
MG∏

m=1

[
1√
2π

· exp

(
−x2

G,m

2

)]
= exp

(−‖xG‖2
2

/
2
)

(√
2π
)MG

(42)

fu(xU) =
MU∏
m=1

(
1

um − lm

)
· I
(

xU,m
∣∣lm, um

)
(43)

where lm and um denote the lower and the upper bounds
of the mth uniform random variable xU,m in the vector
xU respectively, and I(xU,m|lm, um) represents the indicator
function

I
(

xU,m
∣∣lm, um

) =
{

1 lm ≤ xU,m ≤ um
0 else (m = 1, 2, . . . , MU).

(44)

From (41) to (44), we can see that f (x) is nonzero if and
only if x belongs to the following set
:

 =
{

x

∣∣∣∣ xG,i ∈ (−∞,+∞), i = 1, 2, . . . , MG
xU,j ∈ [lj, uj

]
, j = 1, 2, . . . , MU

}
. (45)

Hence, the random samples drawn from f (x) must belong
to
.

Similar to Section III, we need to answer the fol-
lowing two fundamental questions when applying SSS to
Gaussian-uniform distribution: 1) how to efficiently draw ran-
dom samples from the high-probability failure region given
the PDF f (x) defined in (41) and 2) how to estimate the fail-
ure rate based on these random samples. The answers to these
questions will be explained in the following sections.

1102 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 7, JULY 2015

A. Statistical Sampling

In this section, we focus on the failure region � that sits
inside the set
 where
 is defined by (45). For any location
x outside the set
, the probability of reaching x is zero and,
hence, it does not contribute to the failure rate of interest. Due
to this reason, we consider the failure region � as a subset
of
. For any random sample x = [xG; xU] falling into the
failure region �, the uniform PDF fu(xU) is constant while the
Gaussian PDF fg(xG) can be extremely small. In other words,
the failure event occurs at the tail of fg(xG). To efficiently draw
random samples from the high-probability failure region, we
apply the idea of SSS to the Gaussian random variable xG.
Namely, we scale up the standard deviation of fg(xG) by a fac-
tor of s(s > 1), while keeping fu(xU) unchanged. It, in turn,
results in the following scaled PDF:

g(x) = gg(xG) · fu(xU) (46)

gg(xG) = exp
(
−‖xG‖2

2

/
2s2
)/[(√

2π
)MG · sMG

]
(47)

where fu(xU) is defined in (43). By sampling the scaled PDF
g(x) in (46), we can now reach the failure region � easily and
a large number of random samples should sit inside �.

Since we assume that all random variables in x are mutually
independent, we can draw random samples from the Gaussian
and uniform distributions separately and then combine them
together to form the random samples for the scaled PDF
g(x) in (46). In what follows, we will further discuss how
to accurately estimate Pf in (3) based on these scaled random
samples.

B. Failure Rate Estimation

To derive the analytical model for failure rate estima-
tion of Gaussian-uniform distribution, we follow the same
idea presented in Section III-B. Namely, we partition the
M-dimensional variation space into a large number of small
hyper-rectangles and the scaled failure rate Pg in (25) is
approximated as (27). Substituting (46) into (27), we have

Pg ≈
∑
k∈�

g
[
x(k)

]
· �x =

∑
k∈�

gg

[
x(k)

G

]
· fu
[
x(k)

U

]
· �x (48)

where x(k) = [x(k)
G ; x(k)

U] denotes the center of the kth
hyper-rectangle. Substituting (43) and (47) into (48) yields

Pg ≈
∑
k∈�

exp

[
−
∥∥∥x(k)

G

∥∥∥2

2

/
2s2
]

· �x ·∏MU
m=1 I

(
x(k)

U,m

∣∣∣lm, um

)
(√

2π
)MG · sMG ·∏MU

m=1(um − lm)

(49)

where x(k)
U,m represents the mth uniform random variable in

x(k)
U = [x(k)

U,1x(k)
U,2, . . . , x(k)

U,MU]T .
Since the failure region � is inside the set
, the indi-

cator functions {I(x(k)
U,m|lm, um); m = 1, 2, . . . , MU, k ∈ �}

in (49) are all equal to 1. Therefore, (49) can be further
simplified as

Pg ≈ �x(√
2π
)MG · sMG ·∏MU

m=1(um − lm)

×
∑
k∈�

exp

[
−
∥∥∥x(k)

G

∥∥∥2

2

/
2s2
]
. (50)

By following the mathematical analysis described in
Section III-B, we can approximate (50) as:

log Pg ≈ α + β · log s + γ
/

s2 (51)

where

α = log

{
�x
/[(√

2π
)MG ·

MU∏
m=1

(um − lm)

]}
+ log(T0)

(52)

β = −MG (53)

γ = max
k∈�

[
−
∥∥∥x(k)

G

∥∥∥2

2

/
2

]
. (54)

In (52), T0 denotes the number of dominant
hyper-rectangles in the set {x(k)

G ; k ∈ �}.
The analytical model in (51) for Gaussian-uniform distri-

bution is identical to that in (34) for Gaussian distribution.
Similar to the Gaussian distribution case, we first estimate
the scaled failure rates {Pg,q; q = 1, 2, . . . , Q} by setting
the scaling factor s to a number of different values {sq; q =
1, 2, . . . , Q}. Next, the model coefficients α, β, and γ are fit-
ted by linear regression based on {(sq, Pg,q); q = 1, 2, . . . , Q}.
Once α, β, and γ are known, the failure rate Pf in (3) can be
predicted by using (39).

In summary, if both Gaussian and uniform distributions are
used to model process variations, we only scale up the stan-
dard deviation of the Gaussian distribution without changing
the uniform distribution. The failure rate Pf in (3) is then esti-
mated by fitting an analytical model. The model fitting scheme
is identical to what is described for Gaussian distribution in
Section III.

Finally, it is important to mention that the SSS method
presented in this section can only handle a special class of
non-Gaussian distribution where all random variables in x
are mutually independent, a subset of these random variables
are Gaussian random variables and the other random vari-
ables are uniformly distributed. How to extend SSS to other
non-Gaussian distributions remains an open question and will
be further studied in our future research.

