
Learning Based Compact Thermal Modeling for Energy-Efficient
Smart Building Management

(invited)

Hengyang Zhao∗, Daniel Quach∗, Shujuan Wang†, Hai Wang§, Haibao Chen¶, Xin Li‡, and Sheldon X.-D. Tan∗

∗ Department of Electrical and Computer Engineering, University of California, Riverside, CA 92521
† Department of Mechanical Engineering, University of California, Riverside, CA 92521

‡ Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
§ School of Microelectronic and Solid-State Electronics

University of Electronic Science and Technology of China, Chengdu, China 610054
¶ Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai, China 200240

Abstract—In this article, we propose a new behavioral thermal
modeling method for fast building performance analysis, which
is critical for energy-efficient smart building control and man-
agement. The new approach is based on two recurrent neutral
network architecture to obtain the compact nonlinear thermal
models for complicated building. We start with a more realistic
building simulation program, EnergyPlus, from Department of
Energy, to model some practical buildings such as office buildings
and data centers. EnergyPlus can model the various time-series
inputs to a building such as ambient temperature, heating, venti-
lation, and air-conditioning (HVAC) inputs, power consumption
of electronic equipment, lighting and number of occupants in a
room sampled in each hour and produce resulting temperature
traces of zones (rooms). In this work, we apply two recurrent
neural network (RNN) architectures to build the non-linear
compact thermal model of the building: one is non-linear state-
space RNN architecture (NLSS), which has global feedbacks,
and the other one is Elman’s RNN architecture (ELNN), which
has local feedbacks in each layer. We give a simple formula to
calculate the RNN layer number, layer size to configure RNN
architecture to avoid overfitting and underfitting problems. A
cross-validation based training technique is further applied to
improve predictable accuracy of models. Experimental results
from a case study of three buildings show that ELNN and NLSS
can both build very accurate building thermal models for the
2-zone and 5-zone building cases: both of them have average
errors from around 1% to 1.5% for the two buildings. For the
more complex 6-zone building case, ELNN outperforms NLSS
with maximum errors 16% against 23%. But both methods have
2.2% average errors.

I. INTRODUCTION

It is estimated that building section accounts for about 40%

energy consumption in United States. The building section is

also responsible for 70% of electricity use. About 50% of

the energy consumed in buildings are directly related to space

heating, cooling and ventilation [1]. As a result, it is important

to control the heating, ventilation and air conditioning (HVAC)

system in a more energy-efficient way.
Smart buildings today have sophisticated and distributed

control systems as part of a Building Automation System

(BAS). The task of a BAS is to maintain building climate

This work is supported in part by NSF grants under No. CCF-1255899, in
part by NSF Grant under No. CCF-1527324, and in part by Semiconductor
Research Corporation(SRC) Grant under No. 2013-TJ-2417.

within a specified range, control the lighting based on the

occupancy schedule, and monitor the system performance and

failures. To achieve these tasks, a BAS needs complicated

and advanced control techniques such as Extended Kalman

Filter (EKF) method to minimize energy consumption of

the HVAC system and satisfy the temperature and demand

constraints [27].

However, the EKF based control could have high computa-

tional requirements depending on the number of control vari-

ables, the time horizon for the optimization, the discretization

for the control decisions and model complexity. One critical

issue in effective EKF control is to have compact nonlinear

thermal model of large buildings.

Building performance simulation has been well studied in

the past [26]. Simulation programs such as EnergyPlus [7]

from U.S. Department of Energy, and TRNSYS [3], which are

both based on the first principle of dynamic heat transfer and

air flow have been developed. However, for practical buildings,

those simulators have very high computational cost due their

detailed modeling of the underlying physics and interactions

among the components of buildings, which makes them less

suitable for MPC based thermal control for smart buildings.

To mitigate this problem, compact thermal modeling meth-

ods for buildings have been proposed recently [8], [10],

[21]. Existing approaches include the reduced order model-

ing method using the classic truncated balanced realization

method [21], aggregation-based reduction approach, which

performs localized reduction (aggregation) so that some net-

work properties can be preserved [8], and the ad-hoc model

reduction method, which extracts the basic linear dynamics

of thermal behaviors of a building from the EnergyPlus

program [10]. All those existing compact modeling approaches

can be viewed as the white-box models, which start with

accurate and detailed models from the first principle and then

perform approximation to obtain compact models via model

order reduction, aggregation or ad-hoc dynamics extraction.

