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Abstract—Transient analysis of large-scale power delivery net-
work (PDN) is a critical task to ensure the functional correctness
and desired performance of today’s integrated circuits (ICs),
especially if significant transient noises are induced by clock
and/or power gating due to the utilization of extensive power
management. In this paper, we propose an efficient algorithm
for PDN transient analysis based on sparse approximation. The
key idea is to exploit the fact that the transient response caused
by clock/power gating is often localized and the voltages at many
other “inactive” nodes are almost unchanged, thereby rendering
a unique sparse structure. By taking advantage of the underlying
sparsity of the solution structure, a modified conjugate gradient
algorithm is developed and tuned to efficiently solve the PDN
analysis problem with low computational cost. Our numerical
experiments based on standard benchmarks demonstrate that
the proposed transient analysis with sparse approximation offers
up to 2.2× runtime speedup over other traditional methods, while
simultaneously achieving similar accuracy.

Index Terms—Conjugate gradient (CG), orthogonal match-
ing pursuit (OMP), power delivery network (PDN), sparse
approximation, transient analysis.

I. INTRODUCTION

ON-CHIP power delivery network (PDN) is a complex
3-D interconnect circuit that connects off-chip power

sources with on-chip circuit blocks [1]–[3]. When a large
amount of currents flow through the PDN, large voltage
fluctuations due to IR drops and/or di/dt noises are often
observed. These noises posed by PDN significantly impact
the functionality and performance of integrated circuits (ICs).
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For this reason, appropriate design and verification of on-chip
PDNs is an extremely important task for today’s system-on-
chip.

During the past decade, a large number of computer-aided
design (CAD) algorithms have been developed for efficient
PDN analysis [4]–[20]. These existing techniques can be
classified into several broad categories: 1) Krylov subspace
method [9], [10]; 2) hierarchical analysis [11]; 3) multigrid
solver [12]–[16]; 4) randomized algorithm [17]; and 5) vec-
torless analysis [18]–[20]. Most of them focus on DC analysis
in order to predict the IR drops which play an important role
in both signal integrity (e.g., increased gate delay) and circuit
reliability (e.g., electromigration for metal wires). For transient
analysis of PDNs, the existing approaches can be further cate-
gorized as: 1) implicit numerical integration (e.g., back Euler
method, trapezoidal method, two-step backward differentiation
method, etc.) and 2) explicit numerical integration (e.g., matrix
exponential method [10]). These algorithms have been suc-
cessfully applied to a large number of practical PDN problems.

While PDN analysis has been extensively studied in the
literature, the aggressive scaling of IC technologies brings
several recent trends that suggest a need to revisit this topic.

1) Clock and/or Power Gating: In order to achieve low-
power operation for today’s digital ICs, clock and/or
power gating techniques are commonly used to dynam-
ically turn on/off one or more functional blocks on
the same chip [21]–[23]. When these blocks are simul-
taneously switched on/off, large transient noises (e.g.,
overshooting) are often observed in the PDN due to its
underdamped nature. In this case, transient analysis over
a long time period, instead of DC analysis, is required
to accurately capture these transient noises that die out
slowly.

2) Increased PDN Size: With technology scaling, the com-
plexity of PDN continuously increases. The PDN of
a state-of-the-art high-performance microprocessor con-
sists of hundreds of millions of internal nodes. Hence,
PDN analysis must be scalable to extremely large
problem size to meet today’s design reality.

The combination of the aforementioned two trends makes
most traditional techniques ill-equipped to perform large-scale
transient analysis for PDNs. On one hand, direct linear solvers
(e.g., LU decomposition, Cholesky decomposition, etc.) can
be extremely efficient for transient analysis of small- and
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medium-scale PDNs, especially if a constant time step is used
and, hence, only a single matrix factorization is required [10].
However, these direct linear solvers are not applicable to
large-scale PDN analysis problems due to their high compu-
tational complexity and memory usage. On the other hand,
iterative linear solvers (e.g., multigrid method) are not effi-
cient either, if they must be repeatedly applied to solve
large-scale linear equations at a large number of time points
during transient analysis. The fundamental question here
is how to make transient analysis computationally feasi-
ble for large-scale PDNs with consideration of clock/power
gating.

In this paper, we propose a novel algorithm for PDN
transient analysis based on sparse approximation. We par-
ticularly focus on the challenging problem of PDN analysis
where direct linear solvers are not computationally feasible
due to large circuit size. Our key idea is to exploit the fact
that when clock/power gating is applied, only a portion of
the entire chip is switched on/off. Hence, the time-domain
response of the PDN is localized around the functional
blocks that are activated. In other words, the voltages at
other nodes of the PDN are almost unchanged. This fact,
in turn, renders a unique sparse structure where the volt-
age difference between two successive time points is almost
zero for a large number of nodes inside the PDN. Instead
of solving a general solution for transient analysis, the
proposed sparse approximation is particularly developed to
solve the “sparse” response with low computational cost.
Similar ideas based on PDN locality have also been explored
in [6] and [7].

An important contribution of this paper is to develop
a new modified conjugate gradient (MCG) algorithm to effi-
ciently find the sparse solutions of the large-scale linear
equations incurred by PDN transient analysis. Similar to the
traditional conjugate gradient (CG) algorithm [24], MCG iter-
atively selects a set of search directions and then finds the
approximated solution within the linear subspace spanned by
these search directions. Different from the traditional CG
method that explicitly forms the conjugate search directions,
MCG directly calculates the approximated solution at each
iteration step by solving a small-size linear equation, without
explicitly making the search directions mutually conjugate.
As such, the computational cost of MCG can be substan-
tially reduced. As will be demonstrated by the numerical
examples in Section VI, our proposed sparse approximation
based on MCG offers up to 2.2× runtime speedup over other
traditional methods, while simultaneously achieving similar
accuracy.

The remainder of this paper is organized as follows. In
Section II, we briefly review the important background on
PDN analysis, and then derive our sparse approximation
method in Section III. A novel MCG algorithm is developed in
Section IV to efficiently solve the large-scale linear equations
for PDN transient analysis. Several implementation details are
further discussed in Section V. The efficacy of our proposed
technique is demonstrated by a number of numerical examples
in Section VI. Finally, we conclude in Section VII.