V. IMPLEMENTATION DETAILS

To make the proposed SSS method of practical utility,
a number of efficient algorithms are further studied in this
section, including: 1) model fitting via MLE [22]; 2) confi-
dence interval estimation via bootstrap [20]; and 3) simulta-
neous failure rate estimation for multiple performances and/or
specifications. Since the aforementioned algorithms can be
generally applied to both Gaussian and Gaussian-uniform
distributions, we will not explicitly distinguish these two dif-
ferent cases when discussing the implementation details in this
section.

A. Model Fitting via MLE

While the basic idea of SSS has been illustrated in
Sections III and IV, we will develop a statistically optimal
algorithm to implement it in this section. Our goal is to
determine the MLE for the model coefficients α, β, and γ

in (34) and (51). The MLE solution can be solved from an
optimization problem and it is considered to be statistically
optimal for a given set of random samples.

SUN et al.: FAST STATISTICAL ANALYSIS OF RARE CIRCUIT FAILURE EVENTS VIA SSS FOR HIGH-DIMENSIONAL VARIATION SPACE 1103

Without loss of generality, we assume that Nq scaled random
samples {x(n); n = 1, 2, . . . , Nq} are collected for the scaling
factor sq. The scaled failure rate Pg,q can be estimated by MC

PMC
g,q = 1

Nq
·

Nq∑
n=1

I
[
x(n)

]
(55)

where I(x) is the indicator function defined in (4). The variance
of the estimator PMC

g,q in (55) can be approximated as [21]

vMC
g,q = PMC

g,q ·
(

1 − PMC
g,q

)/
Nq. (56)

If the number of samples Nq is sufficiently large, the esti-
mator PMC

g,q in (55) follows a Gaussian distribution according
to the central limit theorem [21]:

PMC
g,q ∼ Gauss

(
Pg,q, vMC

g,q

)
(57)

where Pg,q denotes the actual failure rate corresponding to the
scaling factor sq.

If the performance of interest is continuous, we can apply
KDE to estimate the scaled failure rate Pg,q, and then use
bootstrap to evaluate the variance of the KDE estimator, as
discussed in Section II-B. Here, we use PKDE

g,q to denote the
estimated Pg,q by KDE and vKDE

g,q to denote the variance of
PKDE

g,q . Similar to the estimator PMC
g,q in (57), PKDE

g,q also approx-
imately follows a normal distribution when the number of
samples Nq is sufficiently large:

PKDE
g,q ∼ Gauss

(
Pg,q, vKDE

g,q

)
. (58)

In what follows, we will assume that the estimator PMC
g,q

is applied to estimate the scaled failure rate in order to sim-
plify our notation. If KDE is applied, we can simply replace
PMC

g,q and vMC
g,q with PKDE

g,q and vKDE
g,q respectively, and the math-

ematical equations shown in the rest of this section should
still hold.

Note that the model template in (34) and (51) are both
expressed for logPg, instead of Pg. To further derive the
probability distribution for logPMC

g,q , we adopt the first-order
delta method from the statistics community [21]. Namely, we
approximate the nonlinear function log(•) by the first-order
Taylor expansion around the mean value Pg,q of the random
variable PMC

g,q

log PMC
g,q ≈ log Pg,q + PMC

g,q − Pg,q

Pg,q
≈ log Pg,q + PMC

g,q − Pg,q

PMC
g,q

.

(59)

Based on the linear approximation in (59), logPMC
g,q follows

the Gaussian distribution:

log PMC
g,q ∼ Gauss

[
log Pg,q, vMC

g,q

/(
PMC

g,q

)2
]
. (60)

Equation (60) is valid for all scaling factors {sq; q =
1, 2, . . . , Q}. In addition, since the scaled failure rates corre-
sponding to different scaling factors are estimated by inde-
pendent MC simulations, the estimated failure rates {PMC

g,q ;
q = 1, 2, . . . , Q} are mutually independent. Therefore, the
Q-dimensional random variable

log PMC
g =

[
log PMC

g,1 log PMC
g,2 · · · log PMC

g,Q

]T
(61)

satisfies the following jointly Gaussian distribution:

log PMC
g ∼ Gauss

(
μg,�g

)
(62)

where the mean vector μg and the covariance matrix �g are
equal to

μg = [
log Pg,1 log Pg,2 · · · log Pg,Q

]T (63)

�g = diag

⎡
⎢⎣ vMC

g,1(
PMC

g,1

)2
,

vMC
g,2(

PMC
g,2

)2
, . . . ,

vMC
g,Q(

PMC
g,Q

)2

⎤
⎥⎦ (64)

where diag(•) denotes a diagonal matrix.
The diagonal elements of the covariance matrix �g in (64)

can be substantially different. In other words, the accuracy of
{logPMC

g,q ; q = 1, 2, . . . , Q} associated with different scaling
factors {sq; q = 1, 2, . . . , Q} can be different, because the
scaled failure rates {Pg,q; q = 1, 2, . . . , Q} strongly depend
on the scaling factors. In general, we can expect that if the
scaling factor sq is small, the scaled failure rate Pg,q is small
and, hence, it is difficult to accurately estimate logPg,q from
a small number of random samples. For this reason, instead of
equally “trusting” the estimators {logPMC

g,q ; q = 1, 2, . . . , Q},
we must carefully model the “confidence” for each estimator
logPMC

g,q , as encoded by the covariance matrix �g in (64). Such
confidence information will be fully exploited by the MLE
framework to fit a statistically optimal model.

Since the scaled failure rate {Pg,q; q = 1, 2,. . . , Q} follows
the analytical model in (34) and (51), the mean vector μg
in (63) can be rewritten as:

μg = α + β ·

⎡
⎢⎢⎣

log s1
log s2

...

log sQ

⎤
⎥⎥⎦+ γ ·

⎡
⎢⎢⎢⎣

s−2
1

s−2
2
...

s−2
Q

⎤
⎥⎥⎥⎦ = A · � (65)

where

A =

⎡
⎢⎢⎢⎣

1 log s1 s−2
1

1 log s2 s−2
2

...
...

