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Abstract—Estimating the voltage collapse point of a power
grid is an important problem in power flow analysis. In this
paper, we propose a novel power series method (PSM) for tracing
the power-voltage (PV) curve and estimating the collapse point.
By expanding the power flow equation into power series, a new
point on the PV curve can be accurately extrapolated based on a
previously solved point. Both forward stepping and backward
stepping are proposed so that the proposed PSM can trace
both the upper and lower halves of the PV curve. The collapse
point is estimated as the intersection of the two half curves.
Compared with the conventional continuation method, our PSM
is numerically more robust. Compared with the conventional
embedding method, our PSM offers superior accuracy and low
computational cost.
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I. INTRODUCTION

Power flow analysis is one of the most important problems
in power system operation as it not only provides information
about the flows in the system but also assesses if the operating
condition is secure and stable. Ensuring voltage stability is a
serious concern to the electric utility industry [1]. Hence, for a
given power system, it is essential to know the power-voltage
(PV) curve and the maximum loadability, so that a secure and
stable operating point can be determined and to know how
close to voltage collapse the system is.

The Newton-Raphson (NR) method is widely used to
solve power flow problems due to its quadratic convergence
speed [2]. However, it is well-known that the Jacobian matrix
of the power flow equation is singular at the maximum loading
point [3]. As a result, the NR method fails to converge when
the load is at or near the maximum loading condition, which
is actually a voltage collapse point.

To overcome this singularity problem, continuation power
flow (CPF) [4] was developed. The CPF method takes a
homotopic approach by embedding an additional variable into
the power flow equation to remove the singularity of the
Jacobian matrix, which allows tracing the PV curve around
the collapse point. Although many heuristics [5]–[7] have been
studied in recent years to improve the CPF method, it has been
pointed out that the extended Jacobian matrix posed by the
CPF method may be poorly conditioned under specific loading
conditions [8]. Once such a singularity issue occurs, the CPF
method cannot accurately trace the PV curve and fails to find
the collapse point.

In recent years, several novel power flow methods have
been proposed. E.g., to overcome the convergence problem of
conventional power flow solvers, a non-iterative holomorphic
embedding load flow method (HELM) [9] was recently devel-
oped. The convergence of HELM is guaranteed by applying

analytical continuation on the complex plane of holomorphic
functions, if the power flow equation has a solution. As a
result, HELM does not suffer from the singularity problem
at the collapse point. Modeling generator buses in HELM
was studied in [10]. The authors of [11] propose to remove
the singularity of the Jacobian matrix by changing a PQ bus
to a new AQ bus. However, like the CPF method, it does
not theoretically guarantee that the singularity issue can be
completely avoided at any point on the PV curve in general.
Finally, a machine learning algorithm to calculate the collapse
point is proposed in [12]. Such a learning-based approach
needs a lot of data for training and collecting the required
training data can be computationally expensive. In addition, it
can only obtain the collapse point but cannot trace the entire
PV curve.

This paper proposes a novel power series method (PSM)
to robustly and efficiently trace the PV curve and calculate
the collapse point. The PSM approximates the bus voltages
as polynomial functions based on power series, similar (but
not identical) to the conventional holomorphic embedding
method [9]. As a result, the PV curve and the collapse point can
be accurately estimated without suffering from any singularity
issue.

In addition, to make the PSM computationally efficient, a
number of implementation details are carefully studied. First,
the Padé approximant is adopted to accurately predict the
bus voltages based on the proposed power series model. It
is expected to offer substantially improved accuracy over a
simple polynomial model, as is demonstrated in the litera-
ture [13]. Second, a new stepping scheme is developed to
quickly trace the PV curve where the step size is optimally
controlled by the convergence domain of the power series.
By exploiting the symmetric property of the PV curve near
the collapse point [14], the proposed stepping scheme can
estimate the full PV curve both accurately and efficiently. As
will be demonstrated by the experimental results in Section IV,
our proposed PSM offers superior performance (i.e., improved
convergence, enhanced accuracy, and reduced runtime) over
other conventional techniques.

The rest of this paper is organized as follows. In Section II
we present the mathematical formulation of the PSM and then
discuss the PSM-based curve tracing method in Section III.
The efficacy of the PSM is demonstrated by a number of
standard test cases in Section IV. Finally, we conclude in
Section V.

