
Statistical Learning in Chip (SLIC)
(Invited Paper)

Ronald D. Blanton, Xin Li, Ken Mai, Diana Marculescu, Radu Marculescu, Jeyanandh Paramesh, Jeff Schneider, and
Donald E. Thomas

Electrical and Computer Engineering Department
Carnegie Mellon University
Pittsburgh, PA 15213, USA

{blanton, xinli, kenmai, dianam, radum, paramesh, thomas}@ece.cmu.edu and schneide@cs.cmu.edu

Abstract—Despite best efforts, integrated systems are “born”
(manufactured) with a unique ‘personality’ that stems from our
inability to precisely fabricate their underlying circuits, and
create software a priori for controlling the resulting uncertainty.
It is possible to use sophisticated test methods to identify the best-
performing systems but this would result in unacceptable yields
and correspondingly high costs. The system personality is further
shaped by its environment (e.g., temperature, noise and supply
voltage) and usage (i.e., the frequency and type of applications
executed), and since both can fluctuate over time, so can the
system’s personality. Systems also “grow old” and degrade due
to various wear-out mechanisms (e.g., negative-bias temperature
instability), and unexpectedly due to various early-life failure
sources. These “nature and nurture” influences make it
extremely difficult to design a system that will operate optimally
for all possible personalities. To address this challenge, we
propose to develop statistical learning in-chip (SLIC). SLIC is a
holistic approach to integrated system design based on
continuously learning key personality traits on-line, for self-
evolving a system to a state that optimizes performance
hierarchically across the circuit, platform, and application levels.
SLIC will not only optimize integrated-system performance but
also reduce costs through yield enhancement since systems that
would have before been deemed to have weak personalities
(unreliable, faulty, etc.) can now be recovered through the use of
SLIC.

Keywords— Integrated system design; low-power design;
statistical and machine learning

I. INTRODUCTION
 The most challenging problems in science and engineering
are so incredibly complex that many have turned to statistical
learning (SL) to derive accurate models from various forms of
empirical data. Major advances in SL have resulted in
algorithms that can now cope with significant amounts of
high-dimensional data, and most importantly, are sufficiently
robust to rely upon in critical applications. A popular use of
SL is in two-step process optimization. The first step learns a
model that approximates the relationship between system
parameters and the resulting system performance. This model
is constructed on-line from data collected during system
operation. The second step uses active learning where the
learned performance model is analyzed to determine which
parameter settings to try next. Active learning trades off the
need to experiment untested areas of the parameter space in
order to gain more information for learning, against the
objective of selecting parameters that are likely to yield
optimal performance. Often the “learner” must accomplish

this in the face of non-stationarity.
 The design, manufacture and operational characteristics
(e.g., yield, performance, reliability, power, security, etc.) of
modern integrated systems also exhibit extreme levels of
complexity that similarly cannot be easily modeled or
predicted from first principles. In this nanoscale era,
manufacturers find it increasingly difficult to control
fabrication, thus making every aspect of design (circuits, logic,
memory, communication networks, cores/uncores, etc.) a
grand challenge. Moreover, the operating environment of a
system which is characterized by temperature, supply voltage,
the amount of noise, etc. also adds a level uncertainty that is
extremely difficult to deal with optimally at the time of design.
Finally, the fact that the use of an integrated system may vary
widely from user to user adds yet another major source of
uncertainty. These sources all combine together in the worst
possible ways to establish an overall level of uncertainty that
leads to systems that exhibit non-optimal performance, or
require excessive resources to design and fabricate. For
example, modern portable, multimedia devices such as a tablet
computer require millions of engineering hours to integrate
several SoCs (systems on chip) including multiple radios,
DSPs, µPs, application-specific processors, display drivers,
and solid-state memories, altogether which execute a variety
of applications. The uncertainty exhibited by the integration
and use of various heterogeneous sub-systems within diverse
environments can be better optimized by learning and then
adapting.