...

1 log sQ s−2
Q

⎤
⎥⎥⎥⎦ (66)

� = [
α β γ

]T
. (67)

Equation (65) implies that the mean value of the Q-
dimensional random variable logPMC

g depends on the model

coefficients α, β, and γ . Given {PMC
g,q ; q = 1, 2, . . . , Q}, the

key idea of MLE is to find the optimal values of α, β, and γ

so that the likelihood of observing {PMC
g,q ; q = 1, 2, . . . , Q} is

maximized.
Because the random variable logPMC

g follows the jointly
Gaussian distribution in (62), the likelihood associated with the
estimated failure rates {PMC

g,q ; q = 1, 2, . . . , Q} is proportional to:

L ∼ exp

[
−1

2

(
log PMC

g − μg

)T · �−1
g ·

(
log PMC

g − μg

)]
.

(68)

Taking the logarithm for (68) yields

log L ∼ −
(

log PMC
g − μg

)T · �−1
g ·

(
log PMC

g − μg

)
. (69)

1104 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 7, JULY 2015

Substituting (65) into (69), we have

log L ∼ −
(

log PMC
g − A · �

)T · �−1
g ·

(
log PMC

g − A · �
)
.

(70)

Note that the log-likelihood logL in (70) depends on the
model coefficients α, β, and γ , because the vector � is com-
posed of these coefficients as shown in (67). Therefore, the
MLE solution of α, β, and γ can be determined by maximizing
the log-likelihood function

maximize
�

−
(

log PMC
g − A · �

)T · �−1
g ·

(
log PMC

g − A · �
)
.

(71)

Since the covariance matrix �g is positive definite, the opti-
mization in (71) is convex. In addition, since the log-likelihood
logL is simply a quadratic function of �, the unconstrained
optimization in (71) can be directly solved by inspecting the
first-order optimality condition [23]

∂

∂�

[
−
(

log PMC
g − A · �

)T · �−1
g ·

(
log PMC

g − A · �
)]

= 2 · AT · �−1
g ·

(
log PMC

g − A · �
)

= 0. (72)

Based on the linear equation in (72), the optimal value of �
can be determined by

� =
(

AT · �−1
g · A

)−1 · AT · �−1
g · log PMC

g . (73)

Studying (73) reveals an important fact that the estimators
{logPMC

g,q ; q = 1, 2, . . . , Q} are weighted by the inverse of the
covariance matrix �g. Namely, if the variance of the estimator
logPMC

g,q is large, logPMC
g,q becomes noncritical when determin-

ing the optimal values of α, β, and γ . In other words, the
MLE framework has optimally weighted the importance of
{logPMC

g,q ; q = 1, 2, . . . , Q} based on the confidence level of
these estimators. Once α, β, and γ are solved by MLE, the
original failure rate Pf can be estimated by (39).

B. Confidence Interval Estimation via Bootstrap

While the MLE algorithm presented in the previous sec-
tion is able to optimally estimate the model coefficients
α, β, and γ , and then predict the failure rate Pf , it remains an
open question how we can quantitatively assess the accuracy
of our SSS method. Since SSS is based upon MC simula-
tion, a natural way for accuracy assessment is to calculate the
confidence interval of the estimator PSSS

f . However, unlike the
traditional estimator where a statistical metric is estimated by
the average of multiple random samples and, hence, the confi-
dence interval can be derived as a closed-form expression, our
proposed estimator PSSS

f is calculated by linear regression with
nonlinear exponential/logarithmic transformation, as shown in
Section V-A. Accurately estimating the confidence interval of
PSSS

f is not a trivial task.
In this paper, we apply bootstrap [20] to address the afore-

mentioned challenge. The key idea of bootstrap is to regenerate
a large number of random samples based on a statistical
model without running additional transistor-level simulations.
These random samples are then used to repeatedly calculate
the value of PSSS

f in (39) for multiple times. Based on these
repeated runs, the statistics (hence, the confidence interval) of
the estimator PSSS

f can be accurately estimated.

In particular, we start from the estimated failure rates {PMC
g,q ;

q = 1, 2, . . . , Q}. Each estimator PMC
g,q follows the Gaussian

distribution in (57). The actual mean Pg,q in (57) is unknown;
however, we can approximate its value by the estimated failure
rate PMC

g,q . Once we know the statistical distribution of PMC
g,q ,

we can resample its distribution and generate NRS sampled

values {PMC(n)
g,q ; n = 1, 2, . . . , NRS}. This resampling idea is

applied to all scaling factors {sq; q = 1, 2, . . . , Q}, thereby

resulting in a large data set {PMC(n)
g,q ; q = 1, 2, . . . , Q, n =

1, 2, . . . , NRS}. Next, we repeatedly run SSS for NRS times and

get NRS different failure rates {PSSS(n)
f ; n = 1, 2, . . . , NRS}.

The confidence interval of PSSS
f can then be estimated from

the statistics of these failure rate values.

C. Multiple Performances and/or Specifications

In many practical applications, circuit designers are inter-
ested in both the overall failure rate considering all perfor-
mance metrics and the individual failure rates corresponding
to individual performance metrics. These performance metrics
may be evaluated by the same transistor-level simulation. For
instance, both the read access time and the dynamic read
margin of the SRAM bit-cell can be assessed from a single
transient simulation [16].

To estimate the failure rates for multiple performances
and/or specifications, most traditional techniques require dif-
ferent sets of transistor-level simulations. Taking importance
sampling as an example, it must draw different random sam-
ples and, hence, run different transistor-level simulations based
on different distorted PDFs, because the high-probability fail-
ure regions associated with different performances and/or
specifications can be completely different. It, in turn, results
in extremely expensive simulation cost.

