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Abstract—Buildings consume about 40% of the total energy
use in the U.S. and, hence, accurately modeling, analyzing
and optimizing building energy is considered as an extremely
important task today. Towards this goal, uncertainty/sensitivity
analysis has been proposed to identify the critical physical
and environmental parameters contributing to building energy
consumption. In this paper, we propose to apply sparse regression
techniques to uncertainty/sensitivity analysis of smart buildings.
We consider the orthogonal matching pursuit (OMP) algorithm
as a case study to demonstrate its superior efficacy over other
conventional approaches. Experimental results reveal that OMP
achieves up to 18.6× runtime speedups over the conventional
least-squares fitting method without surrendering any accuracy.

I. INTRODUCTION

Buildings, including residential and commercial buildings,
consume more energy than the transportation and industry
sectors in the U.S., accounting for about 40% of the total
U.S. energy consumption [1]. The global energy demand
of buildings keeps upward in recent years, mainly due to
the growth in the population and the increasing demand for
building services and comfort levels [2]. For this reason,
energy efficiency of buildings has become a burning issue
for the international community. Consequently, it is critical
to reduce the energy demands of buildings by adopting a
number of “smart” tools for modeling, analysis, optimization
and control.

Nowadays, building simulation is widely used at differ-
ent stages to predict the thermal performance and energy
consumption, especially for improving the energy efficiency
at the design stage [3]. Typically, the inputs of a building
simulation program include the building system and compo-
nents, the climate, internal gains from lighting, equipments
and occupants, heating and cooling systems, schedules of
occupants, equipments and lighting, etc. The simulator runs
the heat balance algorithm and then predicts the energy and
temperature of the building [4]. Through building simulation,
we can achieve many advantages for designing energy-efficient
smart buildings. For instance, strategies for improving the

energy efficiency can be conveniently investigated. Building
simulation has become an essential decision support tool for
designing smart buildings.

When predicting the energy and temperature by building
simulation, there are many uncertainties associated with a
smart building [5], including physical scenarios, design and
algorithm uncertainties, etc. It is important to quantify the
impact of these uncertainties on the energy and thermal
performance by a probabilistic approach. Such an uncertainty
analysis is usually accompanied with a sensitivity analysis,
which aims to identify the most important parameters con-
tributing to the uncertainties of the building performance [6].
Thus, we can obtain the key parameters that influence the
building performance most.

In the literature, there are two broad categories of approach-
es to perform uncertainty/sensitivity analysis: (i) local analysis
and (ii) global analysis [7]. Local analysis focuses on the
effects of uncertain parameters around their nominal values,
whereas global analysis focuses on the influences of uncertain
parameters over the entire variation space.

The global approach is often considered to be more reli-
able than the local approach in practice. Conventional global
approaches include linear regression methods [5], [8]–[10],
macroparameter-based method [11], grouping-based method-
s [12], [13], etc. Among them, regression methods are widely
used. Since there are a large number of parameters that
can influence the building performance, regression methods
require a large number of simulation samples to train a high-
dimensional regression model, resulting in expensive compu-
tational cost. Although grouping-based and macroparameter-
based methods aim to reduce the number of samples for
building performance modeling, they require priori knowledge
to construct the groups or macroparameters. However, the
priori knowledge may be unavailable or incorrect in practice,
as will be demonstrated by our experimental example in
Section IV-B.

In most practical applications, there are only a small number
of parameters that can greatly influence the building perfor-
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mance. In other words, although there are a large number of
parameters in total, many of them do not contribute to the
building performance variation. As a result, most coefficients
of the regression model are close to zero, rendering a unique
sparse structure.

Motivated by this observation, we propose to adopt sparse
regression methods [14]–[23] for uncertainty/sensitivity analy-
sis of smart buildings. Sparse regression aims to solve a large
number of model coefficients from a small set of simulation
samples without over-fitting, by exploiting the sparsity of
model coefficients. In this paper, we will take the orthogonal
matching pursuit (OMP) algorithm [14], [18], [22], [23], one
of the well-known sparse regression techniques, to demon-
strate its superior efficacy for smart building applications. As
will be demonstrated by a case study in Section IV, OMP can
achieve up to 18.6× runtime speedups over the conventional
least-squares fitting method for uncertainty/sensitivity analysis
of buildings.