II. STATISTICAL LEARNING IN CHIP
 We propose to develop new SL algorithms that enable an
integrated system to learn and adapt operation across the
system stack (i.e., the circuit, platform, and application levels)
[1]. Conventional approaches to SL assume learning takes
place on server farms characterized by virtually unlimited
compute and storage resources. Integrated systems, on the
other hand, have stringent constraints on power and security,
and thus require a more compressed learning cycle which
means a complete re-thinking of SL is necessary for it to be
effective within an integrated-system environment.
 While there is a great deal of active research that
individually addresses each source of uncertainty within an
integrated system, we instead want to tackle them all
simultaneously using a universal solution that we call a self-
evolving system. A self-evolving system has the ability to

This work has been supported in part by the National Science Foundation of
the United States under contract no. 1314876.

978-1-4673-8388-2/15/$31.00 ©2015 IEEE 664

Figure 2: Statistical learning and optimization framework.

adapt and evolve to changes and unknowns encountered both
at the time of manufacturing and over the lifetime of the
system. Figure 1 shows a hierarchical view of a self-evolving
system that consists of a bottom layer of circuits that together
form a variety of cores at the middle (platform) layer, which
are used by various tasks at the top layer to execute one or
more applications. Sensors at the circuit, platform, and
application levels collect various forms of data so that the state
of the system, from various perspectives, can be learned. This
global view is used to evolve the system into a new state (via
the various actuators shown) for improving a wide-variety of
system attributes (performance, power, reliability, etc.). At the
circuit level, temperature, voltage, and frequency are likely
quantities to be sensed. For a platform of heterogeneous cores
(e.g., computation, memory, etc.), this same data would be
useful but in addition, various real-time measures of workload,
queue occupancy, communication among different modules,
etc. would be collected as well. Finally, for an application
viewed as a plethora of interacting tasks, sensors of various
sorts are likely to already exist for enabling the application.
For instance, the brain-computer interface (BCI) application
discussed later has a sensor array for measuring neural signals.
All of this sensed data is provided to the SLIC (statistical
learning in chip) cores for learning how to improve the
behavior of the entire system which is achieved by providing
new parameter values to the level-specific actuators shown in
Figure 1. SLIC cores (SCs) perform the learning and are
employed at the circuit, platform and application levels, and
across levels. SCs are implemented in custom hardware,
software, or even “in the cloud” depending on the amount of
data and the time allotted for active learning. Actuators take
on various forms, but in general they are “control knobs” that
allow one or more operational parameters to be fine-tuned. For
instance, at the circuit level, these are controls for supply
voltage, clock frequency and body bias. At the platform level,
actuators can take the form of decisions on what memory

accesses to grant [2] [3], what communication policy to
invoke [4], and what resources to utilize or avoid to ensure
both reliability and availability. At the application level,
actuators may naturally exist already such as the sensitivity of
a robotic prosthetic controlled by a BCI. In other applications,
actuators may not be inherently present, but can always take
the form of real-time optimizers that improve application-level
performance using various statistical-learning techniques.
 There have been many publications focused on using
hardware to speedup various learning approaches (neural
networks, decision trees, etc.) [5] [6] [7] [8] [9] [10]. It cannot
be overly emphasized however, that SLIC does not fall into
that category. Our objective instead is to integrate a
comprehensive learning capability that applies to all levels
(circuit, platform and application) within an integrated system.

III. LEARNING BACKGROUND
SLIC will have the flexibility to implement several specific
learning algorithms but all will implement the forward model
illustrated in Figure 2.