II. POWER SERIES METHOD

In this section, we present the foundation of the proposed
PSM. We will explain the mathematical formulation for the
power flow equation, develop the efficient numerical solver,



and finally describe the method to accurately estimate the
voltages at all buses.

A. Overview
The power flow equation can be expressed as a set of

nonlinear equations f(x)=y [15]. Let’s assume that we have
a known solution x(old) when the right-hand-side (RHS) is
y(old). Now, we change the RHS from the old value y(old) to
a new value y(new), and, hence, the solution x should also
be changed. The purpose of the proposed PSM is to find
the updated solution x(new) by solving the new power flow
equation f(x(new)) = y(new) based on the known operating
point f(x(old))=y(old).

To calculate the new solution x(new), we follow the multi-
linear theory proposed in [16]. We first express the RHS y as
the linear combination of y(old) and y(new)−y(old):

y = y(old) + u
(
y(new) − y(old)

)
, (1)

where u is a real number. In (1), we conceptually apply an
incremental update u

(
y(new)−y(old)

)
to the old RHS y(old)

and then obtain the RHS y. When u = 1, y equals y(new)

and it represents the RHS of the power flow equation that we
aim to solve. Once the RHS is changed from y(old) to y, the
solution x is expressed as a power series with respect to u:

x = x(old) +
∞∑
k=1

ukx[k]. (2)

Substituting (1) and (2) into the power flow equation yields:

f

(
x(old) +

∞∑
k=1

ukx[k]

)
=y(old) + u

(
y(new)−y(old)

)
. (3)

The physical meaning of (3) is obvious: if u=0, the solution is
trivially the known operating point x(old); if u=1, the solution
satisfies the new power flow equation f(x(new))=y(new).

If each component of the vector f is a polynomial function
of x, then the left and right sides of (3) are both polynomials
of u. As a result, the kth-order coefficients of the solution x[k]
(k = 1, 2, · · · ) can be computed by equating the coefficients
of the polynomials on both sides of (3). In what follows, we
will show the detailed mathematical equations for PQ, PV and
slack buses respectively. We will first start from first-order
equations and then extend these equations to high-order cases.
Our approach adopts the rectangular coordinate expression of
the power flow equation, because the left side of (3) is not
simply polynomial if the bus voltages are represented in their
polar forms (i.e., by magnitudes and angles).

B. First-Order Power Series Expansion
1) PQ Bus: A PQ bus is described by two balance equa-

tions, namely balances of the active and reactive power:

ei

N∑
j=1

(Gijej −Bijfj) + fi

N∑
j=1

(Gijfj +Bijej) = Pi, (4)

fi

N∑
j=1

(Gijej −Bijfj)− ei

N∑
j=1

(Gijfj +Bijej) = Qi, (5)

where
• ei and fi are the real and imaginary parts of the

complex voltage of bus i;

• Gij and Bij are the series conductance and suscep-
tance of the line between buses i and j;

• Pi and Qi are the active and reactive power injections
at bus i.

Since (4) and (5) are in the same form, we will take (4) as
an example to show the detailed mathematical representations
for the PSM. Once we understand the power series expansion
for (4), the formulation for (5) can be derived in a similar way.

The voltage vectors e and f are both expressed as power
series, i.e.,

ei = e
(old)
i +

∞∑
k=1

ukei[k], fi = f
(old)
i +

∞∑
k=1

ukfi[k]. (6)

Equating the first-order coefficients of (4) yields:

e
(old)
i

N∑
j=1

(Gijej [1]−Bijfj [1])+

ei[1]
N∑
j=1

(
Gije

(old)
j −Bijf

(old)
j

)
+

f
(old)
i

N∑
j=1

(Gijfj [1] +Bijej [1])+

fi[1]
N∑
j=1

(
Gijf

(old)
j +Bije

(old)
j

)
= Pi

(new) − P
(old)
i .

