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Ahstract-The emerging resistive random-access-memory 
(RRAM) crossbar provides an intrinsic fabric for matrix-vector 
multiplication, which can be leveraged as power efficient linear 
embedding hardware for data analytics such as compressive 
sensing. As the matrix elements are represented by resistance of 
RRAM cells, it imposes constraints for the embedding matrix due 
to limited RRAM programming resolution. A random Boolean 
embedding can be efficiently mapped to the RRAM crossbar 
but suffers from poor performance. Learning-based embedding 
matrices can deliver optimized performance but are continuous­
valued which prevents it from being mapped to RRAM crossbar 
structure directly. In this paper, we have proposed one algorithm 
that can find an optimal Boolean embedding matrix for a given 
learned real-valued embedding matrix, so that it can be effectively 
mapped to the RRAM crossbar structure while high perfor­
mance is preserved. The numerical experiments demonstrate 
that the proposed optimized Boolean embedding can reduce the 
embedding distortion by 2.7x, and image recovery error by 2.5x 
compared to the random Boolean embedding, both mapped on 
RRAM crossbar. In addition, optimized Boolean embedding on 
RRAM crossbar exhibits 10x faster speed, 17x better energy 
efficiency, and three orders of magnitude smaller area with slight 
accuracy penalty, when compared to the optimized real-valued 
embedding on CMOS ASIC platform. 

I. Introduction 
Dimension reduction is a critical approach to alleviate 

the workload of data analytics, where high-dimensional data 
vectors are projected into a low-dimensional subspace with 
preserved intrinsic information. The concise representation is 
called a low-dimensional embedding. In compressive sensing, 
the linear embedding is the first step performed by matrix­
vector multiplication to acquire a low-dimensional representa­
tion of the original data [ 1]. The traditional CMOS circuit 
based matrix-vector multiplier for large-size embedding (or 
sensing) matrix is both power consuming and speed-limited, 
which becomes the bottleneck of data acquisition hardware. 
Specifically, the numerous operations of multiplication and 
addition require both large amount of multipliers and adders 
and considerably many cycles. Moreover, the embedding ma­
trix needs to be stored in SRAM memory that is separate 
from multipliers and adders circuits, and therefore both large 
dynamic power for frequent operands loading and static power 
from SRAM cells will be incurred. 

Recently, the emerging resistive random-access memory 
(RRAM) [2][3] in crossbar (or cross-point) structure [2] can 
provide intrinsic fabric for matrix-vector multiplication. The 
matrix elements are represented by the conductance values of 
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one RRAM mesh. Its compactness and non-volatility poten­
tially enable both area- and energy-efficient hardware imple­
mentation of linear embedding. However, the limited RRAM 
programming resolution imposes constraints for the embedding 
matrix that can be mapped to RRAM crossbar structure. 
Specifically, intended for data storage, RRAM crossbar is 
mostly bistable and in some cases progranunable in 4 to 5 
levels of resistance values at most [4][5]. Therefore, to exploit 
RRAM crossbar for efficient matrix-vector multiplication, it 
is important to comply with such hardware implication when 
constructing embedding matrices. Another consideration of 
embedding matrix construction is the isometric distortion 
minimization. In order to ensure a successful recovery of the 
compressed data, the embedding matrix needs to satisfy the 
restricted isometry property (RIP) [1]. 

The simplest embedding matrix that complies with the 
programming resolution constraint of RRAM crossbar is the 
random Boolean matrix that follows Bernoulli distribution. 
Despite its simplicity of construction the random Boolean 
embedding has two limitations. Firstly, its guarantee on isom­
etry preservation is only probabilistic and therefore large 
distortion error may be experienced. Secondly, its construction 
is independent on the data under investigation, and therefore 
the geometric information of dataset cannot be exploited. The 
optimized embedding, on the other hand, can leverage geomet­
ric structure of dataset in particular application with additional 
learning phase. For example, the work in [6] constructs an 
optimized embedding matrix that has deterministic guarantee 
on RIP, and optimizes the distortion with an upper bound for 
the given training dataset. However, the optimized embedding 
matrix is real-valued which prevents it from being mapped to 
RRAM crossbar. 