 The conventional forward model accepts training data in
the form of previous parameter settings and the resulting
performances. It builds a model that predicts what
performance will be achieved by a hypothetical, new
parameter selection. A key element of these predictions is that
they come with uncertainty estimates derived from the
variance in the training data and the amount of relevant
training data for each prediction. A trivial example of learning
is a simple linear regression. In this case, learning is simply
the process of fitting the regression parameters, and the
“training data” is just the data used to perform the fit.
“Testing data” refers to any data used later to query the fitted
model for checking how well its predictions perform relative
to the true values in the data. As described next, we propose
more sophisticated methods that can fit non-linear and discrete
models, but the basic concepts are the same.
 The parameter-selection method uses the forward model to
select parameters for the next learning cycle. Selection
typically involves addressing an exploration/exploitation
problem where a tradeoff has to be made by selecting
parameters that are expected to perform well versus those that
have uncertainty, and thus could provide useful data for
improving the forward model. The selected parameters are
then applied in the target system and new data is collected on
the resulting performance that is used to update the forward
model (i.e., included in the training data for the model). The
algorithms developed for SLIC depend on features of the
target application. Here we outline some scenarios. The
highest-level distinction between scenarios is whether the

Figure 1: A self-evolving system.

665

Figure 3: A forward model for four

alternative policies.

Figure 4: A hypothetical forward model with two
continuous parameters.

parameters represent a continuous-valued space of possible
policies, or if they are a discrete set of alternative policies.

Discrete Policy Choices. Figure 3 shows the performance of a
hypothetical forward model where there are four alternative
policies the system can choose. This model does not attempt to
generalize what it learns between policies. The mean and
confidence intervals for the performance of each policy are
simply tabulated based on the data collected when the
corresponding policy is employed. In this form, the problem
is a classic multi-armed bandit [11]. Each alternative is treated
independently, and we want to learn the performance of each
while concentrating most of the trials on the best performers.
For instance, when dealing with memory accesses, policy
choices include first-come first-serve (FCFS), round-robin, or
row-buffer hit-first strategies to optimize the overall system
performance. There are two common methods for parameter
selection. The first is the UCB1 (Upper Confidence Bounds)
algorithm [12]. It provides regret bounds for arbitrary reward
distributions and can be computed quickly based on the means
and numbers of samples from each policy. The second is
Gittins indices [13]. These have the benefit of yielding
optimal (in expectation) choices for the time-discounted case
when the distributional assumptions on reward are correct.
These two algorithms are ideal for SLIC since they both
require little overhead for implementation.

Continuous Parameters. Figure 4 is a second hypothetical
forward model where there are two parameters that control a
policy. The circles represent data points collected by choosing
specific parameter settings and observing the resulting
performance. The surface is a current estimate of the function

that maps parameter values to performance. While there are
many possible function approximators that could produce this
estimate, Gaussian processes are quite interesting [14] since
they provide the ability to model nonlinear functions and also
yield confidence intervals (not shown in the figure) on their
estimates. For example, we could use these and similar
approaches to tune the transistor back-bias voltage to balance
performance and leakage of an arithmetic-logic unit (ALU) or
SRAM (static random access memory). Or in a system that
implements dynamic voltage frequency scaling (DVFS), we
can use this approach to identify the optimal voltage and
frequency combination for a time segment of the specific
application workload [15]. For a BCI application, these
techniques can be used to deal with neuroplasticity.
 It has been shown that good empirical performance can be
achieved by modifying bandit selection algorithms for the
continuous case even when the theoretical assumptions are
violated [16]. With that in mind, the UCB1 and Gittins
methods can be extended from the discrete alternatives case
for use with continuous parameters. One approach simply
evaluates a point in the continuous space as if it were a
discrete alternative by retrieving its mean, variance, and
effective number of supporting data points from the function
approximator. Then a set of candidate points are evaluated as
discrete alternatives. Generalization happens through the
function approximator, but is not explicitly considered during
selection. In higher-dimensional parameter spaces, it may be
difficult to explicitly build or search the forward model
described here. This is especially true in non-stationarity
systems where the performance data becomes stale long
before sufficient data has been collected to build a reasonable
model. For these scenarios, a “model free” approach can be
implemented based on gradient ascent [17]. The only
information stored by the forward model will be an estimate of
the gradient derived from the most recent data points. The
policy selection method will simply choose gradient steps.
This method however is subject to being trapped in local
minima, but is simpler and faster than the methods based on a
full forward model.