But those methods suffer from several problems. First, those

methods need to know the detailed structures or equations of

the thermal systems to start with, which need steep learn-

ing curves to learn and extracts. For commercial building

978-1-4673-8388-2/15/$31.00 ©2015 IEEE 450

simulation tools, this will become impossible. Second, they

may suffer significant accuracy loss during the reduction

process as many assumptions were made such as linear system

models [10], ignorance of cooling and exhaust loads [8].

Recently a number of top-down black-box based behavioral

modeling technique have been proposed to build thermal

models for chips and packages of VLSI systems. Existing

works consist of the matrix pencil method [17], [24] and the

subspace identification method [9], [28]. The major advantage

of such pure behavioral modeling methods are their flexibility

and simplicity as no physical restrictions and assumptions are

made or required for the models. They are also very accurate

as the training is based on accurate data from measurement or

detailed numerical simulation. However, existing approaches

can not deal with the nonlinearity of the complicated dynamic

thermal systems such as building.

In this work, we apply the neural network based mod-

eling technique to build the dynamic thermal models for

complicated buildings. The training data is obtained from

the EnergyPlus software package [7], which is a suite of

algorithms that calculate the energy required to operate a

building and its resulting thermal behavior based on numerous

considerations ranging from the specifics of the structure,

ambient temperature, heating, ventilation, and air-conditioning

(HVAC) inputs, power consumption of electronic equipment,

lighting, number of occupants in a room, resulting temperature

traces of zones (rooms), and other factors that we are interested

in. We explore two recently proposed recurrent neural network

(RNN) structures to build the time-dependent nonlinear ther-

mal models. One structure is the non-linear state space RNN

architecture (NLSS), which has a global feedback from the

last hidden layer to the first hidden layer. The other structure

is the Elman’s RNN architecture (ELNN). Comparing with

NLSS, ELNN has a local feedback on each hidden layer, which

introduces more internal states and connection weights than

NLSS with the same hidden layer number and layer size. We

give a simple formula to calculate the RNN layer number,

layer size to configure RNN architecture to avoid overfitting

and underfitting problems. Experimental results are performed

on three buildings with different number of zones. We show

that NLSS and ELNN both perform pretty well on the 2-zone

and 5-zone buildings: they have similar average errors from

around 1% to 1.5%. For the more complex 6-zone building

case, ELNN outperforms NLSS with average errors of 2.2%

against 3.1%. But both methods have 2.2% average errors.

II. REVIEW OF ENERGYPLUS FOR ENERGY SIMULATION

OF BUILDING

In this section, we review the EnergyPlus software program,

which provide accurate input and output traces from buildings

for the new thermal modeling algorithm.

The EnergyPlus software package [7] is a suite of algo-

rithms that calculate the energy required to operate a building

and its resulting thermal behavior based on numerous con-

siderations ranging from the specifics of the structure, to heat

sources and sinks within the building, and weather. EnergyPlus

consists of an integrated solution manager which manages

the calculation of the heat balance of various surfaces in the

building, the heat balance of the air, and the heat balance

on the mechanical systems. The solution to each of these

three elements are calculated separately and communicated

to each other using the manager at each time-step. Due to its

modularity, it’s easy to establish links to other program links

such as Google SketchUp [2] for 3D building display.

An input data file (IDF) and weather file are needed for the

EnergyPlus simulation. The IDF includes all the information

of the building such as size, structure, position and the HVAC

subsystem etc. The IDF editor in EnergyPlus can be used to

change parameters of the building, the schedule of the HVAC

subsystem and also the output information. The selected output

information will be generated in the spreadsheet file after

running the simulation.

Fig. 1 shows the side view and the top view of a data

center building with 2 rooms and HVAC modeled in the

EnergyPlus. The heat sources for this building can be HVAC,

light, occupants, electric equipment, air filtration etc. The room

temperature is also affected by the weather (ambient tempera-

ture). The room temperature is controlled by the HVAC system

with coil and fan as shown in Fig. 2. The air of a room are

cooled or heated in the coil and goes back to the zone. The

coil itself is a heat exchanger. Besides the air loop, the coil

has a water loop coming from the boiler or chiller to control

the temperature of the air.

(a) (b)

Fig. 1: The 2-zone office building (a) side view (b) top view.

Fig. 2: A HVAC in a zone with coil and fan system.

Fig. 3 shows the simulated temperature changes and input

changes over one week from EnergyPlus for a data center

building with the 2 zones (rooms) as shown in Fig. 1.

In this particular example, we have 6 inputs for each

output, which is the temperature of one zone (room). The 6

inputs are shown in Fig. 3. The main heating sources comes

from information technology equipment (ITE) as this is a

date center building. ITE is a group of equipment such as

computers, monitors, servers, printers, network hubs etc. With

the increasing of computing capacity in the data center, ITE

becomes a significant power consumer and the cooling of ITE

is required. Inputs 5 and 6 comes from HVAC for the cooling.