Our proposed SSS method, however, does not suffer from
such a limitation. Note that we only need to run the transistor-
level simulations with a set of predefined scaling factors once.
When estimating the overall failure rate, we first construct an
equivalent metric (EM). If all performance metrics meet their
design specifications, EM is considered as “PASS.” Otherwise,
EM is considered as “FAIL.” It is easy to see that the fail-
ure rate of EM is equivalent to the overall failure rate of
the circuit. We then calculate the scaled failure rates for EM
based on transistor-level simulations. Once the scaled failure
rates are known, we can further estimate the failure rate of
EM by our proposed flow. Namely, we first fit the model
template in (34) and (51) by MLE and then apply extrapo-
lation to estimate the original failure rate. When analyzing
each individual performance metric, we directly calculate its
scaled failure rates based on the simulation results. The indi-
vidual failure rate is then estimated by our proposed flow.
Note that even though we analyze each performance met-
ric individually, these performance metrics are not necessarily
independent.

There are two important clarifications that should be made.
First, as previously mentioned, the transistor-level simulation
cost often dominates the overall computational cost for failure
rate analysis. Hence, by sharing the transistor-level simula-
tions for multiple performances and/or specifications, we can
substantially reduce the total number of simulation runs and,
hence, the computational cost. It is an extremely attractive
feature offered by the proposed SSS method.

SUN et al.: FAST STATISTICAL ANALYSIS OF RARE CIRCUIT FAILURE EVENTS VIA SSS FOR HIGH-DIMENSIONAL VARIATION SPACE 1105

Algorithm 1 SSS
1. Start from a set of preselected scaling factors {sq; q =

1, 2, . . . , Q}, and H performances and/or specifications
that we want to analyze.

2. For each scaling factor sq where q ∈ {1, 2, . . . , Q},
sample the scaled PDF g(x) in (16) for Gaussian dis-
tribution or (46) for Gaussian-uniform distribution by
setting s = sq, and generate Nq scaled random samples
by running transistor-level simulations.

3. For each h ∈ {1, 2, . . . , H}
4. Calculate the scaled failure rates {PMC

g,q ; q =
1, 2, . . . , Q} by (55) for the hth performance and/or
specification based on the simulation results collected
in Step 2.

5. For each estimator PMC
g,q where q ∈ {1, 2, . . . , Q},

calculate its variance vMC
g,q by (56).

6. Form the Q-dimensional vector logPMC
g by taking the

logarithm for the estimated failure rates {PMC
g,q ; q =

1, 2, . . . , Q}, as shown in (61).
7. Form the diagonal matrix �g in (64) and the matrix

A in (66).
8. Calculate the MLE solution � based on (73), where

the vector � is composed of the model coefficients
α, β, and γ as shown in (67).

9. Approximate the failure rate Pf for the hth per-
formance and/or specification by the estimator PSSS

f
in (39).

10. For each estimator PMC
g,q where q ∈ {1, 2, . . . , Q},

resample the Gaussian distribution in (57) for which
the actual mean Pg,q is approximated by its esti-
mated value PMC

g,q , and generate NRS resampled values

{PMC(n)
g,q ; n = 1, 2, . . . , NRS}.

11. For each data set {PMC(n)
g,q ; q = 1, 2, . . . , Q} where

n ∈ {1, 2, . . . , NRS}, repeat Steps 5–9 to calculate the
failure rate PSSS(n)

f .

12. Based on the data set {PSSS(n)
f ; n = 1, 2, . . . , NRS},

estimate the confidence interval of the estimator PSSS
f .

13. End For

Second, our discussion in this section assumes that multiple
performances can be assessed from the same transistor-level
simulation. In practice, this assumption may not hold for all
performance metrics. However, as long as the same transistor-
level simulation can be shared by a subset of the performances
of interest, our proposed SSS method is able to reduce the
computational cost over other traditional approaches.

D. Summary

Algorithm 1 summarizes the simplified flow of the proposed
SSS algorithm. It assumes that a set of preselected scaling
factors {sq; q = 1, 2, . . . , Q} are already given. In practice,
appropriately choosing these scaling factors is a critical task
due to several reasons. First, if these scaling factors are too
large, the estimator PSSS

f based on extrapolation in (39) would
not be accurate, since the extrapolation point s = 1 is faraway
from the selected scaling factors. Second, if the scaling factors
are too small, the scaled failure rates {Pg,q; q = 1, 2, . . . , Q}
are extremely small and they cannot be accurately estimated

from a small number of scaled random samples. Third, the
failure rates for different performances and/or specifications
can be quite different. To estimate them both accurately and
efficiently, we should choose small scaling factors for the
performance metrics with large failure rates, but large scal-
ing factors for the performance metrics with small failure
rates. Hence, finding an appropriate set of scaling factors
for all performances and/or specifications can be extremely
challenging.

In this paper, a number of evenly distributed scaling factors
covering a relatively large range are empirically selected and
provided as the input of Algorithm 1. For the performance
metrics with large failure rates, the scaled failure rates corre-
sponding to a number of small scaling factors can be used to
fit the model template in (34) and (51). On the other hand, the
scaled failure rates corresponding to a number of large scal-
ing factors can be used for the performance metrics with small
failure rates. As such, a broad range of performances and/or
specifications can be accurately analyzed by our proposed SSS
method. In our future research, we will study efficient method-
ologies to further optimize these scaling factors and improve
the efficacy of SSS.

Finally, two additional clarifications should be made for
Algorithm 1. First, the confidence intervals estimated for dif-
ferent performances and/or specifications are different. Once
the simulation results are obtained from Step 2, Steps 4–12
are performed for each individual performance and/or specifi-
cation, resulting in a unique confidence interval. Second, while
most traditional methods cannot efficiently estimate the rare
failure rate in a high-dimensional variation space, the proposed
SSS algorithm does not suffer from such a dimensionality
problem. None of the steps in Algorithm 1 is sensitive to the
dimensionality of the variation space. As will be demonstrated
in Section VI, SSS achieves superior accuracy over the tradi-
tional importance sampling method when the dimensionality
of the variation space exceeds a few hundred.