In this paper, we propose a novel algorithm that can find an 
optimal Boolean embedding matrix such that it can be effec­
tively mapped to the RRAM crossbar structure. The proposed 
algorithm transforms a given optimized real-valued embedding 
matrix into a Boolean embedding matrix under orthogonal or 
near-orthogonal rotations. As such, the minimized isometric 
distortion for the optimized real-valued embedding can be 
well preserved. In other words, the Boolean embedding matrix 
can be considered still optimized for same training data set. 
In addition, the design of RRAM crossbar based embedding 
for front-end image data acquisition is also demonstrated. The 
numerical experiments demonstrate that on RRAM crossbar 
the proposed optimized Boolean embedding can reduce the 
embedding distortion by 2.7x, and image recovery error by 
2.5x compared to the random Boolean embedding. Moreover, 
optimized Boolean embedding on RRAM crossbar exhibits 



lOx faster speed, 17x better energy efficiency, and three orders 
of magnitude smaller area with slight accuracy penalty, when 
compared to the optimized real-valued embedding on CMOS 
ASIC platform. 

The rest of this paper is organized as follows. Section 11 
introduces the background of compressive sensing and near­
isometric embedding. Section III presents the RRAM crossbar 
based embedding hardware with the according optimization 
problem formulated. Section IV details the Boolean embedding 
optimization and heuristic algorithm. Numerical results are 
presented in Section V with conclusion in Section VI. 

11. Background 
A. Compressive Sensing and Isometric Distortion 

Recently, the emerging theory of compressive sensing has 
enabled the recovery of under-sampled signal, if the signal is 
sparse or has sparse representation on certain basis, such as 
wavelet transformation and Fourier transformation. And the 
recovery can be achieved by solving, 

minimize Ilxll I xEIRN 
subject to y = <1?[lx, 

(1) 

where x E JRN is the sparse coefficients vector and [l E JRNxN 

is the basis on which the original signal is sparse; <1? E JRMxN 

is the sensing matrix and y E JRM (M « N) the undersampled 
data in low dimension. To ensure a successful recovery, the 
sensing matrix(<1?) must meet the restricted isometry property 
(RIP), which is defined as: if there exists a Ok E (0, 1) such 
that the following equation is valid for every vector v E JRN, 

then <1? has the RIP of order k, and Ok is defined as the isometric 
distortion for embedding matrix <1? 

B. Near-Isometric Embedding 

The easiest way to construct a matrix with RIP is to 
generate a random matrix. The work [7] proves that random 
matrix is of a very high possibility to satisfy RIP, yet not 
deterministic. Different from the random Bernoulli embedding 
matrix that the RIP is probabilistic, an optimized embedding 
matrix can ensure the RIP of a finite given data points. 
One recent work in [6] proposed the NuMax framework to 
construct a near-isometric embedding matrix with deterministic 
RIP. Given a dataset X = {X I,X 2, ... ,xd E JRN, the NuMax 
produces an optimized continuous-valued embedding matrix W 
so that every pairwise distance vector v for X can preserve its 
norm after embedding up to a given distortion tolerance omax. 

III.RRAM Crossbar for Embedding 
A. Image Acquisition Front-end Embedding Hardware 

One primary application of compressive sensing [1] is 
for image data acquisition, where the image data collection 
is performed simultaneously with the linear embedding. The 
data acquisition front-end with traditional CMOS embedding 
circuit is shown in Fig. l(a). The embedding accelerator has 
two major components, the SRAM memory that stores the 
embedding matrix, and the multiplier-accumulators (MAC) 
that perform multiplication and addition. 
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(a) 

(b) 

Fig. l. The embedding circuit by (a) digital CMOS matrix multiplier and 
(b) RRAM crossbar 

The CMOS embedding accelerator, however, suffers from 
both high power consumption and limited speed. Power­
wise, the intensive memory accesses for loading <1? will incur 
significant dynamic power for memory. In addition, large 
leakage power will be experienced in deep sub-micron regime, 
especially for SRAM cells, registers in MAC. Speed-wise, 
the matrix-vector multiplication requires multiple cycles to 
perform. Specifically, for an embedding matrix <1? E JRmxn 