II. BACKGROUND

A. Transient Analysis of PDN

A PDN is typically modeled as an RLC network with ideal
voltage and current sources. Without loss of generality, we
mathematically represent a PDN by the following modified
nodal analysis (MNA) equation [25]:

[
C 0
0 L

]
·
[

v̇ (t)
i̇ (t)

]
+

[
G AT

L−AL 0

]
·
[

v(t)
i(t)

]
=

[
iS(t)
vS(t)

]
(1)

where v(t) ∈ RM is a vector containing all node voltages,
i(t) ∈ RN is a vector containing all branch currents asso-
ciated with inductors, iS(t) ∈ RM is a vector containing all
input current sources, vS(t) ∈ RN is a vector containing all
input voltage sources, and C ∈ RM×M , L ∈ RN×N , G ∈
RM×M and AL ∈ RN×M are the system matrices. In our
MNA formulation, we assume that all input voltage sources are
grounded. Namely, one node of the voltage source is connected
to ground. In this case, the voltage of the other node is known
and, hence, it is no longer considered as a problem unknown.
Instead, its value is directly added to the right-hand-side (RHS)
vector in (1) [12].

To numerically solve the differential algebraic equa-
tion (DAE) in (1), a numerical integration method must
be applied to approximate the differential operator d/dt. In
this paper, we use the two-step backward differentiation for-
mula (BDF2) [26] to solve the DAEs related to the PDN
problem. However, it should be noted that the proposed idea of
sparse approximation is also applicable to other multistep
numerical integration methods.

When a multistep numerical integration method is applied,
the derivative at the current time step is approximated by
a polynomial of the current and past solutions. By doing so,
the DAE can be approximated as a system of algebraic equa-
tions. In what follows, we use the BDF2 formula with constant
time step to derive our proposed method. We will discuss how
to handle variable time steps later in the paper.

When BDF2 is applied, the voltages and currents at the
(n+1)th time point are expressed as

v(tn+1) = 4

3
v(tn) − 1

3
v(tn−1) + 2hn

3
v̇(tn+1) (2)

i(tn+1) = 4

3
i(tn) − 1

3
i(tn−1) + 2hn

3
i̇(tn+1) (3)

where hn, v(tn), and i(tn) represent the time step, the node volt-
ages, and the branch currents at the nth time point respectively.
Substituting (2) and (3) into (1) yields

(
3

2hn
C + G + 2hn

3
AT

LL−1AL

)
· v(tn+1) = 2

hn
Cv(tn)

− 1

2hn
Cv(tn−1) − 4

3
AT

L i(tn) + 1

3
AT

L i(tn−1) + iS(tn+1)

−2

3
hnAT

LL−1vS(tn+1) (4)

i(tn+1) = 2hn

3
L−1ALv(tn+1) + 4

3
i(tn) − 1

3
i(tn−1)

+2hn

3
L−1vS(tn+1). (5)
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It can be shown that the matrix 3/2hn·C + G +
2hn/3·AT

LL−1AL in (4) is symmetric and positive definite [9].
In most practical applications, in order to control local trun-
cation error (LTE), the time step hn is adaptively adjusted and
the polynomial coefficients in (2) and (3) must be adjusted
accordingly [25].

To calculate the transient response at the (n + 1)th time
point, we need to first solve the linear equation (4) and find
the voltage value v(tn+1). Next, the current value i(tn+1) can be
calculated by substituting v(tn+1) into (5). Note that the matrix
L in (5) is diagonal, if there is no mutual inductance. Hence,
the inverse of L can be easily calculated. In this case, com-
puting (5) only involves several matrix-vector multiplications
and is computationally inexpensive.

Even if mutual inductance does exist, the inverse
matrix L−1, instead of the inductance matrix L, is often
directly extracted by an extraction tool in order to achieve
good locality and sparsity [27]. In this case, since the inverse
matrix L−1 is directly provided by the extraction tool, we can
again calculate (5) with low computational cost and the overall
runtime is dominated by the linear equation solver for (4).

There are many techniques to solve the linear equation (4).
In what follows, we will briefly review two important linear
solvers: 1) the CG solver [24] and 2) the sparse solver [28].
These two linear solvers are closely related to our proposed
technique of sparse approximation. The mathematical concepts
behind these two solvers will be further used to derive our
proposed MCG algorithm in Section IV.

B. CG Solver

CG is an iterative method to efficiently solve the following
linear equation:

A · x = b (6)

where the matrix A ∈ RM×M is a symmetric, positive defi-
nite matrix, b ∈ RM is the RHS vector, and x ∈ RM is the
unknown vector that needs to be solved. The linear equation
(4) posed by PDN transient analysis can be easily mapped to
the general form in (6). The key idea of CG is to convert the
linear equation (6) to an equivalent optimization problem

min
x

1

2
xTAx − bTx. (7)

It is easy to verify that the solution x = A−1b of (6) satisfies
the first-order optimality condition [29]

∂

∂x

(
1

2
xTAx − bTx

)
= 0. (8)

Hence, x = A−1b is also the optimal solution of (7).
To solve the optimization problem in (7), CG starts from

an initial solution x(0) and iteratively generates a set of search
directions {d(k) ∈ RM; k = 0, 1, 2, . . .} that are mutually
conjugate

dT
(i)Ad(j) = 0(i �= j). (9)

At the kth iteration step, CG first calculates the residue
corresponding to the current solution x(k)

r(k) = b − A · x(k). (10)

Algorithm 1 CG Solver
1: Start from a given linear equation (6) where the matrix A

is symmetric and positive definite.
2: Choose an initial solution x(0) and set k = 0.
3: Calculate the initial search direction d(0) = r(0) = b −

A·x(0).
4: Update the solution:

x(k+1) = x(k) + μ(k)d(k). (13)

where

μ(k) = dT
(k)r(k)

dT
(k)Ad(k)

. (14)

5: Update the residue:

r(k+1) = r(k) − μ(k)Ad(k). (15)

6: Update the search direction:

d(k+1) = r(k+1) + βkd(k), (16)

where

βk = rT
(k+1)r(k+1)

dT
(k)r(k)

. (17)

7: Set k = k + 1 and repeat Step 4–6 until the residue is
sufficiently small.

It then determines the search direction d(k) by implicitly
forming the following linear subspace based on an iterative
algorithm:

�(k) = span
{
d(0), d(1), . . . , d(k)

} = span
{
r(0), r(1), . . . , r(k)

}
.

(11)

Next, CG searches the new solution x(k+1) such that
x(k+1) − x(0) is within the linear subspace �(k)

min
x(k+1)

1

2
xT
(k+1)Ax(k+1) − bTx(k+1)

S.T. x(k+1) − x(0) ∈ �(k). (12)

Algorithm 1 summarizes the simplified flow of the CG
algorithm.

The convergence rate of CG depends on the condition
number of the matrix A [24]. If the matrix A is well-
conditioned, CG converges quickly. For an ill-conditioned
matrix, CG may take a large number of iteration steps
to converge, thereby resulting in expensive computational
time. To address this issue, various preconditioning tech-
niques have been proposed to further improve the convergence
rate of CG [12].