451

5.12

9.96

14.80
IN

(1
)

41.1

149.1

257.0

IN
(2

)

−1460

50

1560

IN
(3

)

38200

48100

58000

IN
(4

)

36400

45650

54900

IN
(5

)

1660

2720

3780

IN
(6

)

0 20 40 60 80 100 120 140 160

hour

22.1

22.7

23.3

O
U

T
(1

)

Fig. 3: The input and simulated temperature output data sam-

ple in one week from EnergyPlus. IN(1): ambient temperature;

IN(2): the total heating rate of lights in the zones; IN(3): the

total power generated by electric machines; IN(4): total heat

gain rate of the area with information technology equipment

(ITE) to the zones; IN(5): air system sensible cooling rate

for zones; IN(6): air system sensible cooling rate for plenum;

OUT(1): zone operative temperature (hourly).

Notice that ambient temperature is also input for our thermal

model.

We want to stress that fundamentally thermal behavior

of building systems is typically nonlinear (at least weakly

nonlinear) due to the temperature-dependent properties of

the building materials and thermal radiation effects [4], [25].

As a result, nonlinear modeling is preferred for accurate

temperature control and management.

III. REVIEW OF RECURRENT NEURAL NETWORKS

Learning based techniques such as neural networks, which

composed of multiple processing layers, can learn repre-

sentations of data with multiple levels of abstraction. Deep

learning techniques with consist of many layers recently have

dramatically improve the state-of-the-art in speech recognition

and image recognition [22].

Behavioral modeling can be viewed as a supervised learning

in neural network. The main advantage of the neural networks

is its wide application for both linear and nonlinear systems.

The universal approximation capability of feed-forward neural

networks (FNN) has been proved in [16] to show that any

Borel measurable function can be approximated with any

arbitrary accuracy by an FNN using squashing activation

functions.

Specifically, let u = {u1, u2, · · · , up} denote the input p×1
vector, y = {y1, y2, · · · , yq} denote the output q× 1 vector, a

layer-wise structured FNN without bias can be described as

a1 = f1(uW
(IN,1)),

a2 = f2(a1W
(1,2)), · · · ,

ai = f i(aiW
(i−1,i)), · · · ,

ak = fk(ak−1W
(k−1,k)),

y = akW
(k,OUT) (1)

where activation function f is element-wise squashing opera-

tor such as sigmoid or hyperbolic tangent function; vector ai is

the intermediate activation result of each layer; matrix W (·,·)

is the weighting matrix connecting adjacent layers. FNN with

bias requires each activation result vector ai to be appended

with a fixed unit value before it is fed into next level of

calculation, and dimension of W (·,·) also needs to be adjusted

accordingly.

A. Review of recurrent neural networks

FNN can not work for the time domain models, which

depend on the history of the inputs of the models instead of

current inputs. As a result, recurrent neural networks (RNN)

has been proposed [31].

A recurrent neural network (RNN) is constructed by intro-

ducing internal status holders to a memory-less network so that

it can deal with time-series data. The internal status holders

store outputs of designated neurons and usually function as

feedbacks into other neurons. The application of feedback

enables RNNs to acquire time-dependent state representations,

making them suitable devices for applications like time-

dependent non-linear prediction, plant control, etc. [13]

There are many RNN structures proposed by varying the

form of global recurrent feedback [11], [13], [23], [29]. Non-

linear autoregressive with exogenous inputs (NARX) model

[23] uses history of system input and output as feedback to

the multilayer perception. The estimated system output has the

form of

ŷ(n+ 1) = ϕ
(

y(n),y(n− 1), · · · ,y(n− q + 1),

u(n),u(n− 1), · · · ,u(n− q + 1)
)

(2)

where q denotes the order of the unknown system; y and u
are respectively the system output and input; ŷ denotes the

estimated system output, ϕ denotes the non-linear function

approximated by the NARX network.

The second RNN model is the non-linear state space model

(NLSS) [13], taking the following form:

x(n+ 1) = ϕ (x(n),u(n)) (3)

y(n) = Cx(n) (4)

which essentially is the general nonlinear continuous-time

dynamic model useful for modern control theory to study the

dynamic behavior.