The remainder of this paper is organized as follows. In
Section II, we present the background knowledge about
modeling and simulation of smart buildings. We discuss the
sparse regression algorithm for uncertainty/sensitivity analysis
in Section III. The efficiency of the sparse regression algorithm
is demonstrated by a case study in Section IV. Finally, we
conclude in Section V.

II. SMART BUILDING

In this section, we will review the background knowledge
about smart buildings, covering two important topics: (i) ener-
gy consumption and simulation, and (ii) uncertainty/sensitivity
analysis.

A. Energy Consumption and Simulation

The energy consumption of a building comes from various
building services, including the heating, ventilation, and air
conditioning (HVAC) system, lighting, equipments, refrigera-
tion, cooking, etc. Among them, the HVAC system consumes
the most energy which can be up to 50% of the total energy
use [2]. Many parameters may affect the energy consumption
of a building, such as the temperature/weather, properties of
materials (i.e., specific heat, thermal resistance, conductivity,
thermal absorptance, etc.), user behaviors, power of lighting
and equipments, set points of heating and cooling, etc.

Building simulation has been extensively studied since the
1960s. There are many softwares that have been widely
used for building performance simulation, including Energy-
Plus [24], DOE-2 [25], ESP-r [26], TRNSYS [27], DeST [28],
etc. The simulation flows and methodologies of these soft-
wares are similar. Typically, a building simulation software
takes a text file as the input which describes the building
construction, material details, heating and cooling systems,
user behaviors, the weather and climate, etc. A few softwares
(like DeST) can also take a database as the input. Next,
differential algebraic equations (DAE) are created based on the
input information, built-in thermal models, and heat balance.
After solving the DAEs by a numerical engine, simulation

results, including the energy consumption and temperature,
are reported. To accurately predict the building performance,
a building is usually partitioned into many zones distributed
over different spatial locations. These zones define the spatial
resolution of the simulation results reported by the simulation
software.

B. Uncertainty/Sensitivity Analysis

In practice, we may not exactly know many important
parameters (e.g., temperature/weather, properties of materi-
als, etc.) that affect the energy consumption of a building,
especially at an early stage for planning. In this case, these
facts must be modeled as a set of random variables, instead
of deterministic values. Therefore, the energy consumption
and temperature cannot be deterministically solved, posing the
need of uncertainty/sensitivity analysis.

Uncertainty/sensitivity analysis aims to determine the per-
formance variation of a building and the key parameters
contributing to it. Let x = [x1, x2, · · · , xK ]T be the uncertain
parameters of a building, where K is the number of these
parameters. A specific building performance f is expressed as
a function of all these uncertain parameters, i.e.,

f = f(x1, x2, · · · , xK). (1)

To calculate the sensitivity of each parameter xi (i =
1, 2, · · · ,K), and, hence, predict the uncertainty of f , we need
to collect a number of samples by running building simulation.
Typically, an uncertainty/sensitivity analysis flow includes the
following three major steps [7].

1) Define K random variables x = [x1, x2, · · · , xK ]T and
their probability distributions (e.g., normal distributions,
uniform distributions, triangular distributions, etc.). Gen-
erate a number of (say, N ) samples x(1),x(2), · · · ,x(N).

2) Perform N independent building simulations for these
N samples. Collect the energy and/or temperature values
(i.e., the values of f ) of the N samples from the
simulation results.

3) Perform uncertainty/sensitivity analysis by processing
the collected data.