C. Sparse Solver

A sparse solver has been proposed in [28] for incremental
DC analysis of PDNs. It exploits the fact that when a PDN is
locally updated, its response also changes locally. More specif-
ically, the incremental “changes” are almost zero for most
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Fig. 1. Simple example illustrates the concept of localized transient response
associated with clock/power gating. Only a small portion (black) of the chip
is activated and the time-domain response of the PDN is localized within the
black and gray regions.

node voltages and branch currents. In this case, the incre-
mental analysis problem for PDN can be formulated in the
general form of linear equation (6) where the unknown vec-
tor x is sparse. Hence, instead of solving a general solution x
from (6), we only need to decide the locations and values of
a few nonzeros.

Toward this goal, orthogonal matching pursuit (OMP) is
applied to solve the sparse solution x from the linear equation
A·x = b [28]. OMP rewrites the RHS vector b as the linear
combination of all column vectors of the matrix A

b = x1a1 + x2a2 + · · · + xMaM (18)

where xm denotes the mth element of the vector x and am

stands for the mth column vector of the matrix A. Next,
the “importance” of each column vector am is quantitatively
assessed by the normalized inner product

ρ(am, b) =
∣∣∣∣ aT

mb
aT

mam

∣∣∣∣. (19)

Intuitively, if ρ(am, b) is large, the column vector am plays
an important role to represent the RHS vector b. Hence,
the corresponding element xm should be nonzero. OMP iter-
atively calculates the normalized inner products to select
the nonzero elements from the vector x and then decide
their values by finding the least-squares solution of an over-
determined linear equation. Algorithm 2 summarizes the major
steps of OMP.

III. TRANSIENT ANALYSIS BY SPARSE APPROXIMATION

In this paper, we further extend the idea of sparse approxi-
mation from DC analysis to transient analysis. Our proposed
approach is motivated by the fact that when clock/power gating
is applied, only a small portion of the entire chip is activated.
In this case, the transient response of the PDN is localized
in a small region. Namely, most node voltages and branch
currents are almost constant between two consecutive time
points. Fig. 1 shows a simple PDN example that conceptually
illustrates the aforementioned concept of localized transient
response.

Based on this observation, if we formulate the PDN equation
with respect to the incremental changes between two suc-
cessive time points, the unknown solution vector containing
the incremental voltage changes is sparse. To derive such an

Algorithm 2 OMP
1: Start from a given linear equation (6) and rewrite it as

(18).
2: Initialize the residue r(0) = b and set k = 0.
3: Calculate the normalized inner product ρ(am, r(k))

between each column vector am and the residue r(k):

ρ
(
am, r(k)

) =
∣∣∣∣aT

mr(k)

aT
mam

∣∣∣∣. (20)

4: Select the column vectors {am1, am2, . . . } such that:

ρ
(
am1, r(k)

) ≥ ε ρ
(
am2, r(k)

) ≥ ε · · ·, (21)

where ε is a user-defined threshold.
5: Determine the index set:

�(k) =
{ {m1, m2, · · · } (k = 0)

�(k−1) ∪ {m1, m2, · · · } (k ≥ 1)
. (22)

6: Solve the unknowns {x(k+1),m; m ∈ �(k)} by:

min
x(k+1),m;m∈�(k)

∥∥∥∥∥∥
∑

m∈�(k)

x(k+1),m · am − b

∥∥∥∥∥∥
2

2

. (23)

7: For any m /∈ �(k), the value of x(k+1),m is set to 0.
8: Update the residue:

r(k+1) = b − A · x(k+1). (24)

9: Set k = k + 1 and repeat Step 3–8 until the residue is
sufficiently small.

incremental formulation, we subtract (3/2hn·C + G + 2hn/3·
AT

LL−1AL)·v(tn) from both sides of (4), yielding(
3

2hn
C + G + 2hn

3
AT

LL−1AL

)
· δ (tn+1) = 2

hn
Cv(tn)

− 1

2hn
Cv(tn−1) − 4

3
AT

L i(tn) + 1

3
AT

L i(tn−1) + iS(tn+1)

−2

3
hnAT

LL−1vS(tn+1)

−
(

3

2hn
C + G + 2hn

3
AT

LL−1AL

)
· v(tn) (25)

where

δ(tn+1) = v(tn+1) − v(tn). (26)

Note that the size of the unknown vector δ(tn+1) ∈ RM

(i.e., the total number of nodes of the PDN) is extremely large,
since today’s PDNs often contain tens to hundreds of millions
of nodes. However, since the vector δ(tn+1) is sparse with
a few nonzeros, we only need to determine the locations and
values of these nonzeros, instead of solving the large-scale
linear equation by a general-purpose solver.

One possible approach to solve the sparse solution
δ(tn+1) from (25) is to directly apply the OMP algorithm
(i.e., Algorithm 2) where an over-determined linear equa-
tion (23) must be solved at each iteration step. There are
two well-known methods to find the least-squares solution
of (23) [28]: 1) QR decomposition and 2) pseudo-inverse. Each
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method has its own advantages and limitations. QR decompo-
sition is numerically stable, but computationally expensive. On
the other hand, pseudo-inverse is computationally inexpensive,
but often suffers from numerical issues. This lack of clear
choice motivates us to develop a highly efficient-yet-stable
algorithm, referred to as the MCG solver, to find the sparse
solution δ(tn+1) of (25) without solving any over-determined
linear equation. The details of MCG will be discussed in the
next section.

IV. MCG SOLVER

Our proposed MCG solver is derived from the traditional
CG algorithm with several important modifications. First,
MCG uses a different criterion to form the search directions.
Second, it applies a different scheme to update the solution
by searching the linear subspace spanned by the search direc-
tions. In this section, we derive the mathematical formulation
of MCG in detail.

A. Mathematical Formulation

Without loss of generality, we consider the general repre-
sentation of a linear equation A·x = b in (6). Our objective is
to efficiently compute the sparse solution x. The incremental
formulation (25) can be easily mapped to this general form
A·x = b by redefining the symbols

A = 3

2hn
C + G + 2hn

3
AT

LL−1AL (27)

x = δ (tn+1) (28)

b = 2

hn
Cv(tn) − 1

2hn
Cv(tn−1) − 4

3
AT

L i(tn)

+ 1

3
AT

L i(tn−1) + iS(tn+1) − 2

3
hnAT

LL−1vS(tn+1)

−
(

3

2hn
C + G + 2hn

3
AT

LL−1AL

)
· v(tn). (29)

Note that the matrix A in (27) is symmetric and positive
definite.

Since the unknown vector x contains a few nonzeros only,
we propose to form the search directions based on the locations
of these nonzeros, instead of the residues used by the tradi-
tional CG method (i.e., Algorithm 1). We use several heuristic
criteria to quantitatively assess the importance of each column
vector am of the matrix A, when calculating the incremental
response δ(tn+1) at the (n+1)th time point. As such, the cor-
responding locations of the nonzeros in the unknown vector
δ(tn+1) can be quickly identified.