The third RNN network is Elman’s simple recurrent network

(ELNN) architecture [11] , which applies local recurrent

feedback on each layer of neurons instead of the global

feedbacks as in the NLSS model. Similar state space dynamic

neural network (SSDNN) has been applied to model non-linear

microwave integrated circuits with acceptable errors using both

452

clean and noisy input data [5], [6]. SSDNN introduces feed-

forward neural network into linear state space equation in form

of

ẋ(t) = −x(t) + τϕ(x(t),u(t)) (5)

y(t) = Cx(t) (6)

to describe the transient behavior of non-linear circuits. Re-

current multilayer perceptron (RMLP) [29] has been proposed,

which uses recurrent feedback between layer groups in a more

coarse-grained sense.

B. Review of neural network training

In theoretical aspect, training a neural network represented

in equation 1 is equivalent to the optimization problem to

minimize cost function (without bias connections, without

regulation terms):

J
(

W (IN,1),W (1,2), · · · ,W (k,OUT)
)

=
m
∑

j=1

∥

∥yj − ŷj

∥

∥ (7)

where ŷi is neural network output which can be explicitly

written in a nested activation form

ŷ =fk(fk−1(fk−2(· · ·f2(f1(uW
(IN,1))W (1,2))W (2,3) · · ·)

W (k−2,k−1))W (k−1,k))W (k,OUT) (8)

Therefore the neural network training problem can be solved

by applying existing optimization method such as gradient

decent, Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm

[14], and the Quasi-Newton method on the cost function J .

In practice, algorithms with lower computational cost has

been developed. Back-propagation algorithm is a widely-used

algorithm and has been well studied [15]. It collects errors

in weighting matrices W (·,·) in a backward propagation, after

the errors of output vectors have been observed in each epoch.

Based on the back-propagation algorithm, many improvements

have been developed such as the resilient back-propagation

(RProp) method [30], which is more adaptive approach, and

a further improvement method: RPropMinus [19], which has

an overall better performance in reducing average error in

late training phase. The back-propagation algorithm family has

also been extended to train recurrent neural networks. Back-

propagation through time (BPTT) [34] unfolds every network

activation of a continuous sequence. Back-propagation through

structure (BPTS) [12] delivers more computational efficiency

on arbitrary structured networks.

IV. RNN-BASED THERMAL MODELING FOR BUILDING

In this section, we apply the two RNN architectures for

building the nonlinear thermal models for building. We also

describe the structures of the two networks, how the gold

referencing data is computed, and the detailed works on

training the networks.
Specifically, we apply a non-linear state space RNN archi-

tecture (NLSS) and Elman’s RNN architecture (ELNN) for

our thermal modeling problem. The reason for choosing the

two networks is that the two networks represent the two major

RNN architectures (NLSS for global feedback and ELNN for

local feedback) so that we can perform some good comparison

for the thermal modeling problems.

In the following, we briefly further discuss the two RNN

networks. As shown in Fig. 4, the non-linear state space RNN

(NLSS) is constructed to achieve a direct representation of

equation (3) and (4). By introducing a recurrent connection

feeding back from the last hidden layer to the first hidden

layer, the internal state vector x is maintained internally

by the network. Fig. 5 depicts the second architecture of

Fig. 4: Non-linear state space recurrent neural network (NLSS)

architecture (bias units are not included).

the Elman’s network (ELNN) with local feedback on each

hidden layer. In comparison to the non-linear state space

architecture, given the same number of hidden layers and layer

sizes, the Elman’s network introduces more internal states and

connection weights.

Fig. 5: Elman’s recurrent neural network (ELNN) architecture

with local feedbacks (bias units are not included).

For neural network based modeling and classification meth-

ods, one critical issue is to find the most suitable architecture

and proper training to avoid overfitting and underfitting prob-

lems. If we select a more complicated structure than needed

for the system, we may model excessive noise instead of the

true system dynamics, this is called overfitting. On the other

hand, if we use an over simplified model than required for the

system, we may run into an underfitting problem.

To mitigate these problems, we first select the proper

architectures in terms of number of neurons per layer and

layers based on a simple rule after some experiments with

the building modeling problems for the two networks. For the

Elman’s network in Fig. 5, we use two hidden layers with

local feedbacks. The number of neurons in first hidden layer

is determined by the number of input: NELNN1 = 1
5NIN + 5;

453

Sequence configuration NLSS (%) ELNN (%)

1–2 3–4 5–6 7–8 9–10 11–12 Avg. Max. Avg. Max.