As mention in Section I, there are two broad categories
of approaches for uncertainty/sensitivity analysis: (i) local
analysis and (ii) global analysis. Local analysis approximates
the sensitivity of each parameter by a difference quotient [29]:

Si =
f(x1, · · · , xi +∆xi, · · · , xK)− f(x1, · · · , xK)

∆xi
, (2)

where Si is the sensitivity of xi, and ∆xi is a small per-
turbation around its nominal value xi. The local approach
is easy to implement and only requires K + 1 simulations.
However, the local sensitivities only carry the information of
f(x1, x2, · · · , xK) around its nominal value. To overcome this
limitation, global analysis is often used in practice.
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When applying global analysis, we consider the following
linear regression model to approximate the specific building
performance f [5], [8]–[10], [16]:

f(x1, x2, · · · , xK) = α0 +
K∑

k=1

αkxk =
K∑

k=0

αkxk, (3)

where {αk; k = 0, 1, · · · ,K} are the model coefficients, and
x0 is always 1. The linear regression model is widely used
in the literature. The model coefficients α = [α0, · · · , αK ]T

can be determined by solving the following over-determined
linear system:

Xα = f , (4)

where X ∈ RN×(K+1) is the regressor matrix containing all
the sampling values of uncertain parameters, i.e., Xn,k = x

(n)
k ,

and f = [f (1), · · · , f (N)]T is the response vector containing
the sampling values of the building performance f . The least-
squares fitting method [30] is usually used to solve the over-
determined equation Eq. (4) and its solution can be expressed
as the following equation in theory:

α = (XTX)−1XT f . (5)

The conventional least-squares fitting method requires that
the number of samples (i.e., N ) must be larger than the number
of unknowns (i.e., K + 1). Consequently, a large number
of simulation samples must be collected in order to train a
high-dimensional regression model where K is large. For our
application of building performance analysis, this requirement
leads to a prohibitively high computational cost to repeatedly
run a large number of building simulations.

To reduce the number of simulation samples required for
linear regression, macroparameter-based and grouping-based
methods are proposed. The idea of the macroparameter-based
method [11] is to lump the uncertain parameters with the
same physical meaning and similar sensitivity magnitude into
macroparameters. As such, regression model is simplified with
reduced dimensionality and, hence, the number of required
simulation samples is reduced. The idea of the grouping-based
methods [12], [13] is similar. They partition all the uncertain
parameters into several groups where the parameters in the
same group should share the same sign for sensitivity. Next,
an iterative approach is performed where a significant group is
selected or an insignificant group is eliminated at each iteration
step. As a result, the number of required simulation samples
can be greatly reduced, because the number of groups is often
substantially less than the number of uncertain parameters.

Both the macroparameter-based and grouping-based meth-
ods require priori knowledge to construct the macroparameters
or groups. Typically, if no additional prior knowledge is
available, grouping the uncertain parameters with the same
physical meaning is often considered as an appropriate choice.
However, as will be demonstrated by our experimental ex-
ample in Section IV-B, multiple parameters with the same
physical meaning may show significantly different sensitivity
values in terms of their signs and/or magnitudes. It, in turn,
indicates the fact that appropriately extracting the correct priori

knowledge for the macroparameter-based or grouping-based
methods is not a trivial task in practice.

III. UNCERTAINTY/SENSITIVITY ANALYSIS BY SPARSE
REGRESSION

In most practical applications, there are only a small num-
ber of important parameters that can significantly affect the
building performance. In other words, most components of
α = [α0, · · · , αK ]T are close to zero. As a result, we can
adopt sparse regression methods to solve the model coeffi-
cients from a small set of simulation samples, by exploring
the sparsity of α. In this paper, we will consider the L0-norm
regularization method [14], [17]–[23] which is one of the well-
known sparse regression methods to find the nonzeros of α. By
applying L0-norm regularization, the linear system in Eq. (4)
can be under-determined. The L0-norm regularization method
determines the solution of Eq. (4) by solving the following
optimization problem:

minimize ||r||2 = ||Xα− f ||2,
subject to ||α||0 ≤ λ,

(6)

where ||·||0 and ||·||2 are the L0-norm and L2-norm of a vector,
respectively. L0-norm means the number of nonzeros in a vec-
tor. The L0-norm ||α||0 measures the sparsity of α. Therefore,
by constraining the L0-norm of α, the optimization in Eq. (6)
attempts to find a sparse solution α which minimizes the L2-
norm of the residual vector r = Xα − f . The optimization
problem in Eq. (6) is non-deterministic polynomial-time (NP)
hard [23] and, hence, is difficult to solve. In Section III-A,
we will describe an efficient heuristic algorithm to solve the
optimization problem in Eq. (6) using OMP [14], [18], [22],
[23].