(7)

2) PV Bus: A PV bus is described by a balance equation of
the active power and another equation specifying the voltage
magnitude, i.e.,

ei

N∑
j=1

(Gijej −Bijfj) + fi

N∑
j=1

(Gijfj +Bijej) = Pi, (8)

e2i + f2
i = V 2

i , (9)

where Vi is the given voltage magnitude of PV bus i. As (8)
is identical to (4), we will describe the detailed mathematical
representations for (9) only. Similarly, equating the first-order
coefficients of (9) yields:

2e
(old)
i ei[1] + 2f

(old)
i fi[1] =

(
V

(new)
i

)2
−
(
V

(old)
i

)2
. (10)

3) Slack Bus: The slack bus does not require power series
expansion since its voltage is given and constant:

esl = 1, fsl = 0. (11)

where sl is the index of the slack bus.
4) Numerical Solver: Gathering all the first-order equations

(i.e., (7), (10) and (11), and the power series expansion for (5)
and (8)) together yields a linear system:

Jx[1] = y(new) − y(old), (12)

where J is the Jacobian matrix of the power system at the
known operating point f(x(old)) = y(old). The first-order
coefficients of the solution x[1] can be solved from (12) by a
linear sparse solver [17].

C. High-Order Power Series Expansion
High-order power series expansion is handled in a way

similar to the first-order case.



1) PQ Bus: Equating the nth-order (n > 1) coefficients of
(4) yields:

e
(old)
i

N∑
j=1

(Gijej [n]−Bijfj [n])+

ei[n]
N∑
j=1

(
Gije

(old)
j −Bijf

(old)
j

)
+

f
(old)
i

N∑
j=1

(Gijfj [n] +Bijej [n])+

fi[n]
N∑
j=1

(
Gijf

(old)
j +Bije

(old)
j

)
= ∆Pi(n),

(13)

where

∆Pi(n) =−
n−1∑
k=1

 ei[k]
N∑
j=1

(Gijej [n− k]−Bijfj [n− k])

+fi[k]
N∑
j=1

(Gijfj [n− k] +Bijej [n− k])

 ,

which only depends on the lower-order coefficients of the
solution.

2) PV Bus: Equating the nth-order coefficients of (9)
yields:

2e
(old)
i ei[n] + 2f

(old)
i fi[n] = ∆V 2

i (n), (14)

where

∆V 2
i (n) = −

n−1∑
k=1

(ei[k]ei[n− k] + fi[k]fi[n− k]),

which also only depends on the lower-order coefficients of the
solution.

3) Numerical Solver: The left-hand-side (LHS) of (7) and
(13) are identical except that the coefficient order is changed
from 1 to n. The same conclusion also holds for (10) and (14).
Consequently, combining all the nth-order equations yields a
similar linear system:

Jx[n] = ∆y(n), (15)
where the RHS ∆y(n) only depends on the lower-order
coefficients of the solution. The nth-order coefficients of the
solution x[n] can be solved from (15) by a linear solver [17],
when the coefficients of the solution from the first-order to
(n − 1)th-order are all known. To determine the coefficients
at different orders, (15) is repeatedly solved by incrementally
increasing n. It is important to note that (12) and (15) share
the same Jacobian matrix J. Hence, even though (15) must
be solved repeatedly, we only need to factorize the Jacobian
matrix J once when solving (12) and the matrix factors can
then be reused to solve (15).

D. Voltage Estimation
When the coefficients up to a given order are all obtained,

the voltages of all buses are estimated by evaluating the power
series at u= 1. In our implementation, we do not directly
sum the power series at u=1. Instead, we adopt the Padé
approximant to improve the estimation accuracy. The Padé
approximant uses a rational fraction to approximate a bus
voltage x as a function of u, i.e.,

x[0]+x[1]u+· · ·+x[L+M ]uL+M≈a[0]+a[1]u+· · ·+a[L]uL

1+b[1]u+· · ·+b[M ]uM
,

(16)
where x[·] denotes the coefficients of a bus voltage. Typically,
the diagonal (L = M ) or near-diagonal (|L−M | = 1) Padé

approximant yields the maximal analytic continuation and
thus, gives the most accurate estimation [13]. The detailed
algorithm to calculate the Padé approximant can be found in
the literature, e.g., [13]. Once the Padé approximant for a bus
voltage is known, the voltage value can be estimated by setting
u=1 on the RHS of (16).