T T T T T V 2.2 23 2.6 21
T T T T V T 8.0 74 3.2 33
T T T V T T 3.9 28 2.2 16
T T V T T T 4.9 81 2.5 23
T V T T T T 4.5 25 2.2 24
V T T T T T 4.5 26 2.5 31

TABLE I: 6-fold cross validation configuration (T: training, V:

validation) and relative error statistics.

the number of neurons in second hidden layer is determined

by the number of output: NELNN2 = 2×NOUT. NIN and NOUT,

denoting the number of input and output of Elman’s network,

(some building examples are in Table II). For the non-linear

state space RNN depicted in Fig. 4, we use four hidden layers

with sizes NNLSS1 = NNLSS2 = NNLSS3 = 1
2NIN + 15 and

NNLSS4 = NOUT.

Second, for a given data set, we perform the cross validation

to find the best models. We use the 6-zone office building

example, which is shown in Fig. 6, to illustrate this. Before

the cross validation, we have a high-variance problem using

fixed portion of data to perform training and validation, in

which the average and maximum validation error went up to

3.5% and 44%.

(a) (b)

Fig. 6: The 6-zone office building (a) side view (b) top view

Cross validation is applied using non-linear state space

RNN. Specifically, we group the 12 sequences of experiment

data into 6 groups with two continuous sequences in each

to perform a 6-fold cross validation. As shown in Table I,

in each run of cross validation, we pick a single group to

do validation and rest of groups to train the RNN. From this

table, we obtain the best NLSS model when we pick sequence

11–12 as the validation data with average relative error 3.5%

and maximum relative error 23%; and the best ELNN model

when using sequence 7–8 as the validation data.

V. NUMERICAL RESULTS AND DISCUSSIONS

The proposed RNN based modeling method has been im-

plemented in Python, using the popular PyBrain [32], NumPy

[33], SciPy [20] and Matplotlib [18] for building the RNN,

and for manipulating and visualizing the input data. We run

EnergyPlus on three different buildings to get the referencing

data which will later be compared with the outputs of our

RNN models to observe errors.

In addition to the data center building with two zones in

Fig. 1 and the office building with 6 zones in Fig. 6, we also

have the third example: the office building with 5 zones shown

in Fig. 7.

(a) (b)

Fig. 7: The 5-zone office building (a) side view (b) top view.

For the 2-zone and 5-zone building, we do two differ-

ent simulations on each: one simulation considering only

ambient temperature and HVAC (Heating, Ventilation, Air-

Conditioning) factors, and the other simulation considering

all factors like occupants, equipment factors, etc. Since the 6-

zone building uses different air system other than HVAC, we

only include the EnergyPlus simulation and RNN modeling

considering all factors. As shown in Table II, we use one

year’s simulation data generated by EnergyPlus to train and

validate the RNN models. In each case, input factors (such as

ambient temperature, HVAC and equipment factor) and output

(temperature of each zone) are simulated and sampled in 1-

hour time steps by EnergyPlus. We group the data points by

month to get 12 sequences for cross-validation based training

and validation as mentioned earlier.

#Input #Output #Samples #Sequences

2-zone (all factors) 11 2 24× 365 12
2-zone (HVAC only) 3 2 24× 365 12
5-zone (all factors) 26 5 24× 365 12
5-zone (HVAC only) 6 5 24× 365 12
6-zone 55 6 24× 365 12

TABLE II: Number of Inputs and outputs generated by Ener-

gyPlus for RNN training and validation.

In our work, we use following the error notations. We use

Absolute error to denote the value |tEP − tRNN| and Relative

error to denote the value 1
tEP

|tEP − tRNN|, where tEP and

tRNN are zone temperature generated by EnergyPlus and the

proposed RNNs. We calculate the average (avg) and maximum

(max) for each case for the two error terms mentioned above.
First, for the 2-zone building shown in Fig. 1, we train

the two non-linear state space network (NLSS) and Elman’s

local-feedback neural network (ELNN) with sizes of layers

configured according to the rules mentioned before. Among

the 12 sequences of data in each month of a year, we use

months 1–3, 5–7, 9–11 for training and months 4, 8, 12 for

validation. A sample validation curve data of one week is

shown in Fig. 8, where all input factors are considered.
As shown in Table III, average relative errors of NLSS and

ELNN are 0.11% and 0.10% and maximum relative errors are

0.94% and 1.1% respectively. We also did experiment on the

2-zone building with all input factors forced to zero except

HVAC. In this HVAC-only case, the average relative errors of

NLSS and ELNN are 1.2% and 0.98% and maximum relative

errors are 7.0% and 6.5%, shown in Fig. 9.