The parameter λ in Eq. (6) explores the tradeoff between
the sparsity of α and the accuracy of the fitted model. A large
λ can result in a small residual. However, a small residual
does not necessarily mean a small modeling error, because
the model in Eq. (4) may be over-fitted for the given samples.
For example, we consider an extreme case where Eq. (4) is
under-determined and λ is sufficiently large. In this case, we
can always find a solution such that the residual is exactly
0. However, such a solution is likely to be useless because
it over-fits the given samples and may present large errors
for other samples that are not used for model training. In
practice, λ can be optimally determined by the cross-validation
technique [16], as will be discussed in Section III-B.

A. Orthogonal Matching Pursuit

The OMP algorithm [14], [18], [22], [23] heuristically
solves the optimization problem in Eq. (6) by identifying
a small set of important parameters and using them to ap-
proximate the performance function f . For other unimportant
parameters, the corresponding model coefficients are set to 0.
In what follows, we will describe the details of OMP, including
a basic theory of parameter selection and an iterative flow to
solve the model coefficients.
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1) Parameter Selection: The purpose of OMP is to identify
a subset of important parameters which significantly impact
the performance function f . OMP uses the inner product
between the performance function f and parameter xi to
measure the importance of xi (i = 0, 1, · · · ,K). When all
the parameters are appropriately normalized and statistically
independent, the inner product between f and xi exactly
equals the model coefficient αi, i.e.,

⟨f, xi⟩ =
K∑

k=0

αk ⟨xi, xk⟩ = αi. (7)

This is the reason why the inner product can be adopted as a
good criterion to measure the importance of each parameter.
In other words, if ⟨f, xi⟩ is far away from 0, the parameter xi

is highly correlated with the performance function f , hence, it
should be selected to approximate the performance function.
On the contrary, if ⟨f, xi⟩ is close to 0, the parameter xi is
almost uncorrelated with f , hence, the corresponding model
coefficient αi can be set to 0.

In practice, we do not know the analytical form of f and
the inner product in Eq. (7) should be numerically calculated
from a set of samples. In this paper, we adopt the Latin hy-
percube sampling method [31] to generate N random samples
x(1),x(2), · · · ,x(N), based on the probability distributions of
the parameters x = [x1, x2, · · · , xK ]T . Then the inner product
is approximated by

⟨f, xi⟩ =
1

N

N∑
n=1

f (n)x
(n)
i =

1

N
XT

i f , (8)

where Xi ∈ RN×1 represents the ith column of the matrix X.
According to Eq. (7) and Eq. (8), we notice that Eq. (8)

is a statistical estimator for the model coefficient αi. Such
an estimation is calculated from a set of randomly generated
samples x(1),x(2), · · · ,x(N) and the corresponding responses
f , which may carry large fluctuations. For this reason, the
estimation in Eq. (8) is only used to measure the correlation
between each parameter xi and the performance function
f to select the important parameters. Once these important
parameters are chosen, the corresponding model coefficients
are solved by least-squares fitting. In addition, to further
improve the accuracy of parameter selection, OMP applies
an iterative approach where the most important parameter
is selected at each iteration step. In what follows, we will
describe the iterative algorithm in detail.

2) Iterative Algorithm: OMP applies an iterative algorithm
to solve the optimization problem in Eq. (6). At each iteration
step, it finds a parameter which is most correlated with the
performance function by evaluating the approximate inner
product defined in Eq. (8). The iteration continues until λ im-
portant parameters have been found. Finally, the performance
function f is approximated by these selected parameters.