In particular, we develop two heuristic techniques. First, the
mth node is considered to be “active” and the corresponding
incremental response δm(tn+1) [i.e., the mth element of the
unknown vector δ(tn+1)] is expected to be nonzero, if at least
one of the following two conditions is satisfied.

1) The voltage of the mth node significantly varies at the
previous time point [i.e., the value of |δm(tn)| is large].

2) The mth node is connected to an input current or voltage
source (say, the ith current source iSi or voltage source
vSi) that significantly varies at the current time point

[i.e., the value of |iSi(tn+1) − iSi(tn)| or |vSi(tn+1) −
vSi(tn)| is large].

Note that the values of δm(tn), iSi(tn+1), iSi(tn), vSi(tn+1),
and vSi(tn) are all known at the (n+1)th time point, when
calculating the incremental response δ(tn+1). Hence, these
two conditions can be easily checked. The indices of these
identified nodes are used to form an initial index set �(0).

Second, in addition to the nodes that belong to the initial
set �(0), a number of other nodes may also become active
at the (n+1)th time point, but are not captured by the afore-
mentioned heuristics. For this reason, we further borrow the
idea of normalized inner product in (20) to iteratively iden-
tify these active nodes, similar to the OMP algorithm (i.e.,
Algorithm 2). At the kth iteration step of the proposed MCG
solver, the indices of a set of activenodes (say, {m1, m2, . . . })
are selected according to the normalized inner products and
these indices are cumulatively added to the index set �(k)

�(k) = �(k−1) ∪ {m1, m2, . . .}. (30)

Once the set �(k) is formed, we define the following search
directions: {

em; m ∈ �(k)
}

(31)

where em ∈ RM is a vector for which the mth element is
one and all other elements are zero. When the vector em is
selected as a search direction, it implies that the mth element
of the solution x of A·x = b, where A, x, and b are defined
in (27)–(29), should be nonzero.

After the search directions are determined at the kth iteration
step, we form the following linear subspace:

�(k) = span
{
em; m ∈ �(k)

}
. (32)

If the solution x is sparse and contains a few nonzeros only,
it belongs to a low-dimensional linear subspace. In this case,
MCG is able to accurately approximate the solution x within
very few iteration steps. In other words, by exploiting the spar-
sity of the solution x, MCG can converge more quickly than
the traditional CG method.

Given the linear subspace �(k) at the kth iteration step of the
MCG solver, we need to further determine the new solution
x(k+1) by solving the following optimization problem:

min
x(k+1)∈�(k)

1

2
xT
(k+1)Ax(k+1) − bTx(k+1). (33)

The optimization problem in (33) is similar to that of the
traditional CG method shown in (12).

Note that the search directions in (31) are orthogonal but
not conjugate. Unlike the traditional CG method in which the
conjugate search directions can be easily calculated from the
residues by (16), explicitly forming a set of conjugate search
directions for the linear subspace in (32) is not trivial. While it
is possible to make the vectors {em; m ∈ �(k)} conjugate by
applying Gram–Schmidt conjugation [24], such an approach
can be computationally prohibitive, especially for large-scale
problems. Without explicitly knowing the conjugate search
directions, the new solution x(k+1) cannot be calculated by
directly following the simple equation expressed in (13).
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To address this issue, we derive a new computing scheme
to efficiently find the new solution x(k+1) from the linear sub-
space �(k). Our proposed approach is based upon the property
of orthogonality described by the following theorem.

Theorem 1: Given the solution x(k+1) solved by (12) where
the initial value x(0) is 0 and the linear subspace �(k) is defined
in (32), the residue r(k+1) = b − A·x(k+1) is orthogonal to all
search directions {em; m ∈ �(k)}

eT
mr(k+1) = 0

(
m ∈ �(k)

)
. (34)

Proof: Since the solution x(k+1) is within the linear subspace
�(k), it can be represented as the linear combination of all
search directions

x(k+1) =
∑

m∈�(k)

x(k+1),m · em. (35)

Hence, minimizing the cost function in (12) requires us to
find the values of {x(k+1),m; m ∈ �(k)} to satisfy the following
first-order optimality condition [29]:

∂

∂x(k+1),m

[
1

2
xT
(k+1)Ax(k+1) − bTx(k+1)

]
= 0

(
m ∈ �(k)

)
.(36)

Substituting (35) into (36) yields

eT
m · [

Ax(k+1) − b
] = 0

(
m ∈ �(k)

)
. (37)

Since the residue r(k+1) is equal to b − A·x(k+1),
(37) implies the orthogonal property in (34). �

Assume that there are M(k) search directions {em; m ∈
�(k)}, therefore M(k) nonzeros {x(k+1),m; m ∈ �(k)} are
selected at the kth iteration step of the MCG algorithm.
Namely, the cardinality (i.e., the size) of the set �(k) is M(k)∣∣�(k)

∣∣ = M(k). (38)

In this case, there are M(k) linear equations in (37) that we
can use to solve the M(k) unknowns {x(k+1),m; m ∈ �(k)}.
In other words, the property of orthogonality described by
Theorem 1 reveals a crucial fact that solving the optimization
problem in (12) is equivalent to solving the linear equations in
(37). This fact provides an alternative way to efficiently update
the solution x(k+1) at the kth iteration step.

To further derive a compact representation of the reduced
linear equations in (37), we substitute (35) into (37)

eT
m · A ·

∑
m∈�(k)

x(k+1),m · em = eT
mb

(
m ∈ �(k)

)
. (39)

Equation (39) can be further rewritten as

ET
�(k)AE�(k) · x�(k+1) = ET

�(k)b (40)

where E�(k) is an M-by-M(k) matrix containing the column
vectors {em; m ∈ �(k)} and x�(k+1) is an M(k)-by-one col-
umn vector containing the unknowns {x(k+1),m; m ∈ �(k)}.
Remember that em is a vector for which the mth element
is one and all other elements are zero. Hence, the reduced
matrix E�(k)

TAE�(k) in (40) is simply generated by select-
ing the corresponding M(k) rows and columns from the matrix
A. Namely, the matrix ET

�(k)AE�(k) is a principal minor [30]
of the matrix A. Similarly, the reduced RHS vector ET

�(k)b in

Fig. 2. Simple example illustrates the “reduced” linear equation in (40),
where the first and third rows/columns of the matrix A are selected to form
the reduced matrix ET

�(k)AE�(k), and the first and third elements of the

vector b are selected to form the reduced RHS vector ET
�(k)b.

Algorithm 3 MCG Solver
1: Start from the linear equation A·x = b, where the symbols

A, x and b are defined by (27)–(29) in order to solve the
incremental response δ(tn+1) at the (n+1)-th time point.