E. Summary
The proposed PSM solves the power flow equation based

on a known operating point by power series expansion. The
proposed PSM includes five major steps:

1) Construct the Jacobian matrix J at the known oper-
ating point and form (12);

2) Perform LU factorization for the Jacobian matrix J;
3) Solve the first-order coefficients of the solution x[1]

by (12);
4) Repeatedly solve the high-order coefficients of the

solution x[n] by (15). Incrementally increase n until
a given order is reached;

5) Estimate the bus voltages by the Padé approximant
(16).

The proposed PSM has a convergence domain which
depends on the expansion point (i.e., the known operating
point) and the highest order of the power series. That is also
to say, it is not possible to accurately solve the new power
flow equation with an arbitrary RHS y(new). We will discuss
the details of this issue in Section III-B.

III. TRACING THE PV CURVE

In this section, we present an efficient algorithm to trace the
PV curve and estimate the collapse point using the proposed
PSM. We will develop the robust curve tracing algorithm,
explain the step size control strategy, describe the method to
estimate the collapse point, and finally summarize the major
steps for our proposed algorithm.

A. Forward Stepping
Before tracing the PV curve, we need to solve the power

flow equation at a starting point, which is referred to as the
base case. The load of the base case should be sufficiently
small so that a physical solution exists on the upper half of
the PV curve and it can be reliably found by a conventional
power flow solver (e.g., the NR method).

Given the base case, the PV curve is traced by changing
the power components on the RHS of the power flow equation.
Without loss of generality, the RHS of the power flow equation
is expressed as the sum of the base case and the change in the
load, i.e.,

f(x) = y(m) = ybase + λ(m)ych, (17)
where the superscript (m) denotes the iteration number, ybase

represents the base case, ych is the change in real and reactive
load power demand and real power generation, and λ(m) stands
for the loading factor to specify the amount of load change.

For two consecutive iterations, (17) can be transformed into
a form that is similar to (1):

f(x) = y = ybase+λ(m)ych+u
(
λ(m+1) − λ(m)

)
ych. (18)

When u=0, y=ybase+λ
(m)ych=y(m) corresponds to y(old);

when u = 1, y = ybase+λ(m+1)ych = y(m+1) corresponds to
y(new). Hence, the proposed PSM can be used to solve the
power flow equation at the (m+1)-th iteration by expanding



the solution using the power series at the mth iteration. Starting
from the base case for which the physical solution sits on the
upper half of the PV curve, the complete upper half curve can
be traced by incrementally increasing the loading factor over
iterations.

B. Step Size Estimation
The step size (λ(m+1)−λ(m)) of the loading factor affects

the accuracy of the solution at the (m+1)-th iteration. In order
to appropriately choose the optimal step size, we first study the
truncation error of our proposed power series and then further
map the truncation error to the residual of the power flow
equation. The step size is computed such that the residual is
less than or equal to a given threshold, and thus, the accuracy
is guaranteed. Note that numerical errors are ignored in our
analysis.

1) Truncation Error of the Power Series: The power series
expansion of bus voltages x is equivalent to the Taylor ex-
pansion of the inverse function of f(x)=y, which is denoted
as x= g(y). Consequently, the truncation error of the power
series is equivalent to the Lagrange remainder of the nth-order
Taylor expansion [18]:

Ri

(
λ(m+1), n

)
=

∑
α1+···+αN=n+1


N∏
j=1

∂αj gi(ỹ)

∂y
αj
j

N∏
j=1

αj !

N∏
j=1

(∆yj)
αj

, (19)

where ∆yj is the jth component of (λ(m+1)−λ(m))ych, and
ỹ is a point in the open ball B

(
y(m); |y(m+1)−y(m)|

)
. The

truncation error in (19) is represented as a function of the
loading factor λ(m+1) and the order of the expansion. As the
loading factor λ(m+1) and, hence, the step size λ(m+1)−λ(m)

increase, the truncation error is expected to increase. For
this reason, we must choose a sufficiently small step size
to guarantee high approximation accuracy at each iteration
step. Given (19), it remains difficult to directly estimate the
remainder, because we do not know the exact value of ỹ in
practice. However, the following equation can be derived from
(19):

Ri

(
λ(m+1,a), n

)
Ri

(
λ(m+1,b), n

) ≈
(
λ(m+1,a) − λ(m)

λ(m+1,b) − λ(m)

)n+1

, (20)

where λ(m+1,a) and λ(m+1,b) are two different values for the
loading factor. In what follows, we will further use (20)
to derive the relation between the residual of the power
flow equation and the step size λ(m+1) − λ(m) in order to
appropriately estimate the optimal step size.