(m « n), in each cycle, m MACs multiply one element 
of input vector x with one column of <1?, and then add with 
previously accumulated results. Therefore, it requires n cycles 
to obtain the embedding result, which may not be acceptable 
for images acquisition application, as images usually have 
very high dimensions (large n). To perform matrix-vector 
multiplication in one-cycle, it requires m x n multipliers and 
many adders in cascade with extremely long critical path, 
which is neither economical nor speed-improving. In addition, 
to read out one column of <1? in each cycle is infeasible when 
m is large due to limited memory bandwidth, and therefore 
the memory operation may require multi-cycle as well. 

Due to extremely low leakage power and also intrinsic 
in-memory implementation of matrix-vector multiplication, 
we explore the emerging resistive random-access-memory 
(RRAM) crossbar [2][3][8] based solution in this paper, which 
is proposed in Fig. l(b). Compared to CMOS embedding 
circuit, RRAM crossbar based accelerator can provide three 
major advantages: (1) embed sensing matrix in-memory with­
out the need of loading <1? externally each cycle, (2) perform the 
matrix-vector multiplication in single cycle, and (3) minimize 
the leakage power due to its non-volatility. 

The RRAM is a type of emerging non-volatile memory 
technology that utilizes resistance changing material. Its re­
sistance can be altered by controlling the polarity of Vw 
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(lVw I > vth), where vth is the threshold voltage for device 
programming. Crossbar or cross-point memory structure is 
often associated with RRAM devices, which is shown in Fig. 
l(b). A RRAM crossbar structure is composed of three layers: 
horizontal wires at top layer, vertical wires at bottom layer and 
RRAM devices in the middle layer at each cross-point. 

For a m x n RRAM crossbar, assume the input signal of 
ith row is Vi and the conductance of RRAM device on ith row 
jth column is Gij , then the output current flowing down jth 
column Ij = ��l ViGij . In other words, crossbar structure 
intrinsically supports in-memory embedding operation, [VI] [Gll 

V2 G21 
· =Z . · . · . 

Vm Gm1 

GIn ] [VI] 
G2n V2 

· . , · . · . 
Gmn Vn 

(3) 

where Z is the transimpedance of the transimpedance amplifier 
(TIA). During embedding, it must be ensured that input 
1IVlloo « vth to avoid accidental value changes of G. 

B. Problem Formulation 

Intended for memory usage, RRAM devices are commonly 
bistable with on-resistance and off-resistance ratio as high 
as 103 rv 104 [3][4]. Resistance programming with higher 
resolution has been demonstrated in 4 or 5 levels at most 
[4] [5]. Therefore, resistance programming in continuous (or 
close-continuous) value resolution is practically challenging 
under current manufacture technology. 

For an embedding matrix W that satisfies RIP with distor­
tion of ow, the following equation will also hold true 

(1 - Ow )llxl12 
2 ::; I ITwxl12

2 ::; (1 + Ow )llxl12 
2, (4) 

if T is an orthogonal rotation matrix. In other words, if we 
can find an orthogonal rotation matrix that transforms real­
valued embedding matrix W into a matrix that is close enough 
to a Boolean matrix, then the embedding can be efficiently 
executed by RRAM crossbar with preserved distortion O. 
The Boolean embedding matrix optimization can be then 
formulated as following equation 

minimize 
T,�,k 

subject to TT. T = I 

WE {-I, l}mxn , 

(5) 

where W E IRmxn (m < n) is the optimized real-valued 
projection matrix learned from dataset, that projects data from 
high n-dimension to low m-dimension; T E IRmxm is an 
orthonormal rotation matrix that attempts to transform w to 
a Boolean matrix. W E IRmxm is the closest Boolean matrix 
solution where closeness is defined by the Frobenius norm; k 
is the scaling factor that corresponds to the TIA in Figure 1 (b). 