Reinforcement Learning. The examples presented so far
have assumed that the credit assignment between a newly
chosen set of parameters and newly observed performance
data is immediate. When time delays in the system mean that
performance is the cumulative result of earlier choices,
reinforcement learning will be used to deal with the credit-
assignment problem. The forward modeling described above
may be used to learn value functions and the parameter-
selection algorithms may be adapted for Q-learning [18].

IV. SLIC PROJECTS
To demonstrate the viability of SLIC, several projects have
been initiated [19-32]. A brief overview of some of these
projects, which span from applications, architectures, and
circuits, are presented here in this section.

666

Core Power. While historically the major goal of processor
designers was to gain better performance by continuously
shrinking device size or speeding up the clock speed, the
power wall was eventually reached and energy has become the
main design constraint. As a result, improving performance
under the Thermal Design Power (TDP) constraint becomes
one of the main directions in power/performance optimization.
Many algorithms have been proposed to find near-optimal
DVFS control solutions in polynomial time; however they
suffer from unawareness of future machine state and excessive
budget overshoot, and may only be efficient for small-scale
multi-core systems, rather than systems with hundreds of
cores. By exploiting both spatial and temporal hierarchies, we
propose an On-line Distributed Reinforcement Learning (OD-
RL) method [29] that is able to improve the performance with
much less TDP overshoot, higher relative performance
improvement, and smaller runtime overhead.

Figure 5 shows the hierarchical structure of OD-RL. At the
finer grain, a per-core reinforcement learning method is used
to learn the optimal control policy of the voltage/frequency
levels in a system model-free manner. At the coarser grain, an
efficient global power budget reallocation algorithm is used to
maximize the overall performance. Experiments demonstrate
that compared to the state-of-the-art algorithms: 1) OD-RL
produces up to 98% less budget overshoot, 2) up to 44.3x
better throughput per over-the-budget energy and up to 23%
higher energy efficiency, and 3) two orders of magnitude
speedup over state-of-the-art techniques for systems with
hundreds of cores.

JTAG Protection. IEEE 1149.1, commonly known as JTAG
(joint test action group), is the standard for implementing a
serial test access port for ICs. JTAG is primarily utilized at the
time of IC fabrication but is also employed in the field, giving
access to internal sub-systems of the IC during operation, or
for failure analysis and debugging. Because JTAG is left intact
for post-fabrication use, it inevitably provides a “backdoor”
that can be exploited to undermine the security of the chip.
Potential attackers can therefore use JTAG to dump critical

data or reverse engineer intellectual-property cores. Because
an attacker uses JTAG differently from a legitimate user, it is
possible to detect an unauthorized access using customized
machine-learning algorithms. Specifically, a JTAG protection
scheme, termed SLIC-J, is proposed to monitor JTAG activity,
detect malicious accesses, and ultimately protect the JTAG
from being misused [31]. SLIC-J characterizes user behavior
with respect to a set of specially-defined features, and makes
online prediction using a classifier implemented in hardware.
Further, due to the variance that naturally occurs within both
legitimate uses and attacks of the JTAG, we have developed a
feature-revision mechanism, which delays the labeling of the
JTAG operation until ample evidence is gathered.

SLIC-J is implemented within the JTAG of the OpenSPARC
T2 which is a 64-bit 8-core microprocessor (Figure 6). To
validate the effectiveness of SLIC-J, both legitimate uses and
attacks of the JTAG, consisting of a 110 programs in total, are
emulated. By using the feature-revision mechanism, the
overall accuracy of detecting malicious accesses is 99.2%,
while the overall escape rate (i.e., the percentage of attacks
that escape detection) of 0.8%.