2) Residual of the Power Flow Equation: To simplify our
notation, we take (4) as an example to analyze the residual
of the power flow equation. Let δei and δfi be the truncation
error of ei and fi, respectively. If the error is sufficiently small
and the second-order terms (i.e., δei ·δej , δei ·δfj , and δfi ·δfj)
are ignored, the residual of (4) is expressed as:

∥fi(x)−Pi∥2=

∥∥∥∥∥∥∥∥
ei

N∑
j=1

(Gijδej−Bijδfj)+δei
N∑
j=1

(Gijej−Bijfj)

+fi
N∑
j=1

(Gijδfj+Bijδej)+δfj
N∑
j=1

(Gijfj+Bijej)

∥∥∥∥∥∥∥∥
2

.

(21)
Equation (21) implies that the residual of the power flow
equation ∥f(x)−y∥2 is approximatively a linear function of
the truncation error δei and δfi. Let Res(δx) be the residual

of the power flow equation associated with the truncation error
δx. We have:

Res(β · δx) ≈ β ·Res(δx), (22)
where β is a constant. Combining (20) and (22) yields the
following equality:

Res
(
R
(
λ(m+1,a), n

))
Res

(
R
(
λ(m+1,b), n

)) ≈
(
λ(m+1,a) − λ(m)

λ(m+1,b) − λ(m)

)n+1

. (23)

3) Step Size Prediction: The step size is estimated based on
(23). As a heuristic, we first tentatively solve the coefficients of
the power series expansion at an empirically selected loading
factor λ(m+1,pre)=λ(m)+0.2

(
λ(m)−λ(m−1)). The highest order

coefficient x[n] is set as the truncation error R
(
λ(m+1,pre), n

)
.

Then, the residual Res
(
R
(
λ(m+1,pre), n

))
is calculated using

(21). Finally, to ensure that the residual at λ(m+1) equals to the
given threshold eps, λ(m+1) is calculated using (23):
λ(m+1) =

λ(m)+
(
λ(m+1,pre)−λ(m)

)(
eps

Res(R(λ(m+1,pre),n))

) 1
n+1

.
(24)

This method can generally guarantee a small residual as
long as the expansion point is far away from the collapse point.
Starting from the estimated loading factor λ(m+1) by (24), we
continuously check the residual when a new point is solved. If
the residual is larger than eps, we repeatedly reduce the step
size by 1

2 and resolve the the coefficients of the power series
expansion. If the number of iterations exceeds a given limit but
the residual remains larger than eps, it indicates that the current
loading factor is overly large and the power system is very
close to the collapse point. In this case, the forward stepping
procedure ends and we will perform backward stepping in the
next step.

C. Backward Stepping
To trace the lower half of the PV curve, a starting point

on the lower half curve is required. It has been proven in the
literature that the PV curve close to the collapse point is close
to a quadratic function [14]. Therefore, in the neighbourhood
of the collapse point, the upper half and lower half curves are
nearly horizontally symmetric. For convenience, we label the
last two points from forward stepping as A and B respectively,
as shown in Fig. 1. Point B is the last point of forward stepping
and, hence, it is close to the collapse point. Based on these
two points A and B and the symmetric assumption, we can
estimate a new point C on the lower half curve. As shown in
Fig. 1, the voltages of the three points satisfy the following
equation:

(eA + eC) ≈ 2eB, (fA + fC) ≈ 2fB , (25)
where e and f stand for the real and imaginary parts of the
voltage. Based on (25), we can obtain an “approximate” point
on the lower half curve for each bus. Taking this predicted
point as the initial guess, we further apply the NR method to
solve the power flow equation, resulting in a solution that sits
on the lower half of the actual PV curve.