2: Set k = 0. Form the initial index set �(0) by identifying
the active nodes based on two criteria: (i) the voltage of
a node significantly varies at the previous time point, or (ii)
a node is connected to an input current or voltage source
that significantly varies at the current time point.

3: Solve the unknowns {x(k+1),m; m ∈ �(k)} from the
reduced linear equation (40).

4: For any m /∈ �(k), the value of x(k+1),m is set to 0.
5: Calculate the residue r(k+1) by using (24).
6: Set k = k + 1, update the index set �(k) based on the

normalized inner products by using (20)–(21) and (30),
and repeat Step 3–6 until the residue is sufficiently small.

(40) is generated by selecting the corresponding M(k) elements
from the vector b. Fig. 2 shows a simple example to illustrate
how the reduced matrix ET

�(k)AE�(k) and the reduced vector
ET

�(k)b are constructed.
Algorithm 3 summarizes the major steps of the proposed

MCG algorithm. There are several important clarifications that
should be made. First, since the matrix A in (27) is positive
definite, all its principal minors are also positive definite [30].
As a principal minor, the reduced matrix ET

�(k)AE�(k) is posi-
tive definite and nonsingular. Hence, the linear equation (40) is
guaranteed to have a unique solution.

Second, if the solution of the linear equation A·x = b is
sparse, the dimension of the linear subspace (32) should be
small. Hence, the linear equation (40) is substantially smaller
than the original equation A·x = b. Its solution x�(k+1) can
be efficiently solved by either a direct linear solver (e.g.,
Cholesky decomposition) or an iterative linear solver (e.g.,
the CG method, the multigrid method, etc.) with low compu-
tational cost. In addition, an appropriately designed algorithm
can incrementally update the solution x�(k+1) during each
iteration step of the proposed MCG solver, thereby further
reducing the computational cost. For instance, if Cholesky
decomposition is applied to solve (40), the factorization pro-
cess can be incrementally updated. On the other hand, if the
CG method or the multigrid method is applied to solve (40),
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the solution x�(k) from the previous iteration step can be used
to define an initial guess for the solution x�(k+1) of the cur-
rent iteration step so that the iterative linear solver converges
quickly. Implementing such an incremental update scheme
is straightforward and, therefore, the details are not further
discussed in this paper.

B. Comparison With Traditional Sparse Solver

Our proposed MCG algorithm (i.e., Algorithm 3) is similar
to the traditional OMP algorithm (i.e., Algorithm 2), because
both algorithms apply the same heuristics to iteratively iden-
tify the nonzeros for the unknown solution vector based on
normalized inner product. However, once the nonzero loca-
tions are determined and stored in the index set �(k) at the
kth iteration step, MCG and OMP rely on different algorithms
to calculate the values of these nonzeros {x(k+1),m; m ∈ �(k)}.
As shown in (23), OMP aims to find the least-squares solu-
tion by minimizing the total squared error. The optimization
problem in (23) can be rewritten as

min
x(k+1)∈�(k)

1

2
xT
(k+1)A

TAx(k+1) − bTAx(k+1) (41)

where �(k) denotes the linear subspace defined in (32). On the
other hand, MCG formulates a different optimization (33) to
find the solution x(k+1).

There are two consequences from the differences between
these two optimization formulations. First, the solutions from
(33) and (41) are different if the solution of A·x = b does
not exactly lie in the subspace �(k). As proven by Theorem 1,
the MCG solution of (33) leads to a residue r(k+1) that is
orthogonal to all search directions {em; m ∈ �(k)}. On the
other hand, based on the theory of least-squares fitting [30],
the OMP residue r(k+1) from (41) should be orthogonal to the
column vectors {am; m ∈ �(k)}

aT
mr(k+1) = 0

(
m ∈ �(k)

)
. (42)

Recall that em is a vector for which the mth element is one
and all other elements are zero. Hence, the following equality
holds:

Aem = am (m = 1, 2, . . . , M). (43)

Substituting (43) into (42) yields

eT
mAr(k+1) = 0

(
m ∈ �(k)

)
. (44)

It implies that the OMP residue r(k+1) and all search
directions {em; m ∈ �(k)} are conjugate but not orthogonal.

Second and more importantly, the computational costs
of solving (33) and (41) are different. As discussed in
Section IV-A, solving (33) at each MCG iteration step is
equivalent to solving a reduced linear equation (40). In this
case, either Cholesky decomposition or the CG method can be
applied, because the linear equation (40) is positive definite.
On the other hand, the least-squares solution of (41) can be
computed by either a direct linear solver (e.g., QR decomposi-
tion) or an iterative linear solver (e.g., LSQR [31]). However,
the least-squares solver is more expensive than a positive defi-
nite linear equation solver, especially for large-scale problems.

Due to this reason, the proposed MCG algorithm is expected
to offer superior runtime efficiency over the traditional OMP
method, as will be demonstrated by our numerical examples
in Section VI.

V. IMPLEMENTATION DETAILS

Our proposed PDN transient analysis based on sparse
approximation is made efficient by carefully addressing a num-
ber of implementation issues. In this section, we discuss
these implementation details and then summarize the overall
transient analysis flow.

A. Linear Solver Selection

As previously mentioned, the proposed MCG algorithm
needs to solve the linear equation (40) at each iteration step,
as shown by Step 3 of Algorithm 3. Ideally, if the incremental
response δ(tn+1) in (25) is sparse, (40) is small and it can be
efficiently solved by a direct linear solver based on Cholesky
decomposition. However, if the incremental response δ(tn+1)
is not sparse at a particular time point tn, a large linear equa-
tion must be solved. In this case, directly applying Cholesky
decomposition to solve (40) is not computationally efficient,
since the computational complexity of Cholesky decomposi-
tion grows quickly with the problem size. On the other hand,
an iterative algebraic multigrid (AMG) solver [14] can be
extremely efficient for large-scale equations; however, AMG
is not as efficient as Cholesky decomposition for small-size
problems due to the overhead of constructing the interpolation
and restriction operators [14].

To address this issue, we propose to adaptively select the
appropriate linear solver based on the size of (40). If the
equation size is sufficiently small (say, less than 0.5 × 106),
Cholesky decomposition is used to solve (40). Otherwise, if
the equation size is large (say, greater than 0.5×106), an AMG
solver is applied to find the solution of (40). Such an adaptive
strategy for solver selection allows us to fully take advantage
of the trade-offs between computational efficiency and prob-
lem size for different linear solvers in order to reduce the
overall runtime for a broad range of PDN analysis problems.