The optimization is performed off-line, and once the binary 
embedding matrix W is obtained, the RRAM devices of the 
crossbar can be programmed accordingly. As the RRAM 
crossbar is essentially (0, 1) binary in terms of conductance, 
the mapping of (0, 1) Boolean matrix follows: 0 corresponds to 
high resistance state (HRS) and 1 maps to low resistance state 
(LRS). To map WE {-I, l}mxn, simple linear transformation 
needs to be considered: W x = (28 - J)x = 28x - J x, where 

8 E {O, l}mxn, J all-ones matrix and x input vector. The J 
matrix can be implemented by an all-LRS RRAM crossbar, 
or favorably an additional all-LRS column to generate �x as 
current offset for other columns. 

Another issue of value mapping is the RRAM RHS and 
LHS variations. Though RHS variation is large [9], the system 
is insensitive to RHS variation when on/off ratio is high 
(G LRS » G H RS � 0 ). For LHS variation, by material 
engineering [10] and verification programming method [9], 
high LHS uniformity can be achieved. 

IV. Boolean Matrix Optimization 
It is intractable to solve the problem formulated in Eq. 

5 considering the orthogonal constraint TT . T = I and 
the integer constraint W E {-I, I} simultaneously, as both 
constraints are non-convex. When one constraint is considered 
at one time, Eq. 5 can be split into two manageable problems: 
if the orthogonal constraint is considered for T, and W a 
given Boolean matrix, the problem becomes the search of 
an orthogonal rotation matrix for maximal matrix agreement; 
if the integer constraint is considered for W, and T a given 
orthogonal matrix, the problem turns to Boolean quantization 
for maximal matrix agreement. In this section, a heuristic 
approach is proposed that iteratively solves orthogonal rotation 
problem and Boolean quantization problem, and gradually 
approximates the optimal solution of W in each round. 

A. Orthogonal Rotation 

The problem of finding an orthogonal transformation ma­
trix T that can rotate a given real-valued projection matrix W 
to another given Boolean matrix W can be formulated as 

minimize IlkTw - W I I} 
T,k 

subject to TT. T = I. 
(6) 

The cost function can be represented by trace function as 

IlkTw - W I I} =k 2 Tr (wTw) + Tr (WT W) 
- 2kTr (TT W wT). 

(7) 

As wand W are given matrices, Tr (wTw) and Tr (WT W) 
are therefore two constants. Consider k as constant first, the 
formulated optimization problem in Eq. 6 can be rewritten as 

maximize Tr (TT W wT) 
T 

subject to TT. T = I, 
(8) 

and with the singular value decomposition W wT = U�VT 
where � = diag(al, ... , a n) , the cost function of Eq. 8 can be 
rewritten as 

n 
(9) = Tr(VTTTU�) ::; L ai· 

i=1 
The inequality holds as V, T, and U are all orthonormal 
matrices. As such, the trace is maximized when VTTTU = I, 
which leads to 

T= UVT. (10) 



To optimize k, let �{ = 0 in which f is the cost function of 
Eq. 7, and the best scaling factor can be obtained by 

Tr (TT� WT) k = 
Tr (WTW) . (11) 

B. Boolean Quantization 

T is a known orthogonal transformation matrix, and W is 
a given real-valued optimized projection matrix, the problem 
to find its closest Boolean matrix can be formulated as 

minimize IlkTw -� I I} � 

subject to � E {-I, I}. 
It is obvious that the solution for Eq. 12 is 

, {I, Wij = 
-1, 

(kTw)·· > 0 2J -

(kTW) ij < O. 

(12) 

(13) 

This can be seen as Boolean quantization. The quantization 
error can be defined as 

e = IlkTw -� I I}· (14) 

In ideal case, the error would be zero which means an 
orthogonal transformation T on optimized real-valued projec­
tion matrix W finds an exact Boolean matrix �. Therefore, the 
distortion o� caused by � will be the same as ow. With e i- 0, 
it can be inferred that o� > ow. To reduce the quantization 
error, it is an intrinsic idea to increase the level of quantization. 
Consider a modified problem formulation { I, 

I]/ij = 0, 
-1, 

(kTW) ij � 1/2 
-1/2 � (kTW) ij < 1/2 
(kTW) ij < -1/2, 

(15) 

with each element of the matrix W normalized within the 
interval of [-1, 1]. It is important to keep matrix Boolean 
so that it can be mapped to RRAM_ crossbar structure effi­
ciently, thus it requires the matrix W can be split into two 

- A l A 2 -

Boolean matrices W = � (w + w ) where W E {-I, 0, 1} 
A l , 2 

and W , W E {-I, I}. With Boolean quantization, only one 
projection RRAM crossbar is needed. Two RRAM crossbars 
are needed for the three-level quantization case, as a result of 
trade-off between error and hardware complexity. 