Once we obtain the aforementioned starting point, we can
trace the entire lower half of the PV curve by applying the
same method that is used for forward stepping. Here, we
gradually decrease the loading factor and solve the power
flow equation by the proposed PSM until the loading factor
is sufficiently small.



prediction

NR correction

symmetric curve

actual curve

A

B

C

Fig. 1. Illustration of how to obtain a starting point on the lower half of the
PV curve for backward stepping.

D. Collapse Point Estimation
Once we obtain both the upper and lower halves of the PV

curve, we can estimate the collapse point of the power system
by extrapolation. We first select a bus that has the largest slope
between the last two points of the upper half curve [8]. We
then form two straight lines based on the selected bus. One line
passes through the last two points of the upper half curve of
the selected bus and the other line passes through the last two
points of the lower half curve of the selected bus. Finally the
intersection point of the two lines is calculated as the collapse
point.

IV. EXPERIMENTAL RESULTS

For testing and comparison purposes, three different meth-
ods are implemented to trace PV curves: (i) the proposed
PSM, (ii) the conventional embedding method that is sim-
ilar to HELM [9], and (iii) the CPF method offered by
MATPOWER [19]. Both the proposed PSM and the embedding
method are implemented in C/C++ with the same step size
to trace PV curves. As such, a fair comparison on both
accuracy and runtime can be made for these methods. Eight
test cases provided by MATPOWER are used. All experiments
are performed on a desktop with an Intel i7 3.6GHz CPU and
16GB memory.

A. Comparison on Robustness
As mentioned in [8], the CPF method does not always

work because the extended Jacobian matrix may be singular
under specific loading conditions. To illustrate this limitation
of CPF, we consider the test case with 3012 buses. In Fig. 2,
we show the PV curves calculated by several different methods
for the 741st bus. The CPF method fails in this example before
the collapse point is reached. Fig. 3 shows the zoomed-in PV
curves near the collapse point. It shows that the CPF method
fails on the upper half of the PV curve when the loading
factor is around 1.3597. In addition, due to the numerical
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Fig. 2. The PV curves calculated by different methods are plotted for the
741st bus of the test case with 3012 buses.
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Fig. 3. The zoomed-in PV curves calculated by different methods are plotted
for the 741th bus of the test case with 3012 buses.

issues caused by the singular Jacobian matrix, the PV curve
obtained by CPF is not smooth around its failure point. Fig. 3
also shows that the conventional embedding method cannot
accurately estimate the PV curve around the collapse point.
Unlike the conventional methods, our proposed PSM traces
the PV curve both accurately and robustly in this example.
In what follows, we will further compare the accuracy and
runtime between the different methods.

B. Comparison on Accuracy
We first compare the accuracy for the estimated PV curve

between our PSM and the embedding method as shown in
Table I. The accuracy is assessed by the maximum (MAX)
error and the root-mean-square (RMS) error of the upper half
of the PV curve. Here we only measure the error for the upper
half curve, because the conventional embedding method was
not particularly designed to detect the collapse point and trace
the entire PV curve. In our experiment, the PV curve estimated
by CPF is used as the golden solution for error calculation. The
MAX error and the RMS error are defined as:

ErrorMAX = max
1≤i≤Pt

{∣∣∣VPSM/Emb(λ
(i))−VCPF (λ

(i))
∣∣∣} ,

ErrorRMS=

√√√√ 1

Pt

Pt∑
i=1

(
VPSM/Emb(λ(i))−VCPF (λ(i))

)2
,

(26)
where VPSM/Emb(λ

(i)) and VCPF (λ
(i)) are the voltage mag-

nitudes at the ith loading factor on the upper half curve esti-
mated by the PSM/embedding method and the CPF method,
respectively; Pt is the number of points on the upper half
curve. Note that both the MAX error and RMS error of the
embedding method are 3 to 6 orders of magnitude larger than
those of our PSM. Even after the order is increased from 22 to
60 for the embedding method, the error does not significantly
decrease.

In these examples, our proposed PSM achieves superior
accuracy over the conventional embedding method due to the

TABLE I. ABSOLUTE ERRORS (P.U.) FOR ESTIMATED PV CURVES.

