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ABSTRACT 
The increasing gap between the high data processing capability 

of modern computing systems and the limited memory bandwidth 
motivated the recent significant research on neuromorphic compu-
ting systems (NCS), which are inspired from the working mecha-
nism of human brains. Discovery of memristor further accelerates 
engineering realization of NCS by leveraging the similarity be-
tween synaptic connections in neural networks and programming 
weight of the memristor. However, to achieve a stable large-scale 
NCS for practical applications, many essential EDA design chal-
lenges still need to be overcome especially the state-of-the-art 
memristor crossbar structure is adopted. In this paper, we summa-
rize some of our recent published works about enhancing the de-
sign robustness and efficiency of memristor crossbar based NCS. 
The experiments show that the impacts of noises generated by 
process variations and the IR-drop over the crossbar can be effec-
tively suppressed by our noise-eliminating training method and 
IR-drop compensation technique. Moreover, our network cluster-
ing techniques can alleviate the challenges of limited crossbar 
scale and routing congestion in NCS implementations.  

Categories and Subject Descriptors 
B.7.1 [Integrated Circuits]: Types and Design Styles–VLSI (very 
large scale integration). 

Keywords 
Memristor Crossbar; Neuromorphic Computing; Neural Net-
works;  

1. INTRODUCTION 
As Moore’s Law is approaching its end [14], technology scal-

ing of conventional CMOS devices slows down and many studies 
on emerging circuits and devices are being performed. Two prom-
ising emerging nano-devices, i.e., spintronic [15] and resistive 
devices (a.k.a. memristor) [16], draw considerable attentions from 
the researchers. Besides, the gap between CPU computing capaci-
ty and memory accessing bandwidth greatly limits the up-scaling 
of von Neumann computer architecture, known as “memory wall” 
problem [17]. 

Emerging memristor devices has been well received as a prom-
ising candidate for next-generation memory [16]. Crossbar struc-
ture of memristors can be manufactured with a high integration 
density at a level of 1010 synapses per square inch; the achieved 
power consumption is also as low as one trillion operations per 
second (TOPS) per Watt [8][5]. Moreover, the non-volatility and 
programmability of memristor resistance can efficiently mimic the 
variable synaptic strengths of biological synapses, using memris-
tor to implement artificial neural network has become a hot re-
search topic [7].  

The VLSI realization of brain-inspired computing systems is re-
ferred to as neuromorphic computing systems (NCS). Although 
memristor has demonstrated many attractive characteristics in 
NCS implementation, there are still many fundamental challenges 
in designing a robust and efficient NCS. For instance, the compu-
ting and training reliability of a memristor crossbar is often dete-
riorated by process variations and signal noises [5]. As another 
example, voltage distributed over a crossbar degrades due to wire 
resistance (a.k.a. IR-drop), which could become severer as the 
crossbar size increases and therefore, constrain the scalability of 
the crossbar structure. Finally, a practical neural network is usual-
ly so large that one single crossbar may not offer sufficient con-
nections. Utilizing multiple crossbars will raise the routing con-
gestion problem; on the contrary, using memristor to implement a 
sparse neural network may cause a low crossbar utilization rate. 

In this paper, we summarize some of our recent published 
works about enhancing the design robustness and efficiency of 
memristor crossbar based NCS. 

2. PRELIMINARY 
2.1 Memristor Based NCS  

Figure 1 illustrates the structure of a feed-forward neural net-
work where input (xi) neurons are connected with output neurons 
(yi) through synapses (wij). The output message at every output 
neuron is activated after collecting and weighting messages from 
all the inputs. In a memristor-based NCS, every synapse is im-
plemented by a memristor and the synaptic weight is represented 
by the resistance (memristance) of the memristor device. Mathe-
matically, the computation can be formulated as: 
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Figure 1. (a) Conceptual overview of a neural network [8]. (b) Circuit 
architecture of a memristor crossbar [7]. 
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yn = Wn×m × xm,                                      (1) 

where xm and yn are the activity patterns of m input neurons and n 
output neurons, respectively, and Wn×m is the weight matrix denot-
ing synaptic strengths between inputs and outputs. Matrix-vector 
multiplication in Eq. (1) is the core operation of one of the com-
monest computation (namely, “recall” process) in NCS. Both 
network of discrete memristors and memristor crossbar can realize 
this operation but crossbar is considered as a more efficient way 
because of its structural similarity [6]. As Figure 1(b) shows, in a 
recall process, x is mimicked by the input voltage vector applied 
on the word-lines (WLs), and the bit-lines (BLs) are grounded. 
Each memristor is programmed to a resistance state representing 
the weight of the correspondent synapse. The current along each 
BL is collected and converted to the output voltage vector y by the 
“neurons” at the output of the crossbar [5].  