On-Chip Classifier. In this project, we consider a case study
of linear discriminant analysis (LDA) for binary classification
[23]. We found that rounding error incurred from fixed-point
arithmetic can significantly distort the classification output.
We therefore propose a new LDA algorithm for fixed-point
computation (LDA-FP). LDA-FP is formulated as a mixed
integer programming problem with consideration of the non-
idealities (i.e., rounding and overflow) posed by fixed-point
arithmetic. Furthermore, a branch-and-bound method with
several efficient heuristics is developed to find the globally
optimal classification boundary of LDA-FP. With our re-
designed training algorithm, LDA-FP can be efficiently
implemented with extremely small word length for on-chip
low-power operation. Experiment results show that LDA-FP is
able to reduce the word length by up to 3x (i.e., equivalent to
9x power reduction) compared to the conventional LDA
algorithm, without surrendering any classification accuracy.

Figure 5: Hierarchical structure of OD-RL [29].

Figure 6: SLIC-J is integrated with the JTAG of the OpenSPARC
T2. The JTAG, equipped with SLIC-J, adds only 2% to the original
chip area [31].

667

Receiver Calibration. The use of mm-wave frequencies is
emerging as a viable solution to the extreme paucity of
bandwidth available for wireless communication at low
gigahertz frequencies. Compared to low-GHz transceivers,
millimeter-wave transceivers must incorporate vastly greater
functionality and complexity spanning the system, signal
processing and circuit levels. In order to meet this goal at low
cost with low power consumption, SLIC-based approaches are
being investigated. In particular:

• Spatial-domain signal processing becomes imperative
due to the high directionality of millimeter-wave
links, over and above temporal (or frequency-
domain) signal processing. Such processing is
accomplished through the use of multi-antenna
transmitters and receivers. Current mm-wave
transceivers perform algorithmically rudimentary
spatial signal processing (i.e., non-adaptive phased
arrays). More sophisticated spatial signal processing
algorithms such as adaptive beam-steering are
essential in mm-wave cellular links. These algorithms
are based on learning and adaptation, but the power
consumption of simple-minded digital-domain
realizations are prohibitively expensive, thus
mandating the development of architectures that
partition the requisite signal processing optimally
across the analog, digital and RF (mm-wave)
domains.

• The aforementioned challenges are exacerbated by
two other factors: (1) the wide bandwidth of mm-
wave signals leads to high power consumption in the
temporal signal processing circuits (such as the DSP,
the ADC/DAC interfaces and frequency synthesis
circuits), and (2) the quest for high performance in
the underlying wide bandwidth and high carrier
frequency degrades circuit robustness in the face of

process, voltage, temperature and aging-related
variations.

SLIC concepts and circuits are being “sprinkled” throughout
the system to incorporate algorithmically sophisticated spatial-
temporal signal processing while reducing energy
consumption and cost, and increasing robustness. In Figure 6,
several instances of SLIC-assisted and SLIC-enhanced
functionalities are identified.

V. SUMMARY
Statistical learning in chip (SLIC) applied to the design and
on-line operation of an integrated system has great potential to
have significant impact on a number of areas:
• Design – It is challenging to design an integrated system

so that all of its possible personalities can be seamlessly
handled. With SLIC, the burden on the designer is eased
since the ever-changing personality of the system can
instead be learned and adapted to.

• Yield – Currently, an integrated system that does not meet
specifications is discarded. With SLIC, it will be possible
to increase yield since some flaws in the system
personality will be compensated based on learning.

• Test –With SLIC, stress testing can be mitigated since
changes in operation due to a subtle flaw can be detected
and compensated for by learning a model of
normal/expected operation.

• Performance – SLIC allows the performance
optimization across the system stack, allowing the unique
system personality to be exploited for maximum gain.
This capability is not only critical for mobile integrated
systems but will also be quite beneficial for server farms
since power for such entities is also paramount.