At the beginning of the iteration process, the first important
parameter xs1 is selected such that xs1 is maximally correlated
with the performance function f . Namely, | ⟨f, xs1⟩ | takes the
largest value over the set {| ⟨f, xk⟩ |; k = 0, 1, · · · ,K}, where

the inner product is estimated by Eq. (8). Once xs1 is chosen,
OMP approximates f by using xs1, i.e.,

f ≈ αs1xs1, (9)

where the model coefficient αs1 is determined by solving the
following least-squares fitting problem:

minimize
αs1

||αs1Xs1 − f ||2. (10)

Next, OMP removes the component αs1xs1 from the per-
formance function f and calculates the residual, i.e.,

r = f − αs1Xs1. (11)

To select the second important parameter, OMP calculates the
inner products between the residual r and all the unselected
parameters, and then selects the optimal parameter correspond-
ing to the largest inner product magnitude. Let xs2 be the
second important parameter selected by OMP. Now, OMP
approximates f by both xs1 and xs2, i.e.,

f ≈ αs1xs1 + αs2xs2, (12)

where the model coefficients αs1 and αs2 are solved from the
following optimization problem:

minimize
αs1,αs2

||αs1Xs1 + αs2Xs2 − f ||2. (13)

Note that in the second iteration step, αs1 is re-calculated
instead of directly using its previous value calculated in the
first iteration step. The value of αs1 calculated by Eq. (10)
may be different from that calculated by Eq. (13), because the
sampled data X0,X1, · · · ,XK may not be orthogonal even
though the parameters x0, x1, · · · , xK are statistically inde-
pendent. Therefore, all the model coefficients corresponding

Algorithm 1 The OMP algorithm.

Input: The linear system Xα = f and the L0-norm constraint
λ.

Output: The model coefficients α = [α0, α1, · · · , αK ]T .
1: Initialize the index set S = ∅, and the residual r = f .
2: for p = 1 to λ do
3: Determine the index s such that |XT

s r| takes the largest
value over the set {|XT

i r|; i /∈ S}. Update the index set
S = S ∪ {s}.

4: Solve the following least-squares fitting problem:

minimize
αi,i∈S

||
∑
i∈S

αiXi − f ||2, (14)

and then approximate f by the selected parameters, i.e.,

f ≈
∑
i∈S

αixi. (15)

5: Update the residual r = f −
∑
i∈S

αiXi.

6: end for
7: Set the model coefficients corresponding to the unselected

parameters to 0, i.e., αi = 0, i /∈ S .

460



x2

x1

f

x1

f
x2

1 1
f x

1 1 2 2
f x x

1 1
X

1 1
X

2 2
X

1 1
r f X

Fig. 1: A simple bivariate example is used to illustrate the
OMP algorithm.

to the selected parameters are re-calculated at each iteration
step in order to minimize the residual.

The aforementioned iteration process will continue until a
desired number (i.e., λ) of parameters have been selected.
Algorithm 1 summaries the overall flow of OMP.

To intuitively understand the OMP algorithm, we consider
a simple bivariate example in Fig. 1. Assume that X1 has a
stronger correlation with the performance f than X2. Hence,
x1 is first selected to approximate f , i.e., f ≈ α1x1. The
residual is r = f − α1X1, which is orthogonal to X1, i.e.,
XT

1 r = 0. Next, during the second iteration step, since X2

has a stronger correlation with the residual r than X1, x2 is
selected and both x1 and x2 are used to approximate f , i.e.,
f ≈ α1x1 + α2x2, where the coefficients α1 and α2 are both
solved by least-squares fitting. The residual r = f − α1X1 −
α2X2 now becomes zero.

B. Cross-Validation

The OMP algorithm (i.e., Algorithm 1) requires the input
parameter λ to constraint the L0-norm of α, i.e., the number
of nonzeros in α. In practice, λ is not known in advance.
The value of λ must be carefully determined by considering
the following two important facts. First, if λ is too small,
only a small number of parameters are selected to approximate
the performance function, thereby resulting in large modeling
error. On the other hand, if λ is too large, it will lead to over-
fitting which also results in an inaccurate regression model.
Consequently, in order to create a regression model with the
minimum modeling error, we should accurately estimate the
modeling error for different λ values and then select the
optimal λ such that the modeling error is minimized.