2.2 Training of Memristor Crossbar 
“Training” is another basic computation of NCS. The training 

of a NCS can be categorized as either close-loop on-device (OLD) 
training or open-loop off-device (OLD) training. In OLD training, 
amplitudes and durations of the programming signals are first 
computed based on different algorithms and applications. Then 
the memristors in the crossbar are programmed accordingly. On 
the other hand, CLD is an iterative scheme to update weights (re-
sistances) of memristors according to the feedback from outputs 
[10].  

When programming a memristor crossbar, programming pulses 
with different amplitudes and durations are applied to the crossbar 
for a desired resistance matrix R: the voltage of the WL and BL 
connecting the target memristor (Rij) are set to ൅ ௕ܸ௜௔௦ and ܦܰܩ, 
respectively, while all other WLs and BLs are connected to 
൅ ௕ܸ௜௔௦/2. Hence, only Rij is applied with a full ௕ܸ௜௔௦	above the 
threshold that can change the device’s resistance state, leaving the 
rest of memristors remain unchanged because they are only “half-
selected” with a voltage of ௕ܸ௜௔௦/2 [11].  

3. Design Challenges Overview 
In this section, we discuss some challenges in the design and 

design automation of memristor-based NCS. 

3.1 IR-drop  
The resistance along the metal wires connected to the memris-

tors in the crossbar causes the IR-drop issue in NCS: the voltage 
reaching the device could be considerably lower than that sup-
plied by the write driver.  In general, the influence of IR-drop on a 
memristor is determined by its position in the crossbar as well as 
the resistance states of all memristors. As proved in [11], when all 
memristors are at their low-resistance state (LRS), both recall and 
training processes of the memristor crossbar will encounter severe 
reliability problem, especially when the size of the crossbar is 
beyond 64×64. 

Figure 2 virtualizes the IR-drop issue on a crossbar with a size 
of 128×128. Figure 2(a) depicts the programming voltage distri-
bution (V’) in the training process. The programming voltage 
from the driver is 2.9V. V’ij is the voltage reaching the memristor 
between WLi and BLj. The largest IR-drop happens at the far end 
location as V’(128,128). The worst case and the best case of IR-drop 
occur when all the memristors are at their HRS (high-resistance 
state) and LRS, respectively, as shown in Figure 2(b). IR-drop 
greatly harms the programmability of the memristor crossbar and 
degrades the computation accuracy of the NCS. Similar trend can 
be also found during recall process of the NCS.  

IR-drop significantly affects reliability of the recall and training 
processes of NCS. During the recall process, input patterns (volt-
ages) are applied on the WLs and outputs are read from the BLs. 
Because of IR-drop, the BLs that are far from the input driver are 
subject to the distortion of the voltage applied on the memristors 
on the BLs and therefore, the distortion of the outputs. During the 
training process, resistance matrix R of all memristors should be 
programmed to the value representing the targeted weight matrix. 
For a memristor initially at HRS state, its final resistance Rij is a 
function of the voltage (Vij) and the accumulative duration (Tij) of 
the programming pulse such as: 

Rij = f(Tij, Vij, RHRS).                                (2) 

Due to IR-drop, the actual voltage applied on the memristor is V’ij 
that is different from the targeted Vij and thus, leading to an inac-
curate training result (weight matrix).  