• Individualization – Since SLIC learns the habits of the
user, applications that were before learning-agnostic can
now be fine-tuned to enhance the overall experience of
every individual user. For learning-inherent applications,

LNA

LNA

+

SLIC-assisted
Reconfigurable
ADC – Mixed-

Signal Adaptive
Equalizer

Decoder

SLIC-assisted
Temporal
Adaptation

SLIC-assisted
Spatial

Adaptation

Nj
Na e φ

1
1

ja e φ

Antenna
Array

I/Q Downconverters

SLIC-assisted
Digital PLL

mmW
VCO

SLIC-assisted Calibration

SLIC-assisted
beamformer

Figure 7: A future mm-wave multi-antenna receiver that utilizes SLIC-based concepts, namely: Signal processing circuitry and adaptation paths
in the spatial and temporal loops; all-digital phase-locked loop frequency synthesizer with SLIC-enhancement for accurate time-to-digital
conversion; SLIC-assisted calibration of mismatches in RF front-end and analog-digital interface circuits (for e.g., [30]); and built-in self-test of
key sub-systems including the oscillator and mixed-domain beamformer.

668

especially from the medical field, SLIC promises to usher
in a new field of personalized medical instrumentation.

REFERENCES

[1] D. Ricketts et al., “Enhancing CMOS using Nanoelectronic
Devices, a Perspective on Hybrid Integrated Systems,”
Proceedings of the IEEE, pp. 2061-2075, Dec. 2010.

[2] E. Ipek et al., “Self-Optimizing Memory Controllers: A
Reinforcement Learning Approach,” International Symposium
on Computer Architecture, pp. 39-50, 2008.

[3] J. Martinez and E. Ipek, “Dynamic Multicore Resource
Management: A Machine Learning Approach,” IEEE Micro,
Sept./Oct. 2009.

[4] C. -L. Chou and R. Marculescu, “User-Aware Dynamic Task
Allocation in Networks-on-Chip,” ACM/IEEE Design,
Automation and Test in Europe, pp. 1232-1237, 2009.

[5] V. Prabha and E. Moine, “Hardware Architecture of
Reinforcement Learning Scheme for Dynamic Power
Management in Embedded Systems,” EURASIP Journal on
Embedded Systems, 2007.

[6] Z. Baker and V. Prasanna, “N Architecture for Efficient
Hardware Data Mining using Reconfigurable Computing
Systems,” IEEE Symposium on Field-Programmable Custom
Computing Machines, pp. 67-75, 2006.

[7] Z. Baker and V. Prasanna, “Efficient Hardware Data Mining
with the Apriori Algorithm on FPGAs,” IEEE Symposium on
Field-Programmable Custom Computing Machines, pp. 18-20,
2005.

[8] R. Narayanan et al., “An FPGA Implementation of Decision
Tree Classification,” in ACM/IEEE Design, Automation and
Test in Europe, pp. 16-20, 2007.

[9] Y. Luo, K. Xiang, and S. Li, “Acceleration of Decision Tree
Searching for IP Traffic Classification,” ACM/IEEE Symposium
on Architectures for Networking and Communications Systems,
pp. 40-49, 2008.

[10] S. Chkrabarty and G. Cauwenberghs, “Sub-Microwatt Analog
VLSI Trainable Pattern Classifier,” IEEE Journal of Solid-State
Circuits, May 2007.

[11] D. Berry and B. Fristedt, Bandit Problems: Sequential
Allocation of Experiments.: Chapman and Hall, 1985.

[12] P. Auer, N. Cesa-Bianchi and P. Fischer, “Finite-time Analysis
of the Multiarmed Bandit Problem,” Machine Learning, 2002.

[13] J. Gittins, Multi-Armed Bandit Allocation Indices.: Wiley, 1989.
[14] C. Rasmussen and C. Williams, Gaussian Processes for

Machine Learning.: MIT Press, 2006.
[15] D. C. Juan et al., “Learning the Optimal Operating Point for

Many-Core Systems with Extended Range Voltage/Frequency
Scaling,” CODES+ISSS, Oct. 2013.

[16] J. Schneider and A. Moore, “Active Learning in Discrete Input
Spaces,” Interface Symposium, 2002.