C. Heuristic Optimization Algorithm 

The heuristic optimization process is summarized in Alg. 
1. Given some initial guess of �, the inner loop of Alg. 1 
tries to find the local close-optimal solution by improving � 
through iterations. Within each iteration, Eq. 6 and Eq. 12 are 
solved by singular vector decomposition and quantization as 
concluded in Eq. 10 and Eq. 15, respectively. The iterations 
terminate when the � stops improving and converges. 

As both integer constraint and orthogonal constraint are 
non-convex, thus the local optimum in most cases is not 
optimal globally. In other words, the solution strongly depends 
on the initial guess that leads to the local close-optimum. 
Therefore, the outer loop of Alg. 1 increases the search 
width by generating numerous initial guesses that scatter 
within orthogonal matrices space. For each initial guess it will 
gradually converge to a local optimum, thus the increase of 
search width will compare numerous local optimal solutions 
and approximate the global optimum. 

Algorithm 1: Heuristic Boolean embedding matrix opti­
mization algorithm 

input : real-valued embedding matrix W, search width, 
and quantization level 

output: optimized Boolean embedding matrix � opt 
1 initialize � opt +--- random m x n Bernoulli matrix; 
2 while not reach search width limit do 
3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

seed +--- random m x m matrix; 
U, S, V +--- SVD of seed; 
T +--- U; 
while not converged do 

� +--- quantization of Tw; 
A T U, S, V +--- SVD of W W ; 

T +--- UV; 
k +--- Tr (TT � WT) / Tr (wTw); 

A 2 A 2 if IlkTw - w I IF < IlkoptToptW - wopt I IF then 

L � opt +--- �; 

V. Numerical Results 
A. Experiment Settings 

As image data is a common signal type for compressive 
sensing, LFW image database [11] is selected. For learning 
phase, 6,000 patches with size of 8 x 8 are randomly picked 
throughout all images as the dataset X, which leads to around 
18 millions of pairwise distance vectors in set S (X). The 
NuMax algorithm [6] is used for real-valued embedding matrix 
optimization. For testing phase, another 6,000 patches with 
size of 8 x 8 are selected as dataset X', which have no overlap 
with learning dataset X. To agree with patch size, all m x n 
embedding matrix has fixed n value of 64 while the m can be 
varied. Moreover, for the embedding hardware performance 
comparison, the resistance of lKn and IMn are used for 
RRAM on-state resistance and off-state resistance according 
to [4]. A digital CMOS matrix multiplier design with 8-bit 
resolution is implemented by Veri log and synthesized with 
GlobalFoundries 65nm low power PDK. 

B. Algorithm Efficiency 

The efficiency of Alg. 1 can be examined from two aspects, 
finding both local and global optima. The efficiency of finding 
local optimum is assessed by convergence rate. The local 
search terminates when the approximation error I ITw -� I I} 

A 2 
stops getting improved. The relative error IITlf;j�"p is intro-
duced as an efficiency caliber among W with different sizes. 
As W is an orthogonal matrix, 11 W I I} is close to the number 
of rows of wand in this case also the rank of w. 