454

2-zone (all) 2-zone (HVAC) 5-zone (all) 5-zone (HVAC) 6-zone

NLSS ELNN NLSS ELNN NLSS ELNN NLSS ELNN NLSS ELNN

Training Absolute error (avg) (◦C) 0.025 0.022 0.20 0.19 0.24 0.19 0.050 0.14 0.36 0.31
Absolute error (max) (◦C) 0.30 0.30 1.4 2.1 4.9 4.4 0.84 1.8 3.1 5.4
Relative error (avg) (%) 0.11 0.090 1.0 0.94 1.1 0.84 0.23 0.62 1.6 1.4
Relative error (max) (%) 1.28 1.3 8.5 12 17 16 4.26 9.6 13 17

Validation Absolute error (avg) (◦C) 0.026 0.022 0.23 0.20 0.31 0.23 0.057 0.16 0.48 0.53
Absolute error (max) (◦C) 0.21 0.24 1.4 1.34 4.6 4.4 2.2 2.2 4.8 4.1
Relative error (avg) (%) 0.11 0.10 1.2 0.98 1.4 1.0 0.26 0.71 2.2 2.2
Relative error (max) (%) 0.94 1.1 7.0 6.5 20 16 9.6 12 23 16

TABLE III: Error statistics of the two RNN architectures (NLSS: non-linear state space RNN with global feedback; ELNN:

Elman’s network with local feedbacks).

0 24 48 72 96 120 144 168

Time (hour)

22

23

24

T
e
m

p
e
r
a

tu
r
e

(◦
C

)

EnergyPlus

RNN

(a) Non-linear state space RNN

0 24 48 72 96 120 144 168

Time (hour)

22

23

24

T
e
m

p
e
r
a

tu
r
e

(◦
C

)

EnergyPlus

RNN

(b) Elman’s RNN

Fig. 8: Validation errors for 2-zone building model (all fac-

tors).

0 24 48 72 96 120 144 168

Time (hour)

20.0

21.5

23.0

T
e
m

p
e
r
a

tu
r
e

(◦
C

)

EnergyPlus

RNN

(a) Non-linear state space RNN

0 24 48 72 96 120 144 168

Time (hour)

20.0

21.5

23.0

T
e
m

p
e
r
a

tu
r
e

(◦
C

)

EnergyPlus

RNN

(b) Elman’s RNN

Fig. 9: Validation errors for 2-zone building model (HVAC

only).

For the 5-zone building (floor plan is shown in Fig. 7)

case, we use same data subset as in 2-zone to perform RNN

training and validation. To overcome the overfitting problem

and reduce validation error, we applied regularization on

connection weights, which is implemented by adjusting the

weightdecay parameter to limit the growth speed of con-

nection weights in the training phase. As shown in Table III,

in the case where all factors are considered, average relative

errors of NLSS and ELNN are 1.4% and 1.0% and maximum

relative errors are 20% and 16% respectively. In the HVAC-

only case, the average relative errors of NLSS and ELNN are

0.26% and 0.71% and maximum relative errors are 9.6% and

12%. The representing curves sampled in one week are shown

in Fig. 10 and Fig. 11.

For the 6-zone building shown in Fig. 6, we perform

cross-validation on both NLSS and ELNN. Among the train-

ing/validation errors shown in Table I, the maximum relative

0 24 48 72 96 120 144 168

Time (hour)

20.0

22.5

25.0

T
e
m

p
e
r
a

tu
r
e

(◦
C

)

EnergyPlus

RNN

(a) Non-linear state space RNN

0 24 48 72 96 120 144 168

Time (hour)

20.0

22.5

25.0

T
e
m

p
e
r
a

tu
r
e

(◦
C

)

EnergyPlus

RNN

(b) Elman’s RNN

Fig. 10: Validation errors for 5-zone building model (all

factors) validation.

0 24 48 72 96 120 144 168

Time (hour)

18

21

24

T
e
m

p
e
r
a

tu
r
e

(◦
C

)

EnergyPlus

RNN

(a) Non-linear state space RNN

0 24 48 72 96 120 144 168

Time (hour)

18

21

24

T
e
m

p
e
r
a

tu
r
e

(◦
C

)

EnergyPlus

RNN

(b) Elman’s RNN

Fig. 11: Validation errors for 5-zone building model (HVAC

only).

errors in validation are 23% for NLSS and 16% for ELNN,

reduced from 34% and 37% in the baseline configuration using

a simple partitioning of training/validation data set.

As shown in Table III, the NLSS and ELNN using cross

validation delivers relative average error of 2.2% and 2.2%

respectively, the relative maximum error of 23% and 16%

respectively. The representing curves for the 6-zone building

sampled in one week are shown in Fig. 12a and Fig. 12b

respectively.