[17] P. C. Pendharkar, “A Comparison of Gradient Ascent, Gradient
Descent and Genetic-Algorithm-Based Artificial Neural
Networks for the Binary Classification Problem,” Expert
Systems, pp. 65-86, May 2007.

[18] R. Sutton and A. Barto, Reinforcement Learning: An
Introduction.: MIT Press, 1998.

[19] H. Peng and R. Marculescu, “Identifying Dynamics and

Collective Behaviors in Microblogging Traces,” IEEE/ACM
International Conference on Advances in Social Networks
Analysis and Mining, pp. 846-853, 2013.

[20] G. Liu, J. Park, and D. Marculescu, “Dynamic Thread Mapping
for High-performance, Power-efficient Heterogeneous Many-
core Systems,” IEEE International Conference on Computer
Design, pp. 54-61, 2013.

[21] H. Peng and R. Marculescu, “ASH: Scalable Mining of
Collective Behaviors in Social Media using Riemannian
Geometry,” ASE BIGDATA/SOCIALCOM/CYBERSECURITY
Conference, 2014.

[22] M. Li and X. Li, “Verification based ECG Biometrics with
Cardiac Irregular Conditions using Heartbeat Level and
Segment Level Information Fusion,” IEEE International
Conference on Acoustics, Speech and Signal Processing, pp.
3769-3773, 2014.

[23] H. Albalawi, Y. Li, and X. Li, “Computer-aided Design of
Machine Learning Algorithm: Training Fixed-point Classifier
for On-chip Low-power Implementation,” ACM/IEEE Design
Automation Conference, pp. 1-6, 2014

[24] M. Won, H. Albalawi, X. Li, and D. E. Thomas, “Low-power
Hardware Implementation of Movement Decoding for Brain
Computer Interface with Reduced-resolution Discrete Cosine
Transform,” International Conference of the IEEE Engineering
in Medicine and Biology Society, pp. 1626-1629, 2014.

[25] S. Kundu et al., “A 1.2 V 2.64 GS/s 8bit 39 mW Skew-tolerant
Time-interleaved SAR ADC in 40 nm Digital LP CMOS for 60
GHz WLAN,” IEEE Proceedings of the Custom Integrated
Circuits Conference, pp. 1-4, 2014.

[26] H. Goncalves et al., “DALM-SVD: Accelerated Sparse Coding
through Singular Value Decomposition of the Dictionary,” IEEE
International Conference on Image Processing, pp. 4907-4911,
2014.

[27] X. Li et al., “Ultra-low-power Biomedical Circuit Design and
Optimization: Catching the Don’t Cares,” International
Symposium on Integrated Circuits, pp. 115-118, 2014.

[28] H. Peng and R. Marculescu, “Multi-Scale Compositionality:
Identifying the Compositional Structures of Social Dynamics
Using Deep Learning,” PloS One, vol. 10, no. 4, p. e0118309,
2015.

[29] Z. Chen and D. Marculescu, “Distributed Reinforcement
Learning for Power Limited Many-core System Performance
Optimization,” Design, Automation and Test in Europe, pp.
1521-1526, 2015.

[30] S. Kundu and J. Paramesh, “DAC Mismatch Shaping for
Quadrature Sigma-Delta Data Converters,” IEEE Midwest
Symposium on Circuits and Systems, 2015.

[31] X. Ren, V. G. Tavares, and R. D. Blanton, “Detection of
Illegitimate Access to JTAG via Statistical Learning in Chip,”
ACM/IEEE Design, Automation Test and Europe, pp. 109-114,
2015.

[32] X. Ren, M. Martin, and R. D. Blanton, “Improving Accuracy of
On-chip Diagnosis via Incremental Learning,” IEEE VLSI Test
Symposium, pp. 1-6, 2015.

669

	MAIN MENU
	Help
	Search
	Print
	Author Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 9.00 points
 Normalise (advanced option): 'original'

 32

 D:20150619150348
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Down
 9.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