VI. NUMERICAL EXAMPLES

In this section, three circuit examples are used to demon-
strate the efficacy of the proposed SSS method. For testing and
comparison purposes, three different approaches are imple-
mented: 1) brute-force MC analysis; 2) MNIS [11]; and
3) proposed SSS method. MC is used to generate the “golden”
failure rates so that the accuracy of MNIS and SSS can be
quantitatively evaluated. The implementation of MNIS con-
sists of two stages, as described in [11]. In the first stage,
2000 transistor-level simulations are used to search the vari-
ation space and find the failure event that is most likely to
occur. Next, importance sampling is applied with a shifted
Gaussian distribution to estimate the rare failure rate. On the
other hand, when implementing the proposed SSS method, six
different scaling factors are empirically chosen to estimate the
failure rate and 200 resampled data points are generated to esti-
mate the confidence interval (i.e., Q = 6 and NRS = 200) in
Algorithm 1. All numerical experiments are run on a 3.16 GHz
computer with 12 GB memory.

A. DFF Delay With Gaussian Distribution

Fig. 2 shows the simplified circuit schematic for a DFF
designed in a commercial 32 nm CMOS process. The DFF

1106 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 7, JULY 2015

Fig. 2. Simplified schematic is shown for a DFF designed in a 32 nm
CMOS process where the delay from the clock signal CLK to the output Q
is considered as the performance of interest.

Fig. 3. (a) Scaled failure rate Pg is plotted as a function of the scaling factor
s where the blue stars represent six empirically selected scaling factors and the
estimated failure rates corresponding to these scaling factors. (b) Histogram
is generated by 200 resampled data points to estimate the confidence interval
of the estimator PSSS

f .

consists of 20 transistors and the random mismatch of each
transistor is modeled by 14 independent Gaussian random
variables in the process design kit. Thus, there are 280 inde-
pendent Gaussian random variables in total. In this example,
we consider the delay from the clock signal CLK to the out-
put Q as the performance of interest. In particular, there are
two different delay metrics: 1) the delay from CLK to Q
when the input data D is “ZERO” (Delay0) and 2) the delay
from CLK to Q when the input data D is “ONE” (Delay1).
Both Delay0 and Delay1 must be less than their predefined
specifications (Spec0 and Spec1) so that the DFF circuit is con-
sidered as “PASS.” Otherwise, the DFF circuit is considered
as “FAIL.” If we define the metric DCLK→Q as

DCLK→Q = max
(
Delay0 − Spec0, Delay1 − Spec1

)
(74)

the aforementioned performance requirement can be equiva-
lently defined by using the metric DCLK→Q. Namely, the DFF
circuit is considered as “PASS” if DCLK→Q is negative and
“FAIL” otherwise.

We first apply MC with 107 random samples and the esti-
mated failure rate is 10−5. It is considered as the golden
result to compare the accuracy for other statistical methods
in our experiment. Next, we apply the proposed SSS method
(i.e., Algorithm 1) to estimate the failure rate. Fig. 3(a) shows
six empirically selected scaling factors {sq; q = 1, 2, . . . , 6}
and their corresponding scaled failure rates {PMC

g,q ; q =
1, 2, . . . , 6}. In total, 104 transistor-level simulations are used
to generate these six data points {(sq, PMC

g,q); q = 1, 2, . . . , 6}.
The black curve in Fig. 3(a) shows the analytical model in (34)
that is optimally fitted by MLE. The DFF failure rate is then

TABLE I
FAILURE RATES AND 95% CONFIDENCE INTERVALS

[PLow
f , P

Up
f] ESTIMATED BY MNIS AND SSS

(GOLDEN FAILURE RATE = 10−5)

predicted by the estimator PSSS
f in (39) based on the extrapola-

tion at s = 1. Fig. 3(b) further shows the histogram generated
by resampling, as described in Algorithm 1. The histogram
is calculated from 200 resampled data points, and is used
to estimate the confidence interval of the estimator PSSS

f . In
our experiment, we notice that the computational cost of SSS
is completely dominated by the transistor-level simulations
required to generate the random samples. The computational
time of post-processing the sampling data in Algorithm 1 takes
less than 0.2 s and, hence, is negligible.

Table I compares the failure rates and the 95% confidence
intervals estimated by MNIS [11] and SSS based on differ-
ent numbers of transistor-level simulations. Table I reveals
two important observations. First, the failure rate estimated
by MNIS is substantially different from the golden result
(i.e., 10−5). We believe that MNIS fails to identify the critical
failure region that is most likely to occur, since the variation
space is high-dimensional (i.e., consisting of 280 independent
random variables) in this example. Therefore, the importance
sampling implemented at the second stage of MNIS fails to
estimate the failure rate accurately. On the other hand, the
proposed SSS method successfully estimates the failure rate
even if the number of transistor-level simulations is as small
as 5 × 103.

Second, but more importantly, the 95% confidence interval
estimated by MNIS is not accurate either. As shown in Table I,
MNIS does not result in a confidence interval [PLow

f , PUp
f]

that overlaps with the golden failure rate (i.e., 10−5). In other
words, the confidence interval estimated by MNIS based on
importance sampling is highly biased. It is one of the major
limitations of MNIS and, in general, the importance sampling
technique. Namely, as the confidence interval is inaccurate, it
provides a wrong assessment of the accuracy and may com-
pletely misguide the user in practical applications. On the other
hand, the proposed SSS method is unbiased in estimating both
the failure rate and the confidence interval.

In order to further validate the confidence interval esti-
mated by SSS, we repeatedly run Algorithm 1 for 200 times.
During each run, the failure rate and the corresponding
95% confidence interval [PLow

f , PUp
f] are estimated from 104

transistor-level simulations, resulting in 200 different values
for both PLow

f and PUp
f . Fig. 4(a) and (b) shows the his-

tograms of these 200 values for PLow
f and PUp

f , respectively.
For only 11 cases out of 200 runs, the 95% confidence inter-
val [PLow

f , PUp
f] does not overlap with the golden failure rate

(i.e., 10−5), as shown in Fig. 4. In other words, the probability

SUN et al.: FAST STATISTICAL ANALYSIS OF RARE CIRCUIT FAILURE EVENTS VIA SSS FOR HIGH-DIMENSIONAL VARIATION SPACE 1107

Fig. 4. Histograms of the lower and upper bounds of the 95% confidence
interval [PLow

f , P
Up
f] are estimated from 200 repeated runs. (a) Lower bound

PLow
f . (b) Upper bound P

Up
f .