In practice, the modeling error must be accurately estimat-
ed from a limited number of given samples. The samples
used for model training cannot be used for error estimation;
otherwise over-fitting cannot be detected. In other words,
the samples used for model training and error estimation
should be different and independent. Cross-validation [16] is
an efficient method for model validation that has been widely
used in the statistics community. In this paper, we use a 5-
fold cross-validation, as shown in Fig. 2. The given samples
are partitioned into 5 groups. The modeling error is estimated
by 5 independent runs. In the ith (1 ≤ i ≤ 5) run, the ith
group is used for error estimation and the other 4 groups are
used to train the model coefficients. Therefore, we will get
5 modeling errors from 5 runs. The final modeling error is
simply the mean value of the 5 individual errors.

Run 1

Run 2

Run 3

Run 4

Run 5

For model training

For error estimation

Fig. 2: A five-fold cross-validation is used for error estimation.

For our application of uncertainty/sensitivity analysis for
building performance, we first perform cross-validation to
determine the optimal value of λ based on a number of
given samples. The OMP algorithm is used to train the model
coefficients for different λ values during each cross-validation
run. The optimal λ is then selected such that the modeling
error is minimized. After the optimal λ is known, we run the
OMP algorithm again with all available samples to generate
the final regression model.

Cross-validation is time-consuming, because we need to
run the OMP algorithm for multiple times to determine the
optimal λ. However, in our application, the computational cost
is dominated by the building performance simulation which
is used to generate the required samples. Consequently, the
computational cost of cross-validation is negligible, as will be
demonstrated by the case study in Section IV-C.

IV. CASE STUDY

A. Simulation Setup

In this section, we will use a building example to demon-
strate the efficiency of the aforementioned OMP algorithm
for uncertainty/sensitivity analysis of building performance. A
building with 10 storeys is created. Each storey has 9 zones so
there are 90 zones in total. When running building simulation,
we assume that each zone has its own temperature and there
is no temperature variation within a single zone.

In this example, 1106 parameters are used to define the
uncertainties associated with temperature/weather, properties
of materials, etc. The probability distributions of these uncer-
tainties are defined in Table I. Here, we consider both global
and local uncertainties for the properties of all materials. For
a given physical parameter, all the 10 storeys share the same
global variation, and each storey has its own local variation.

We adopt the Latin hypercube sampling method [31] to
generate 8000 independent random samples where 6000 sam-
ples are used for model training and the other 2000 samples
are used for error estimation. The building is simulated using
EnergyPlus [24] on a desktop with a 4-core Intel i7 CPU
and 16GB memory. Parallel simulation with eight processes
is enabled to reduce the simulation cost. In what follows, we
will compare the OMP algorithm with the conventional least-
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TABLE I: Uncertain parameters of the building.

Parameter # of parameters Distribution

Ground temperature 12 Gaussian
Heating set point 1 Uniform
Cooling set point 1 Uniform
Lighting power per area 1 Uniform
Equipment power per area 90 Gaussian
Equipment activity factor 90 Uniform
Furniture surface area 90 Uniform
Thickness of materials 111 Gaussian
Conductivity of materials 111 Gaussian
Density of materials 111 Gaussian
Specific heat of materials 111 Gaussian
Thermal absorptance of materials 122 Gaussian
Solar absorptance of materials 122 Gaussian
Visible absorptance of materials 122 Gaussian
Thermal resistance of materials 11 Gaussian
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Fig. 3: Histograms of the energy consumption and the average
temperature of the 66th zone in April are shown to illustrate
their uncertainties.

squares (LS) fitting method in terms of both the modeling
accuracy and computational cost.

B. Energy and Temperature Variability

In this example, we consider two performance metrics of
interest: (i) the annual energy consumption of the building,
and (ii) the average temperature of the 66th zone in April.
Fig. 3 shows the histograms of the energy consumption and
the average temperature. The histograms are generated from
all 8000 samples.

Note that substantial variations can be observed for both
the energy consumption and the average temperature. The
maximum energy consumption is about 50% larger than the
minimum energy consumption. For the average temperature,
the variation is even more significant. The maximum average
temperature is nearly twice of the minimum average temper-
ature. Consequently, it is critical to know the most important
parameters that can significantly affect these performance

metrics. As such, building designers are able to optimize the
energy consumption and the average temperature to create
energy-efficient smart buildings.