The aforementioned strategy of linear solver selection is
mainly driven by computational cost. On the other hand, the
accuracy of these linear solvers is equally important and must
be carefully considered. In particular, AMG is an iterative
algorithm and its error tolerance must be set to be suffi-
ciently small due to the following two reasons. First, the AMG
error directly impacts the convergence of Algorithm 3. If the
AMG solver is not sufficiently accurate, the residue calcu-
lated by Step 5 of Algorithm 3 may be large, even if a lot of
active nodes are selected. Second, the AMG error also plays
an important role in estimating the LTE. Without an accu-
rate AMG solver, LTE cannot be accurately calculated and,
consequently, the time step for transient analysis cannot be
appropriately determined, as will be discussed in detail in the
next subsection.

B. Adaptive Time Step Control

The LTE of a numerical integration method is strongly
affected by the time step size. In many practical applications,
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the time step has to be adjusted to ensure that the LTE is less
than a predefined threshold. On the other hand, the time step
should also be increased to speed up the transient simulation
when the circuit behavior is relatively quiet. Although we can
continuously adjust the time step based on the BDF2 formula,
such an implementation can be computationally expensive and
unnecessary. Instead, we implement a simple control scheme
with discrete time step in this paper.

In particular, if the estimated LTE is too large, we reduce
the time step by a factor of the power of two (i.e., 2, 4, 8,
etc.). Otherwise, if the LTE is too small, we double the time
step. Because the BDF2 formula in (2) and (3) requires the
solutions at two past time points with the same time step, we
use an interpolation scheme to compute the solutions at the
missing time points whenever the time step changes.

More specifically, assume that transient simulation is pro-
gressing with the time step h from the time point tn−2 to tn−1
and then from tn−1 to tn. At the time point tn, if the LTE
estimation indicates that the LTE is greater than a predefined
threshold, we need to reduce the time step and recalculate the
solution at tn. Instead of adopting a continuous time step that
may be only slightly smaller than h, we reduce the time step
to h/2 (or even h/4 if necessary). After that, we interpolate the
node voltages v(tn−3/2) and the branch currents i(tn−3/2) at the
middle of tn−2 and tn−1 (denoted as tn−3/2). Since the time
steps tn−1 − tn−3/2 and tn − tn−1 are now both equal to h/2,
we can proceed to use the BDF2 formula with constant time
step in (2) and (3) to continue our transient simulation. On the
other hand, when the time step increases to 2h, we only need
to select a few past solutions to make the equivalent time step
equal to 2h so that the BDF2 formula in (2) and (3) can again
be applied.

Given the aforementioned setup, the LTE of a capacitor volt-
age or inductor current x at the nth time point can be estimated
by [32]

LTEx (tn) = h2
n (hn + hn−1)

2

2hn + hn−1
×〈x (tn) , x (tn−1) , x (tn−2) , x (tn−3)〉 (45)

where the operator <x(tn), x(tn−1), x(tn−2), x(tn−3)> is recur-
sively defined as

〈x (tn) , x (tn−1) , · · · , x (tn−i)〉
=

{
x (tn) (i = 0)
〈x(tn),··· ,x(tn−i+1)〉−〈x(tn−1),··· ,x(tn−i)〉

hn+hn−1+···+hn−i+1
(i ≥ 1)

. (46)

For a given PDN containing RLC elements, the LTE values
are calculated by (45) for all capacitor voltages and inductor
currents and compared against the predefined threshold for
adaptive time step control.

C. Summary

Algorithm 4 summarizes the major steps of the proposed
transient analysis algorithm for PDN. Before the transient
analysis starts, a DC analysis is first performed to deter-
mine the initial condition of all node voltages and branch
currents. Since, we focus on large-scale PDN analysis prob-
lems that cannot be efficiently solved by a direct linear solver,

Algorithm 4 Transient Analysis for PDN
1: Start from a given PDN that is described by (1) and the

time interval [0, tSTOP] for transient analysis.
2: Derive the incremental formulation (25).
3: Set an initial index n = 0, an initial time point t0 = 0,

and an initial time step h0 specified by the user.
4: Apply a DC analysis to solve the initial node voltages

v(t0) and the initial branch currents i(t0).
5: Set tn+1 = tn + hn, and solve the incremental response

δ(tn+1) by the MCG solver (i.e., Algorithm 3).
6: Calculate the node voltages v(tn+1) by (26), and then the

branch currents i(tn+1) by (5).
7: Calculate the LTE values for all capacitor voltages and

inductor currents by (45).
8: If all LTE values are less than a user-defined threshold

(say, LTELOW ), set hn+1 = 2 · hn.
9: If at least one of these LTE values is greater than a user-

defined threshold (say, LTEUP), set hn+1 = hn/2 and go
to Step 5.

10: Set n = n + 1. Repeat Step 5–10 until tn reaches tSTOP.

the DC analysis in Step 4 of Algorithm 4 is implemented with
an AMG solver [14]. Next, our proposed MCG solver (i.e.,
Algorithm 3) is used to solve the linear equation (25) at each
time point. As mentioned in Section V-A, Cholesky decom-
position and AMG solver are adaptively selected to solve the
linear equation (40) at Step 3 of Algorithm 3. Finally, once the
PDN response is known at the current time point, LTE values
are calculated to adaptively adjust the time step, as discussed
in Section V-B.

The runtime of the MCG solver at each time point dom-
inates the overall computational time for transient analysis.
Since MCG solves the reduced linear equation in (40) at each
iteration step (i.e., Step 3 of Algorithm 3), its computational
complexity can be expressed as O(Mα

(k)), where M(k) denotes
the number of unknowns of the reduced linear equation at
the kth iteration step and the constant α is usually between 1
and 2. For many practical problems, the incremental response
defined by (26) is sparse and contains few nonzeros. Hence,
M(k) is much less than the total number of nodes of the PDN
(i.e., M). For this reason, our proposed MCG solver is compu-
tationally more efficient than the traditional linear solver for
which the computational complexity is O(Mα).

VI. NUMERICAL EXAMPLES

A. Experimental Setup

In this section, we demonstrate the efficacy of our proposed
PDN transient analysis for six large-scale circuit examples, as
shown in Table I. These six test cases, labeled as PND1–
PDN6 in Table I, are from the IBM benchmarks ibmpg3-
ibmpg6, ibmpgnew1, and ibmpgnew2 given in [33]. In this
paper, the two benchmarks ibmpg1 and ibmpg2 are excluded,
since their circuit sizes are small and, hence, they are not con-
sidered as good examples to validate our proposed algorithm
that is particularly developed for large-scale circuits.
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TABLE I
PDN BENCHMARK INFORMATION

To emulate the effect of clock/power gating, we simultane-
ously turn on/off all current sources within a local region that
is defined by a bounding box. The percentage of the current
sources being activated or deactivated is referred to the acti-
vation rate in this paper. In our experiment, the size of the
bounding box is appropriately set so that the activation rate
is around 10% for each benchmark circuit. The waveform of
each current source is set to a step function in time domain
where the rising time equals 0.1 ns.