Fig. 5. Estimated failure rate Pf is plotted as a function of the performance
specification for (a) Delay0 and (b) Delay1. The red stars represent the esti-
mated failure rates by MC with 107 random samples, and they are considered
as the golden results. The blue circles denote the estimated failure rates by
SSS with 104 random samples.

for the golden failure rate to fall out of the estimated confi-
dence interval is 11/200 ≈ 5%. It, in turn, demonstrates that
our confidence interval estimation based on bootstrap resam-
pling (i.e., Algorithm 1) is highly accurate and it is practically
more attractive than the traditional MNIS method based on
importance sampling.

In addition to the failure rate associated with DCLK→Q
that combines two different performance metrics Delay0 and
Delay1 as shown in (74), circuit designers are often inter-
ested in knowing the failure rates corresponding to Delay0
and Delay1, respectively. Furthermore, estimating the failure
rates of Delay0 and Delay1 as functions of the specifications
Spec0 and Spec1 is of great importance, since they provide
the additional design insights that are valuable for circuit opti-
mization. To validate the proposed SSS algorithm for multiple
performances and/or specifications, we set Spec0 and Spec1 to
several different values and estimate the corresponding failure
rates. Unlike the traditional importance sampling techniques
(e.g., MNIS) that require different sets of random samples to
estimate the failure rates for Delay0 and Delay1 with differ-
ent performance specifications, SSS only needs to generate
a single set of random samples by running transistor-level
simulations, as discussed in Section V-C.

Fig. 5(a) and (b) shows the estimated failure rate
Pf as a function of the performance specification for
Delay0 and Delay1, respectively. The red stars denote the esti-
mated failure rates by MC with 107 random samples, and they
are considered as the golden results. The blue circles denote
the estimated failure rates by our proposed SSS method with

Fig. 6. Simplified schematic is shown for an SRAM column designed in
a 45 nm CMOS process where the read current is defined as the difference
between two bit-line currents: IREAD = IBL − IBL_.

104 random samples. Fig. 5 shows two important observations.
First, the failure rate increases when the performance specifica-
tion becomes tight, which is consistent with our understanding
of the circuit. Second, the failure rates estimated by SSS accu-
rately approximate the golden results. Armed with Fig. 5,
we can easily determine the feasible performance specification
for a given failure rate of our design. It, in turn, demonstrates
an important advantage of the proposed SSS method over other
traditional approaches.

B. SRAM Read Current With Gaussian Distribution

Fig. 6 shows the simplified schematic of an SRAM column
designed in a 45 nm CMOS process. It consists of 64 bit-cells
that are connected to two bit-lines: BL and BL_. When reading
the first bit-cell CELL<0>, we first precharge both bit-lines
to the supply voltage VDD. Next, the word-line WL<0> is
turned on and the bit-cell CELL<0> is activated. All other
word-lines are turned off so that the corresponding bit-cells
are de-activated. The current through CELL<0> then dis-
charges the bit-lines and creates a voltage difference between
BL and BL_.

To mimic the worst-case scenario for read operation, we
store ZERO in CELL<0> and ONE in all other bit-cells. As
such, the read current of CELL<0> discharges BL, while the
leakage current of all other bit-cells discharges BL_, thereby
slowing down the read operation. In this example, the read
current IREAD = IBL − IBL_ is our performance of inter-
est. It directly impacts the read delay and, therefore, is an
important performance metric. If IREAD is greater than a pre-
defined specification Spec, the SRAM circuit is considered as
“PASS.” Otherwise, it is considered as “FAIL.”

To consider process variations in this experiment, we model
the local VTH mismatch of each transistor as an indepen-
dent Gaussian random variable. Since one SRAM column
consists of 64 bit-cells and each bit-cell is composed of six
transistors, there are 384 transistors and, hence, 384 inde-
pendent Gaussian random variables in total. It, in turn,
renders a high-dimensional variation space for this SRAM
example.

We first run MC with 108 random samples and the estimated
failure rate is 1.1 × 10−6. Table II compares the failure rates
and the 95% confidence intervals estimated by MNIS [11]
and SSS. Similar to the DFF example in the previous section,
MNIS cannot predict the failure rate or the confidence inter-
val accurately. On the other hand, the proposed SSS method
estimates both of them accurately, even if the number of sim-
ulations is as small as 5 × 103. From this point of view, the

1108 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 7, JULY 2015

TABLE II
FAILURE RATES AND 95% CONFIDENCE INTERVALS

[PLow
f , P

Up
f] ESTIMATED BY MNIS AND SSS

(GOLDEN FAILURE RATE = 1.1 × 10−6)

Fig. 7. Estimated failure rate Pf is plotted as a function of the performance
specification for IREAD, where the local VTH mismatch of each transistor
follows (a) Gaussian distribution. (b) Gaussian-uniform distribution. The
red stars represent the estimated failure rates by MC with (a) 108 and
(b) 1.3 × 108 random samples, and they are considered as the golden results.
The blue circles denote the estimated failure rates by SSS with 104 random
samples.

SRAM example again demonstrates that our proposed SSS
method is superior over the traditional MNIS approach in
a high-dimensional variation space.

Finally, we apply SSS to study the relation between the
failure rate Pf and its corresponding performance specification
Spec. Fig. 7(a) shows the estimated failure rate Pf as a function
of Spec. The red stars denote the estimated failure rates by
MC with 108 random samples, and they are considered as the
golden results. The blue circles denote the estimated failure
rates by SSS with 104 random samples. Fig. 7(a) shows that
our proposed SSS method accurately estimates the failure rates
for different performance specifications from the same set of
random samples. It implies that SSS is able to provide more
useful guidance for memory designers and, therefore, is more
attractive than other traditional approaches.