In summary, the performance of the two RNN networks

are quite similar especially in the 2-zone and 5-zone building

examples. But for the 6-zone building example, which is

more difficult with larger errors, we find that ELNN network

performs better than NLSS network with maximum errors 16%

against 23%. But both methods have 2.2% average errors.

455

0 24 48 72 96 120 144 168

Time (hour)

18.0

23.5

29.0

T
e
m

p
e
r
a

tu
r
e

(◦
C

)

EnergyPlus

RNN

(a) Non-linear state space RNN

0 24 48 72 96 120 144 168

Time (hour)

20.0

24.5

29.0

T
e
m

p
e
r
a

tu
r
e

(◦
C

)

EnergyPlus

RNN

(b) Elman’s RNN

Fig. 12: Validation errors for 6-zone building model.

VI. CONCLUSION

In this article, we have proposed a recurrent neutral network

(RNN) based behavioral thermal modeling method for energy-

efficient smart building control and management. The model

is trained by using the data generated from realistic building

simulation program, EnergyPlus, which can simulate some

practical buildings such as office buildings and data centers.

In this work, we have applied and studied two recurrent neural

network architectures to build the non-linear compact thermal

model for the building: one is non-linear state space RNN

architecture (NLSS), which has global feedbacks, and the

other one is Elman’s RNN architecture (ELNN), which has

local feedbacks in each layer. We derived a simple formula to

calculate the RNN layer number, layer size to configure RNN

architecture to avoid overfitting and underfitting problems.

A cross-validation based training technique has been further

applied to improve the accuracy. Experimental results from a

case study of three buildings show that ELNN and NLSS can

both build very accurate building thermal models for the 2-

zone and 5-zone building cases: both of them have average

errors from around 1% to 1.5% for the two buildings. And for

the more complex 6-zone building case, ELNN outperforms

NLSS with maximum errors 16% against 23%. But both

methods have 2.2% average errors.

REFERENCES

[1] Building Energy Data Book of DOE. [Online]. Available: http:
//buildingsdatabook.eren.doe.gov

[2] “Google SketchUp,” http://www.sketchup.com.
[3] TRNSYS – A transient systems simulation program. [Online]. Available:

http://www.trnsys.com/
[4] T. Bergman, A. Lavine, F. P. Incropera, and D. P. DeWitt, Fundamentals

of Heat and Mass Transfer, 7th ed. New York: John Wiley & Sons,
2011.

[5] Y. Cao, R. Ding, and Q. Zhang, “A new nonlinear transient modelling
technique for high-speed integrated circuit applications based on state-
space dynamic neural network,” in Microwave Symposium Digest, 2004
IEEE MTT-S International, vol. 3. IEEE, 2004, pp. 1553–1556.

[6] Y. Cao, R. Ding, and Q.-J. Zhang, “State-space dynamic neural network
technique for high-speed IC applications: modeling and stability analy-
sis,” Microwave Theory and Techniques, IEEE Transactions on, vol. 54,
no. 6, pp. 2398–2409, 2006.

[7] D. B. Crawley, L. K. Lawrie, F. C. Winkelmann, W. F. Buhl, Y. J. Huang,
C. O. Pedersen, R. K. Strand, R. J. Liesen, D. E. Fisher, M. J. Witte,
and J. Glazer, “EnergyPlus: creating a new-generation building energy
simulation program,” Energy and Buildings, vol. 33, no. 4, pp. 319–331,
Apr. 2001.

[8] K. Deng, P. Barooah, P. G. Mehta, and S. P. Meyn, “Building Thermal
Model Reduction via Aggregation of States,” in American Control
Conference, June 30-July 02, 2010, Baltimore, MD, Baltimore, MD,
Jun. 2010, pp. 5118–5123.

[9] T. Eguia, S. X.-D. Tan, R. Shen, D. Li, E. H. Pacheco, M. Tirumala,
and L. Wang, “General parameterized thermal modeling for high-
performance microprocessor design,” IEEE Trans. on Very Large Scale
Integration (VLSI) Systems, 2011.

[10] B. Eisenhower and I. Mezic, “Extracting Dynamic Information from
Whole-building Energy Models,” in Proc. of Conference on Dynamics
for Design (DFD 2012), Chicago, IL, Apr. 2012, pp. 3–10.

[11] J. L. Elman, “Finding structure in time,” Cognitive science, vol. 14,
no. 2, pp. 179–211, 1990.

[12] C. Goller and A. Kuchler, “Learning task-dependent distributed repre-
sentations by backpropagation through structure,” in Neural Networks,
1996., IEEE International Conference on, vol. 1. IEEE, 1996, pp. 347–
352.