For testing and comparison purposes, three different tech-
niques are implemented for PDN transient analysis. All these
three implementations use the BDF2 formula [26] for numer-
ical integration with adaptive time step control. The only
difference between them lies in the linear solver that is used to
solve the linear equation (25) at each time point: 1) the AMG
solver [14]; 2) the OMP solver [28]; and 3) the proposed MCG
solver.

To measure and compare the accuracy for different tech-
niques, a “golden” linear solver is further implemented to
generate the golden solution for each test case. The golden
solver applies the BDF2 formula [26] for numerical integra-
tion with a fixed time step that is sufficiently small and,
hence, the LTE of the golden solver is negligible. In addi-
tion, the golden solver uses Cholesky decomposition to solve
the linear equation (25) at each time point. Hence, the
resulting residue of (25) is also negligible for the golden
solver.

It is important to emphasize that the computational
complexity of Cholesky decomposition grows quickly with
problem size. Even though, Cholesky decomposition remains
feasible for all test cases shown in Table I, it would quickly
become computationally infeasible as circuit size further
increases. In this paper, the proposed MCG algorithm is partic-
ularly developed to handle large-scale PDN analysis problems
where direct linear solvers are not computationally feasible.
Here, we only use a number of medium-scale PDN examples
to validate the MCG algorithm, because we need to apply
Cholesky decomposition to calculate the golden solution for
accuracy comparison.

For all test cases, the transient analysis is performed over
the time interval [0, 100 ns]. The time interval is set to be
sufficiently long for the transient response to die out. All
experiments are executed on a Linux server with Intel Xeon
2.67 GHz CPU and 512 GB memory.

B. Comparison on Accuracy and Speed

Table II shows the computational time, memory consump-
tion, and simulation error for three different implementations.

TABLE II
COMPARISON ON ACCURACY AND RUNTIME FOR TRANSIENT

ANALYSIS OF PDNS (ACTIVATION RATE ≈ 10%)

Here, the mean and maximum errors are respectively
defined as

ErrorMean = 1

M
· 1

tSTOP
·

M∑
m=1

∫ tSTOP

0
|vm(t) − ṽm(t)| · dt

≈ 1

M
· 1

tSTOP
·

M∑
m=1

N∑
n=0

|vm(tn+1) − ṽm(tn+1)| · hn

(47)

ErrorMax = max
m,n

|vm (tn) − ṽm (tn)| (48)

where vm(t) and ṽm(t) denote the exact and estimated node
voltages at the time t respectively, tSTOP represents the upper
bound of the time interval for transient analysis, and hn stands
for the time step at the nth time point.

Studying Table II, we notice that the OMP solver can
be computationally expensive for a number of benchmarks.
Taking PDN1 as an example, we observe from our experiment
that the least-squares problem in (23) is ill-conditioned. In our
implementation of OMP, the least-squares solution of (23) is
computed by pseudo-inverse, instead of QR decomposition,
in order to minimize the computational cost. Therefore, OMP
cannot accurately find the least-squares solution for PDN1 and
the OMP solver eventually has to use AMG to solve the full-
size linear equation at almost all time points. It, in turn, results
in expensive computational cost.

In addition, the numerical issue of OMP can further impact
the LTE estimation during transient analysis. Considering
PDN2 as an example, we observe from Table II that OMP
takes significantly more time steps than AMG and MCG to
finish the transient analysis, thereby resulting in expensive
computational cost. Such an observation is made, because the
OMP solver is not numerically robust and its solution is not
highly accurate. Therefore, the LTE is not accurately estimated
and the transient analysis fails to use the appropriate time step
to perform numerical integration in this example.
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Fig. 3. Time step sizes of MCG are plotted at different time points for
PDN6.

AMG and MCG, on the other hand, work perfectly with
the adaptive time step control based on LTE. The numbers of
time steps associated with AMG and MCG are almost iden-
tical, as shown in Table II. To further validate the time step
control scheme for MCG, we closely examine the time step
sizes during transient analysis. Since the rising time of the
input current sources is set to 0.1 ns, the initial time step size
is chosen as 10 ps for all benchmarks. As the time evolves
and the transient response dies out, the time step sizes are
adaptively increased to larger values (e.g., more than 10 ns at
the end of the transient analysis). The average time step size
over all six benchmarks is equal to 1.7 ns. Taking PDN6 as
an example, Fig. 3 shows its time step sizes at different time
points where the time step size gradually increases over time.

Compared to AMG, MCG reduces the runtime by up to
2.2×, while simultaneously achieving similar accuracy, as
shown in Table II. In particular, the maximum error is almost
identical for AMG and MCG over all benchmarks. Note that
the maximum error is often of greater importance than the
mean error for many practical applications, since we want
to predict the worst-case voltage droop, instead of the aver-
age voltage droop, by running transient simulation. For these
test cases, MCG demonstrates superior performance, because
it efficiently exploits the sparse property of the incremen-
tal response δ(tn+1), while AMG is a general-purpose linear
solver and is not particularly tuned to solve sparse solutions.

The memory usages of AMG, OMP, and MCG are measured
at each time step by counting the size of the major data struc-
tures, as shown in Table II. Note that OMP and MCG consume
less memory than AMG. Such an observation is made, because
OMP and MCG only need to solve a reduced linear equation
with reduced memory consumption, when the circuit response
is sparse.

C. Visualization of Results

In this subsection, we take the benchmark PDN6 as an
example to show several important findings related to the pro-
posed transient analysis based on sparse approximation. These
studies provide a number of intuitive insights about our pro-
posed method, thereby facilitating us to further understand its
advantages and limitations.

Fig. 4. Golden PDN response is calculated by transient analysis implemented
with a direct linear solver and is plotted for two selected nodes of PDN6.
(a) One node within the activated region. (b) One node outside the activated
region.

Fig. 5. Golden incremental voltage response δ(t) is solved from (25) and
(26) by a direct linear solver and its histogram is plotted at two selected
time points for PDN6. (a) t = 3 ns at the beginning of the transient analysis.
(b) t = 100 ns at the end of the transient analysis.

Fig. 4 shows the transient response of two selected nodes
from PDN6. One is inside the activated region, and the other
is outside the activated region. A large-scale oscillation is
observed for the voltage response associated with the node
inside the activated region, due to the underdamped nature
of the PDN. On the other hand, the voltage response is
almost constant over time for the node outside the activated
region, as is expected. In this case, the incremental voltage
response associated with the inactive node is almost zero. It, in
turn, facilitates our proposed sparse approximation to achieve
extremely high efficiency for transient analysis.