C. SRAM Read Current With Gaussian-uniform
Distribution

In Sections VI-A and VI-B, the process variations are mod-
eled as Gaussian distributions. In this section, we further
demonstrate the efficacy of our proposed SSS method for
Gaussian-uniform distribution.

To this end, we consider the SRAM column shown in
Fig. 6 as our example. In Section VI-B, the local VTH
mismatch of each transistor is simply modeled by an inde-
pendent Gaussian random variable. In this section, however,
we use a different process design kit where the local VTH
mismatch of each transistor is modeled by one Gaussian
random variable and one uniform random variable that are
mutually independent. In total, we have 768 independent

TABLE III
FAILURE RATES AND 95% CONFIDENCE INTERVALS [PLow

f , P
Up
f]

ESTIMATED BY SSS (GOLDEN FAILURE RATE = 7.9 × 10−7)

random variables (i.e., 384 Gaussian random variables and
384 uniform random variables). Similar to Section VI-B,
the read current IREAD = IBL − IBL_ is considered as our
performance of interest. If IREAD is greater than a prede-
fined specification Spec, the SRAM circuit is considered as
“PASS.” Otherwise, it is considered as “FAIL.”

We first run MC with 1.3 × 108 random samples and the
estimated failure rate is 7.9 × 10−7, which is considered
as the golden result. Next, we run SSS, and Table III lists
the failure rates and the 95% confidence intervals estimated
by SSS with different numbers of transistor-level simulations.
Since MNIS [11] can handle Gaussian distribution only, no
comparison between MNIS and SSS is made in this section.
Table III shows that SSS estimates both the failure rate and
the 95% confidence interval accurately, even if the number of
simulations is as small as 5 × 103. It again demonstrates the
efficacy of our proposed SSS approach in a high-dimensional
variation space.

Finally, we apply SSS to study the relation between the fail-
ure rate Pf and its corresponding performance specification
Spec. Fig. 7(b) shows the estimated failure rate Pf as a func-
tion of Spec. The red stars denote the estimated failure rates by
MC with 1.3 × 108 random samples, and they are considered
as the golden results. The blue circles denote the estimated
failure rates by SSS with 104 random samples. As shown in
Fig. 7(b), the failure rates estimated by SSS accurately approx-
imate the golden results, implying that SSS can efficiently
handle Gaussian-uniform distribution with high accuracy.

VII. CONCLUSION

In this paper, a novel statistical analysis method, referred
to as SSS, is developed to accurately estimate the rare fail-
ure rates for nanoscale ICs in a high-dimensional space.
The proposed SSS approach is based upon an analytical
model derived from the theorem of soft maximum. It is sta-
tistically formulated as a regression modeling problem and
optimally solved by MLE. With a single set of transistor-level
simulations, the proposed SSS method can simultaneously esti-
mate the rare failure rates for multiple performances and/or
specifications. Such a unique feature can provide the users
with valuable design insights, but it is not offered by most
traditional algorithms. To quantitatively assess the accuracy
of SSS, the confidence interval is estimated by bootstrap for
our proposed SSS estimator. Several numerical experiments
demonstrate that our proposed SSS approach achieves superior
accuracy over the traditional importance sampling technique
when the dimensionality of the variation space is more than
a few hundred.

SUN et al.: FAST STATISTICAL ANALYSIS OF RARE CIRCUIT FAILURE EVENTS VIA SSS FOR HIGH-DIMENSIONAL VARIATION SPACE 1109

Finally, we would like to mention that our proposed
SSS approach should be primarily applied to rare failure
rate estimation in a high-dimensional variation space with
a large number of (e.g., a few hundred) random variables.
When the variation space is low-dimensional and there are
only a few (e.g., 6–20) random variables, the traditional
approaches [5]–[15] may be more accurate and, hence, pre-
ferred to SSS. Due to the page limit, we do not include
a detailed comparison between SSS and the traditional meth-
ods in a low-dimensional variation space in this paper.

REFERENCES

[1] S. Sun, X. Li, H. Liu, K. Luo, and B. Gu, “Fast statistical analysis of rare
circuit failure events via scaled-sigma sampling for high-dimensional
variation space,” in Proc. Int. Conf. Comput.-Aided Design, San Jose,
CA, USA, 2013, pp. 478–485.

[2] B. Calhoun et al., “Digital circuit design challenges and opportunities in
the era of nanoscale CMOS,” Proc. IEEE, vol. 96, no. 2, pp. 343–365,
Feb. 2008.

[3] A. Bhavnagarwala, X. Tang, and J. Meindl, “The impact of intrinsic
device fluctuations on CMOS SRAM cell stability,” IEEE J. Solid-State
Circuits, vol. 36, no. 4, pp. 658–665, Apr. 2001.

[4] R. Heald and P. Wang, “Variability in sub-100 nm SRAM designs,”
in Proc. Int. Conf. Comput.-Aided Design, San Jose, CA, USA, 2004,
pp. 347–352.

[5] R. Kanj, R. Joshi, and S. Nassif, “Mixture importance sampling and
its application to the analysis of SRAM designs in the presence of rare
failure events,” in Proc. Design Autom. Conf., San Francisco, CA, USA,
2006, pp. 69–72.

[6] C. Gu and J. Roychowdhury, “An efficient, fully nonlinear, variabil-
ity aware non-Monte-Carlo yield estimation procedure with applications
to SRAM cells and ring oscillators,” in Proc. Asia South Pac. Design
Autom. Conf., Seoul, Korea, 2008, pp. 754–761.

[7] M. Abu-Rahma et al., “A methodology for statistical estimation of read
access yield in SRAMs,” in Proc. Design Autom. Conf., Anaheim, CA,
USA, 2008, pp. 205–210.

[8] L. Dolecek, M. Qazi, D. Shah, and A. Chandrakasan, “Breaking
the simulation barrier: SRAM evaluation through norm minimization,”
in Proc. Int. Conf. Comput.-Aided Design, San Jose, CA, USA, 2008,
pp. 322–329.