To fully understand the limitations of the macroparameter-
based method [11] and the grouping-based methods [12], [13],
we consider the example of average temperature here. We
find that multiple parameters with the same physical meaning
can show significantly different sensitivity magnitudes for the
average temperature. When creating the temperature model for
a specific zone (say, the zth zone), the parameters of the zth
zone and its adjacent zones will have significant contributions,
but those of other zones will have negligible effects. It, in
turn, leads to significantly different sensitivity magnitudes for
multiple parameters with the same physical meaning.

For example, when modeling the temperature of the 66th
zone and considering the parameter of the equipment power
of each zone, the sensitivity magnitudes of the 63rd to 67th
zones (i.e., the adjacent zones) are all larger than 0.09. For
other zones, the sensitivity magnitudes are substantially less
than 0.09. A few other parameters, e.g., the conductivity
and the thermal absorption of the floor, also show a similar
pattern. These examples demonstrate an important fact that
appropriately constructing groups or macroparameters requires
extensive design knowledge and, hence, is not a trivial task in
general.

C. Comparison on LS and OMP

Fig. 4 shows how the modeling error varies with the number
of training samples. For both LS and OMP, the modeling
error decreases as the number of samples increases. However,
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Fig. 4: The modeling error is shown as a function of the
number of training samples.
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TABLE II: Comparison on modeling error and cost.

Energy consumption Average temperature
LS OMP LS OMP

# of samples 3100 1200 5500 300
Modeling error 1.51 % 1.50 % 0.41 ◦C 0.41 ◦C
Simulation time 24.1 h 9.3 h 42.8 h 2.3 h

Fitting time 7.3 s 61.0 s 11.0 s 0.2 s
Total cost 24.1 h 9.3 h 42.8 h 2.3 h
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Fig. 6: Histograms of modeling error are estimated from the
testing samples for average temperature.

given the same number of samples, OMP is able to achieve
substantially higher accuracy than LS, especially if only few
samples are available. Table II further compares the modeling
error and cost between LS and OMP. The overall modeling
cost includes two parts: (i) simulation time and (ii) fitting time.
As shown in Table II, the overall modeling cost is dominated
by the simulation time. For modeling the energy consumption
and the average temperature, OMP achieves 2.6× and 18.6×
runtime speedups over LS respectively, without surrendering
any modeling accuracy. Fig. 5 and Fig. 6 further plot the
histograms of the modeling error for both LS and OMP. These
two figures further demonstrate that OMP requires less training
samples than LS in order to achieve the same modeling
accuracy.

Fig. 7 shows the magnitude of the model coefficients
estimated by LS and OMP for the energy consumption and
the average temperature, respectively. Studying Fig. 7, we
notice that even though there are 1106 uncertain parameters
in total, only 135 parameters contribute to the variation of
energy consumption and 16 parameters contribute to the
variation of average temperature. These important parameters
are automatically identified by OMP to accurately model the
performance metrics of interest. The underlying sparse struc-
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Fig. 7: The model coefficients estimated by LS and OMP
are compared to demonstrate that OMP accurately capture the
dominant coefficients with large magnitude.

ture of these model coefficients is essentially the necessary
condition that makes the proposed OMP technique applicable
to this example.

V. CONCLUSION

Nowadays, uncertainty/sensitivity analysis of building per-
formance has been widely used when designing energy-
efficient smart buildings. Conventional techniques often re-
quire to repeatedly run a large number of building simulations
to extract the uncertainty/sensitivity information, thereby re-
sulting in expensive computational cost. In this paper, we take
the OMP algorithm, one of the well-known sparse regression
techniques, to demonstrate its superior efficacy for uncertain-
ty/sensitivity analysis. Experimental results by a case study
show that OMP requires substantially less simulation samples
than the conventional LS method in order to achieve the same
modeling accuracy, and, hence, the overall modeling cost is
significantly reduced (up to 18.6×).
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