Fig. 5 plots the incremental voltage response δ(t) at two dif-
ferent time points: 1) t = 3 ns at the beginning of the transient
analysis and 2) t = 100 ns at the end of the transient anal-
ysis. Two important observations can be made from Fig. 5.
First, since a small portion of current sources are turned on,
only a small number of nodes are activated in this example.
Hence, the incremental voltage response δ(t) is close to zero
for most nodes at the beginning of the transient analysis, as
shown in Fig. 5(a). Second, but more importantly, as the tran-
sient response dies out at the end of the transient analysis, the
incremental voltage response δ(t) becomes almost zero for all
nodes at t = 100 ns. In this case, since the vector δ(t) contains
few nonzeros, it can be efficiently determined by the proposed
MCG solver with low computational cost.

Figs. 6 and 7 further plot the incremental voltage response
δ(t) as a function of the spatial location for different layers
(one bottom layer and one top layer) at t = 3 ns and t = 100 ns,
respectively. Studying Figs. 6 and 7 reveals an important fact
that the incremental response δ(t) is close to zero for a large
number of nodes at t = 3 ns and it becomes almost zero for
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Fig. 6. Golden incremental voltage response δ(tn) is solved from (25) and
(26) by a direct linear solver and |δ(tn)| is plotted for two selected metal layers
of PDN6 at t = 3 ns. (a) Bottom metal layer (b) Top metal layer. The color
indicates the magnitude of |δ(tn)| with the unit of mV.

Fig. 7. Golden incremental voltage response δ(tn) is solved from (25) and
(26) by a direct linear solver and |δ(tn)| is plotted for two selected metal layers
of PDN6 at t = 100 ns. (a) Bottom metal layer (b) Top metal layer. The color
indicates the magnitude of |δ(tn)| with the unit of mV.

Fig. 8. Histogram of the percentage of occurrence is plotted for transient
simulation of PDN6 by using MCG.

all nodes at t = 100 ns. This observation is consistent with
that shown in Fig. 5.

Fig. 8 shows the histogram of the percentage of occurrence
for each node being selected by the MCG solver during tran-
sient simulation. Here, the occurrence of a node is defined as
the number of time points for the node being selected, and the
percentage of occurrence of a node is defined as the ratio of
its occurrence over the total number of time points. In other
words, if the percentage of occurrence is high for a particular
node, this node is considered to be active at most time points.
As shown in Fig. 8, for more than half of the nodes, the per-
centage of occurrence is less than 60%, implying that a large
number of nodes are “inactive” and the corresponding incre-
mental response is zero at many time points. This is additional
evidence to explain the reason why the proposed transient

TABLE III
COMPARISON ON ACCURACY AND RUNTIME FOR TRANSIENT ANALYSIS

OF PDN6 BY VARYING ACTIVATION RATE

Fig. 9. Runtime speed-up of MCG over AMG and the percentage of selected
nodes by MCG are plotted as functions of the activation rate for PDN6.

analysis based on sparse approximation is computationally
efficient.

D. Impact of Activation Rate

In this subsection, we further study the efficiency of MCG
by varying the activation rate. Similar to the previous sub-
section, we again take the benchmark PDN6 as an example.
Table III compares the runtime and error for two different
solvers: 1) AMG and 2) MCG. Here, we do not include the
OMP results, because the OMP solver suffers from numerical
issues, as is demonstrated in Section VI-B.

To clearly explain the impact of activation rate, Fig. 9 plots
the runtime speed-up of MCG over AMG and the percentage
of selected nodes by MCG as functions of the activation rate.
Here, the percentage of selected nodes is equal to the average
number of selected nodes over all time points divided by the
total number of circuit nodes.

Several important observations can be made from the data in
Table III and Fig. 9. First, as the activation rate increases,
the number of time steps increases for both AMG and
MCG. Intuitively, as more circuit components become active,
a smaller time step must be used to perform transient analysis.
Second, the runtime of both AMG and MCG increases with the



420 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 3, MARCH 2015

activation rate. The runtime of AMG increases, mostly because
the number of time steps increases. On the other hand, the run-
time of MCG increases due to two reasons: 1) the increase of
the number of time steps as shown in Table III and 2) the
increase of the number of active nodes selected by MCG as
shown in Fig. 9.

Finally, the runtime speed-up of MCG over AMG decreases
with the activation rate, as the sparsity of the solution is
reduced. However, MCG is still more computationally efficient
than AMG (i.e., less computational time but similar simula-
tion accuracy), even if the activation rate is as large as 50%.
Note that the maximum error is almost identical for AMG and
MCG over all cases in Table III.

VII. CONCLUSION

In this paper, an efficient method based on sparse approxi-
mation is proposed for transient analysis of large-scale PDNs.
By exploiting the unique sparse structure of the transient
response of PDNs with clock/power gating, an MCG algorithm
is developed to efficiently find the sparse solution (i.e., the
incremental voltage response of the PDN) of a linear, positive
definite equation. The MCG algorithm facilitates the proposed
transient analysis to reduce runtime over other general-purpose
linear solvers. As being demonstrated by the numerical exam-
ples in this paper, the proposed transient analysis based on
sparse approximation offers up to 2.2× speedup over other
traditional methods, while achieving similar accuracy.

The proposed MCG solver is computationally efficient if
the solution vector is sparse. If the solution is not sparse,
a traditional linear solver (i.e., either a direct linear solver
or an iterative linear solver) is preferred. In practice, a heuris-
tic scheme for sparsity detection can be possibly incorporated
into the MCG algorithm. More specifically, if a large num-
ber of active nodes are detected within the iteration loop of
Algorithm 3, we should abort the MCG solver and switch to
the traditional linear solver. The detailed implementation of
the aforementioned heuristics for sparsity detection is beyond
the scope of this paper and will be further studied in our future
research.

It is worth mentioning that the large overhead of
clock/power gating often prevents today’s IC designers from
using a large number of clock/power domains. However,
the advance of several emerging technologies (e.g., on-chip
DC-DC converter [34] and 3-D integration [35]) has brought
up several new opportunities to explore the feasibility of using
fine-grain clock/power domains for future ICs [36]. Due to
this reason, the efficacy of the proposed MCG algorithm is
expected to be more pronounced for simulating future PDNs.

Finally, it is important to note that the proposed idea of
sparse approximation is not limited to linear circuits (e.g.,
PDNs) only. It can be further extended to transient analysis of
nonlinear circuits, such as logic circuits and SRAM circuits,
where the transient response is localized in a small region and
a large portion of the circuit is inactive. In these cases, a num-
ber of linear equations must be repeatedly solved during the
Newton–Raphson iteration [25]. Since the Jacobian matrix of
a general nonlinear circuit may not be symmetric and positive

definite, a different iterative algorithm such as the general-
ized minimal residual (GMRES) method [37], instead of the
CG method, must be used to construct the sparse linear solver.
More details along this direction are not included in this paper
but will be studied in our future research.
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