[13] S. Haykin and N. Network, “A comprehensive foundation,” Neural
Networks, vol. 2, no. 2004, 2004.

[14] M. T. Heath, Scientific Computing: An Introductory Survey. McGraw-
Hill, 1997.

[15] R. Hecht-Nielsen, “Theory of the backpropagation neural network,”
in Neural Networks, 1989. IJCNN., International Joint Conference on.
IEEE, 1989, pp. 593–605.

[16] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural networks, vol. 2, no. 5,
pp. 359–366, 1989.

[17] Y. Hua and T. Sarkar, “Generalized pencil of function method for
extracting poles of an em system from its transient responses,” IEEE
Trans. on Antennas and Propagation, vol. 37, no. 2, pp. 229–234, Feb.
1989.

[18] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in
science and engineering, vol. 9, no. 3, pp. 90–95, 2007.

[19] C. Igel and M. Hüsken, “Empirical evaluation of the improved rprop
learning algorithms,” Neurocomputing, vol. 50, pp. 105–123, 2003.

[20] E. Jones, T. Oliphant, P. Peterson et al., “SciPy: Open source scientific
tools for Python,” 2001–, [Online; accessed 2015-07-23]. [Online].
Available: http://www.scipy.org/

[21] D. Kim and J. E. Braun, “Reduced-Order Building Modeling For
Application to Model-Based Predictive Control,” in 5th National
Conference of Innational Building Performance Simulation Association
(IBPSA-USA), Aug. 2012, pp. 554–561.

[22] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, May 2015.

[23] I. Leontaritis and S. A. Billings, “Input-output parametric mod-
els for non-linear systems part i: deterministic non-linear systems,”
International journal of control, vol. 41, no. 2, pp. 303–328, 1985.

[24] D. Li, S. X.-D. Tan, E. H. Pacheco, and M. Tirumala, “Parameterized
architecture-level dynamic thermal models for multicore microproces-
sors,” ACM Trans. Des. Autom. Electron. Syst., vol. 15, no. 2, pp. 1–22,
2010.

[25] Z. Liu, S. X.-D. Tan, H. Wang, A. Gupta, and S. Swarup, “Compact
nonlinear thermal modeling of packaged integrated systems,” in Proc.
Asia South Pacific Design Automation Conf. (ASPDAC), January 2013,
pp. 157–162.

[26] A. Malkawi and G. Augenbroe, Eds., Advanced Building Simulation.
Spon Press, Jun. 2004.

[27] M. Massoumy, Q. Zhu, C. Li, F. Meggers, and A. Sangiovanni-
Vincentelli, “Co-design of Control Algorithm and Embedded Platform
for Building HVAC Systems ,” in International Conference on Cyber
Physical Systems (ICCPS), Philadephia, PA, Apr. 2013, pp. 61–70.

[28] P. V. Overschee and B. D. Moor, “N4SID: Subspace algorithms
for the identification of combined deterministic-stochastic systems,”
Automatica, vol. 30, no. 1, pp. 75–93, 1994.

[29] G. V. Puskorius, L. Feldkamp, L. Davis et al., “Dynamic neural network
methods applied to on-vehicle idle speed control,” Proceedings of the
IEEE, vol. 84, no. 10, pp. 1407–1420, 1996.

[30] M. Riedmiller and H. Braun, “A direct adaptive method for faster
backpropagation learning: The rprop algorithm,” in Neural Networks,
1993., IEEE International Conference on. IEEE, 1993, pp. 586–591.

[31] R. Rojas, Neural networks: a systematic introduction. Springer Science
& Business Media, 2013.

[32] T. Schaul, J. Bayer, D. Wierstra, Y. Sun, M. Felder, F. Sehnke,
T. Rückstieß, and J. Schmidhuber, “PyBrain,” Journal of Machine
Learning Research, vol. 11, pp. 743–746, 2010.

[33] S. Van Der Walt, S. C. Colbert, and G. Varoquaux, “The numpy array:
a structure for efficient numerical computation,” Computing in Science
& Engineering, vol. 13, no. 2, pp. 22–30, 2011.

[34] P. J. Werbos, “Backpropagation through time: what it does and how to
do it,” Proceedings of the IEEE, vol. 78, no. 10, pp. 1550–1560, 1990.

456

	MAIN MENU
	Help
	Search
	Print
	Author Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 10.80 points
 Normalise (advanced option): 'original'

 32

 D:20150727081745
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 10.8000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryList_V1
 qi2base