Given specific RIP requirement, NuMax [6] provides W 
with different ranks. Algorithm 1 is applied to W with various 
number of rows (m), and the convergence is illustrated in 
Fig. 2(a). Each line is averaged by 1000 repeated local search 
experiments. It can be observed that the relative error improves 
fast at first tens of iterations, and the trend slows down 
afterwards. The zoomed sub-figure shows that all quartiles of 
statistical relative errors follow same trend with each iteration. 
Generally, the local optimum can be considered found in less 
than 100 iterations. 
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Fig. 2. The algorithm efficiency for (a) local search convergence and (b) 
global search convergence 

The global search is achieved by scattering many initial 
guesses in the orthogonal matrices space for T, and comparing 
the according local optima. The relative errors under varying 
number of initial guesses are shown in Fig. 2(b). Considering 
the Boolean constraint and the orthogonal constraint, the 
problem formulated in Eq. 5 is generally NP-hard. Therefore, 
the relative error can be improved by scattering exponentially 
more initial guesses, yet no convergence is observed. Hence an 
efficient search policy would be designed in a way scattering 
as many initial points as possible and limiting the local search 
for each initial guess within 100 iterations. 

C. Isometric Distortion Comparison 

The key of embedding is to represent a high dimensional 
vector by another low dimensional vector with as little isomet­
ric distortion as possible. The isometric distortion <5 is defined 
in Eq. 2. In this part, the isometric distortion is compared for 
four different embeddings: the random Boolean embedding, 
the Gaussian embedding, the NuMax optimized real-valued 
embedding, and the proposed optimized Boolean embedding. 

The distortions of the all embeddings are tested on unseen 
dataset X'. Being optimized on image dataset X, both the 
NuMax and optimized Boolean embeddings are significantly 
better than random embeddings. And the isometric distortions 
of all three random embeddings are almost invariant. With fo­
cus on the Boolean embedding matrices that are RRAM cross­
bar compatible, the isometric distortion of optimized Boolean 
embedding is 2.7x better than random Boolean embedding on 
average. Due to the near-orthogonal rotations, the optimized 
Boolean embedding experiences some penalty on isometric 
distortion <5 compared to NuMax approach. Nevertheless, the 
result shows that the distortion penalty can be reduced by 
increasing quantization level from two (Eq. 13) to three (Eq. 
15). Specifically, the lv3 optimized Boolean embedding shows 
23% less distortion than lv2 optimized Boolean embedding, 
which is because that the embedding matrix with higher reso­
lution has less information loss compared to NuMax. This is, 
however, not the case for random Boolean embedding, as the 
increase of resolution will not gain any additional information 
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Fig. 3. The embedding isometric distortion on the unseen dataset different 
embedding matrices 

and will eventually approximate Gaussian embedding. The 
overhead for lv3 optimized Boolean embedding is that the 
W E { -1, 0, I} needs to be split into two W E { -1, I} so that 
an additional RRAM crossbar is required. 

D. Image Recovery Quality Comparison 

The signal recovery error is another critical metric of em­
bedding matrix quality. The image reconstruction is performed 
for unseen data set X' by solving Eq. 1 with 2D DCT basis 
used, and the recovery quality is characterized by error per 

pixel (EPP) defined as 11:-x:"I, where m x n is the dimension 

of the image, X the original image and X the recovered signal. 
The recovery examples under "( = �� are shown in Fig. 

4(a). The reconstructed images in blue box correspond to 
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Fig. 4. The recovery quality comparison among different embedding matrices: 
(a) examples of recovered images under 'Y = 25/64 and (b) statistical error 
per pixel (EPP) for 6000 8 x 8 image patches 



TABLE I. HARDWARE PERFORMANCE COMPARISON BETWEEN RR AM 
CROSSBAR BASED BOOLEAN EMBEDDING AND CM OS CIRCUIT BASED 

REAL-VALUED EMBEDDING 

Embedding Embedding 
configuration energy (nJ) 

25x64 CMOS ASIC 5.6700 
RRAM crossbar - 0.3324 -

27x64 CMOS ASIC 6.1236 
RRAM crossbar - 0.3607 -

28x64 CMOS ASIC 6.3504 
RRAM crossbar - 0.:f74T -

30x64 CMOS ASIC 6.8040 
RRAM crossbar - 0.3993 -

34x64 CMOS ASIC 7.7112 
RRAM crossbar - 0.4558 -

39x64 CMOS ASIC 8.8452 
RRAM crossbar - 0.5228 -

48x64 CMOS ASIC 10.8864 
RRAM crossbar - 0.6421 -

Leakage 
power (/LW) 