[9] J. Wang, S. Yaldiz, X. Li, and L. Pileggi, “SRAM parametric failure
analysis,” in Proc. Design Autom. Conf., San Francisco, CA, USA, 2009,
pp. 496–501.

[10] A. Singhee and R. Rutenbar, “Statistical blockade: Very fast statistical
simulation and modeling of rare circuit events, and its application to
memory design,” IEEE Trans. Comput.-Aided Design, vol. 28, no. 8,
pp. 1176–1189, Aug. 2009.

[11] M. Qazi, M. Tikekar, L. Dolecek, D. Shah, and A. Chandrakasan, “Loop
flattening and spherical sampling: Highly efficient model reduction tech-
niques for SRAM yield analysis,” in Proc. Design Autom. Test Europe
Conf. Exhibit., Dresden, Germany, 2010, pp. 801–806.

[12] R. Fonseca et al., “A statistical simulation method for reliability analysis
of SRAM core-cells,” in Proc. Design Autom. Conf., Anaheim, CA,
USA, 2010, pp. 853–856.

[13] K. Katayama, S. Hagiwara, H. Tsutsui, H. Ochi, and T. Sato, “Sequential
importance sampling for low-probability and high-dimensional SRAM
yield analysis,” in Proc. Int. Conf. Comput.-Aided Design, San Jose, CA,
USA, 2010, pp. 703–708.

[14] R. Kanj, R. Joshi, Z. Li, J. Hayes, and S. Nassif, “Yield estimation
via multi-cones,” in Proc. Design Autom. Conf., San Francisco, CA,
USA, 2012, pp. 1107–1112.

[15] S. Sun, Y. Feng, C. Dong, and X. Li, “Efficient SRAM failure rate
prediction via Gibbs sampling,” IEEE Trans. Comput.-Aided Design,
vol. 31, no. 12, pp. 1831–1844, Dec. 2012.

[16] W. Dehaene, S. Cosemans, A. Vignon, F. Catthoor, and P. Geens,
“Embedded SRAM design in deep deep submicron technologies,”
in Proc. 23rd Eur. Solid State Circuits Conf. (ESSCIRC), Munich,
Germany, 2007, pp. 384–391.

[17] R. Joshi et al., “Design of sub-90 nm low-power and variation
tolerant PD/SOI SRAM cell based on dynamic stability metrics,”
IEEE J. Solid-State Circuits, vol. 44, no. 3, pp. 965–976, Mar. 2009.

[18] N. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems
Perspective. Boston, MA, USA: Addison-Wesley, 2010.

[19] B. Silverman, Density Estimation for Statistics and Data Analysis.
London, U.K.: Chapman and Hall, 1986.

[20] B. Efron and R. Tibshirnani, An Introduction to the Bootstrap.
New York, NY, USA: Chapman and Hall, 1993.

[21] A. Papoulis and S. Pillai, Probability, Random Variables and Stochastic
Process. Boston, MA, USA: McGraw-Hill, 2002.

[22] C. Bishop, Pattern Recognition and Machine Learning. New York, NY,
USA: Springer, 2007.

[23] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2009.

Shupeng Sun (S’11) received the B.S. degree
in automation from Tsinghua University, Beijing,
China, in 2010. He is currently pursuing the
Ph.D. degree with the Department of Electrical and
Computer Engineering, Carnegie Mellon University,
Pittsburgh, PA, USA.

His current research interests include memory
yield verification and performance modeling.

Xin Li (S’01–M’06–SM’10) received the B.S. and
M.S. degrees from Fudan University, Shanghai,
China, in 1998 and 2001, respectively, both in
electronics engineering, and the Ph.D. degree in
electrical and computer engineering from Carnegie
Mellon University, Pittsburgh, PA, USA, in 2005.

He is currently an Associate Professor with the
Department of Electrical and Computer Engineering,
Carnegie Mellon University. His current research
interests include computer-aided design, neural sig-
nal processing, and power system analysis and
design.

Dr. Li was the recipient of the IEEE Donald O. Pederson Best Paper
Award in 2013, the National Science Foundation CAREER Award in 2012,
the Design Automation Conference Best Paper Award in 2010, and two
International Conference on Computer-Aided Design Best Paper Awards
in 2004 and 2011.

Hongzhou Liu received the B.S. degree from
Peking University, Beijing, China, the M.S. degree
from Tsinghua University, Beijing, and the Ph.D.
degree in electrical and computer engineering from
Carnegie Mellon University, Pittsburgh, PA, USA,
in 1997, 1999, and 2004, respectively.

He is currently with Cadence Design Systems,
Inc., Pittsburgh, PA, USA, involved in the areas
of analog design automation and statistical vari-
ation aware design methodology. He holds ten
U.S. patents related to analog and statistical design
automation.

Mr. Liu was the recipient of the Best Paper Award from Design Automation
Conference in 2002.

Kangsheng Luo received the B.S. degree from
Xidian University, Xi’an, China, and the Ph.D.
degree from Tsinghua University, Beijing, China,
in 2004 and 2011, respectively, both in electrical
engineering.

He is currently an Engineering Manager with
Cadence Design Systems, Inc., Beijing. His cur-
rent research interests include worst case corners,
high-yield estimation, and variation aware design.

Ben Gu received the B.S. degree from Shanghai
Jiaotong University, Shanghai, China, and the
M.S. degree from Pennsylvania State University,
University Park, PA, USA, in 1996 and 2004,
respectively, both in electrical engineering.

From 2004 to 2010, he was with Freescale
Semiconductors, Austin, TX, USA, developing
an in-house SPICE circuit simulator, Mica.
From 2010 to 2012, he was with Magma Design
Automation, where he was the Architect of the
Finesim SPICE circuit simulator. He has been with

Cadence Design Systems, Inc., Austin, since 2012, where he is currently an
Engineering Director responsible for research and development of the Voltus
IC power grid simulator.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