Case # # of buses
Absolute error (PSM) Absolute error (Embedding)

Order=15 Order=22 Order=60
MAX RMS MAX RMS MAX RMS

1 39 4.46E-06 1.45E-06 3.18E-02 1.55E-02 1.17E-02 4.17E-03
2 57 1.30E-05 4.53E-06 2.66E-02 1.08E-02 7.45E-03 2.47E-03
3 118 1.74E-06 5.05E-07 3.20E-02 1.90E-02 1.25E-02 6.10E-03
4 300 3.86E-06 1.20E-06 3.83E-02 1.92E-02 1.50E-02 5.80E-03
5 2383 1.41E-06 3.65E-07 3.69E-02 1.65E-02 1.19E-02 4.70E-03
6 2746 3.11E-06 7.33E-07 6.42E-02 3.29E-02 2.59E-02 1.06E-02
7 3120 1.55E-07 3.84E-08 4.15E-02 2.47E-02 2.12E-02 1.07E-02



following reason: the PSM always solves a new point on
the PV curve based on the power series expansion of the
previous point. The proposed step size control method ensures
the accuracy of the new point that is solved. On the contrary,
the embedding method cannot easily take advantage of the
solution at the previous point. For a given loading factor, the
embedding method must rely on the expansion of a reference
point at which the power flow equation becomes linear and,
hence, trivially simple to solve (i.e., the no-load, no-generation
case) [9]. Because the loading factor at the reference point can
be significantly different from the given loading factor at the
new point on the PV curve, extrapolating from the reference
point to the new point often results in large errors.

We further verify the correctness and accuracy of our PSM
based on the estimated collapse points. Table II compares the
collapse points estimated by our PSM and the CPF method.
Here the collapse points estimated by CPF are treated as the
golden solution to evaluate the error for our PSM. Note that
although CPF is treated as the golden solution, it may fail as
shown in Fig. 3. As shown in Table II, the absolute error of our
PSM is in the order of 10−8 to 10−4. It, in turn, demonstrates
that the PSM can robustly and accurately calculate the collapse
points for these test cases.

C. Comparison on Runtime
Table III compares the runtime for estimating the upper

half curve by our PSM and the embedding method, when
both of them use the same step size. The embedding method
with Order=22 has a similar computational cost as our PSM.
When the order of the embedding method is increased to 60,
it is about 7 to 8 times more expensive than our PSM. As
shown in Table I, the maximum error and the RMS error of
the embedding method are both much larger than those of
our PSM. Based on these results, our PSM offers superior
performance over the conventional embedding method.

V. CONCLUSION

In this paper, we propose a novel PSM to trace the PV
curve and estimate the collapse point both efficiently and
robustly. Towards this goal, bus voltages are approximated by
power series such that an unknown point on the PV curve
can be extrapolated based on a known point that is computed

TABLE II. COLLAPSE POINTS (A.U.) ESTIMATED BY PSM AND CPF.

Case # # of buses PSM CPF Absolute error
1 39 1.135698 1.135697 1.50E-06
2 57 0.892091 0.891769 3.22E-04
3 118 2.187100 2.187100 1.16E-07
4 300 0.429341 0.429339 2.37E-06
5 2383 0.893713 0.893670 4.29E-05
6 2746 1.876904 1.876486 4.18E-04
7 3120 1.331414 1.331413 8.33E-08

TABLE III. RUNTIME (SECONDS) FOR ESTIMATING THE UPPER HALF
CURVE.

Case # # of buses PSM Embedding
Order=15 Order=22 Order=60

1 39 0.0032 0.0037 0.0266
2 57 0.0046 0.0047 0.0334
3 118 0.0138 0.0145 0.1061
4 300 0.0266 0.0275 0.2072
5 2383 0.1601 0.1576 1.1299
6 2746 0.2347 0.2200 1.6176
7 3120 0.3137 0.3149 2.4128

in the previous iteration step. A novel stepping scheme is
developed to efficiently trace both the upper and lower halves
of the PV curve where the step size is optimally controlled.
Experimental results reveal that our proposed PSM offers
enhanced robustness, superior accuracy and reduced runtime
over the conventional CPF method and embedding method.
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