59 
-----

64 -----
66 -----
71 -----
81 -----
92 

-----
114 

-----

Area 
(/Lm2) 
86650 

- 54-
93580 

-58-
97050 -60-

103980 
- 65 -
117850 

-74 -
135180 

- 84 -
166370 

-104-

Boolean embeddings that are compatible with RRAM crossbar. 
The NuMax and optimized Boolean embedding (lv3) matrices 
are learned from training dataset, and therefore according 
recovered images in red box show lower error compared to 
both Gaussian and Boolean random embeddings. The detailed 
numerical image recovery quality is shown in Fig. 4(b). Each 
point is evaluated by averaging the error of 6000 recovered 
unseen patches. The two random embeddings show similar 
reconstruction error, which is averagely 2.5x higher than 
that of the proposed optimized Boolean embedding. On the 
other hand, the recovery performance of optimized Boolean 
embedding is close to that of NuMax embedding, which is 
17% higher than that of the NuMax based embedding, as a 
penalty of being compatible with RRAM crossbar. 

E. Hardware Performance Comparison 

It can be concluded that the optimized Boolean embedding 
can be mapped to the RRAM crossbar with less isometry dis­
tortion and lower recovery error when compared to the random 
Boolean embedding. In this part, the hardware performance 
will be further examined between the RRAM crossbar based 
Boolean embedding and the CMOS circuit based real-valued 
embedding. The evaluation only focuses on the embedding 
hardware as indicated by red dash-lined boxes in Fig. l. 

The area of the RRAM crossbar is evaluated by multiplying 
the cell area (4p2) with embedding matrix size. Dynamic 
power of the RRAM crossbar is evaluated statistically under 
1000 random input patterns following an uniform distribution 
with voltage ranging from -O.5V to O.5V (IVI < IVsetl = 
O.8V and IVI < IVresetl = O.6V [4]) and the duration 
of operation is 5ns [4]. A matrix-vector multiplier with 8-
bit resolution is synthesized with GlobalFoundries 65nm low 
power PDK for area and power evaluation. The matrix-vector 
multiplier is composed of multiple vector-vector multipliers in 
parallel. For vector inner product operation, an 8-bit multi­
plier and full-adder pair is used in iterative fashion, and the 
embedding requires 64 cycles with each cycle 0.9ns. 

For the operation speed, the RRAM crossbar embedding 
executes in single cycle while the CMOS circuit requires 
64 cycles (57.6ns) due to the reuse of hardware. For single 
cycle CMOS matrix-vector multiplication, the speed is barely 
improved as one cycle requires around 50ns due to the 
much elongated critical path, yet the area and leakage power 
will be around 64x larger. Therefore, the RRAM crossbar 
based embedding is around lOx faster than the CMOS circuit 

based real-valued embedding. For the operation energy per 
embedding, the RRAM crossbar based embedding outperforms 
the CMOS circuit based real-valued embedding by 17x on 
average. The area of the RRAM crossbar based embedding 
is more than three orders of magnitude times better than that 
of CMOS circuit based real-valued embedding. 1604x area 
reduction can be achieved with 25 x 64 embedding matrix. In 
addition, the RRAM crossbar will not experience the leakage 
power which is 78/J W on average for the CMOS circuit based 
approach. 

V I. Conclusion 
In this work, towards energy efficient hardware implemen­

tation of compressive sensing on the emerging RRAM cross­
bar, a novel embedding algorithm is proposed to transform a 
given real-valued embedding matrix into a Boolean embed­
ding matrix under (near-) orthogonal rotations. As such the 
embedding can be effectively mapped to the RRAM crossbar 
where only the Boolean embedding is supported. In addition, 
the design of RRAM crossbar based embedding is introduced 
for the front-end image data acquisition with the compressive 
sensing ability. Numerical results show that for the RRAM 
crossbar based hardware, the optimized Boolean embedding 
in this work outperforms the random Boolean embedding 
by 2.7x in terms of isometric distortion and 2.5x in terms 
of recovery error. What's more, the RRAM crossbar based 
Boolean embedding shows lOx faster speed, 17x better energy 
efficiency, and three orders of magnitude smaller area, when 
compared to CMOS circuit based real-valued embedding. 
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