3.2 Routing Challenges of NCS Design 
In contrast to the limited scale of memristor crossbars that can 

be manufactured presently, neural networks used in real applica-
tions are often very large. For example, DNN (deep neural net-
work) used in [1] is composed of more than 4000 input neurons. 
The network designed for LDPC coding in IEEE 802.11 also has a 
similar scale [2]. To implement such large-scale neural networks, 
three memristor-based schemes can be utilized: (1) pure discrete 
synapse (memristor) design (DSD), (2) pure multiple crossbar 
design (MCD) and (3) a hybrid design trading off between (1) and 
(2). The DSD is flexible to realize synaptic connections but its 
area cost increases exponentially with the neuron number because 
of routing congestion. Inter-crossbar routing congestion is also a 
major problem in MCD. Moreover, if the neural network is sparse, 
implementing the network with MCD may cause a low utilization 
of (the synaptic connections of) the memristor crossbar. We note 
that the routing congestion and low crossbar utilization problems 
are very common in some applications with large and sparse neu-
ral networks. For example, in LDPC coding based on back propa-
gation algorithm, less than 1% possible connections in the net-
work are actually connected [2]. Considering the pros and cons of 
DSD and MCD, A hybrid scheme (DSD+MCD) can be promising 
to overcome these challenges. Given a large and sparse neural 
network, we proposed a clustering technology to concentrate ran-
domly distributed connections into multiple small clusters. As a 
result, within-cluster connections are dense and between-cluster 

(a) (b) 

Figure 2. (a) Programming voltage distribution on a 128×128 all-
HRS-memristor crossbar (the best case). (b) Programming voltage 
degradation vs. crossbar size [5]. 
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Figure 3. Compensation for both training and recall processes [5]. 
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ones are sparse. MCD and DSD respectively realize within- and 
between-cluster connections, resulting in both high crossbar utili-
zation and low routing congestion. More details will be given in 
the next section. 

4. Solutions for NCS Design Challenges 
We proposed some techniques to solve the design challenges of 

NCS illustrated in Section 3. 

4.1 IR-drop Compensation 
To alleviate IR-drop issue, compensation techniques can be uti-

lized in recall and training processes of memristor crossbar. Fig-
ure 3 gives an overview of IR-drop compensation scheme in [5]. 

Taking into account the impact of IR-drop during the recall, we 
define W* as the actual but distorted weight matrix. W* is deter-
mined by the targeted memristor resistance state R and the wire 
resistance R_wire as: 

∗ࢃ ൌ ݃൫ࡾ, ܴ_௪௜௥௘൯.                          (3) 

As shown in Figure 3, the IR-drop compensation scheme opti-
mizes a compensating resistance state Rc that generates a weight 
matrix Wc  close to the ideal target W as: 

minࡾ೎‖ࢃ െࢃ௖‖ଶ ൌ ∑ ∑ ሺࢃሺ௜,௝ሻ െࢃ௖ሺ௜,௝ሻሻ
ଶ௠

௝ୀଵ
௡
௜ୀଵ .      (4) 

Gradient descent algorithm can optimize this target as: 

௖_௞ାଵࡾ ൌ ௖_௞ࡾ െ ߛ ∑ ∑ ሺ2 ቀࢃሺ௜,௝ሻ െࢃ௖ሺ௜,௝ሻቁ
௠
௝ୀଵ

௡
௜ୀଵ

డࢃ೎ሺ೔,ೕሻ

డࡾ೎_ೖ
ሻ  (5) 

Here ࢃ௖ ൌ ݃ሺࢉࡾ, ܴ_௪௜௥௘ሻ and can be explicitly measured [5].  

Different from the recall process, the optimization target of IR-
drop compensation in the training process is minimizing the dif-
ference between the trained R’ and the targeted R that represents 
desired weight matrix ࢃ. As aforementioned, all memristors can 
be set towards HRS to minimize the IR-drop impact during the 
training process. As Eq. (2) formulated, the final resistance of a 
memristor is the function of the programming pulse voltage and 
duration. Then the IR-drop can be compensated by prolonging the 
programming duration.   

4.2 Memristor Crossbar Reduction  
Another method to alleviate the impact of IR-drop is to reduce 

the scale of the involved computation and thus, the required size 
of the memristor crossbar [5]. The proposed crossbar reduction 
scheme is to approximate the weight matrix W (n×m) in Eq. (1) 
by leveraging singular value decomposition (SVD) as [4]: 

ࢃ ൌ ࢂ∑ࢁ ൎ ௔௣௣௫ࢃ ൌ ∑ ௜ߜ ∙ ௜࢛ ∙ ௜࢜
௥
௜ୀଵ .           (6) 

Here U and V are unitary matrices, Σ is an rectangular diagonal 
matrix with singular values of W. δi (i=1,…r) are the first r (i.e., 
the rank of Wappx) singular values of W. ui and vi are the approxi-
mated left and right singular vectors of W, respectively. The dif-

ference between W and Wappx, that is ∆ࢃ ൌ ฮࢃെࢃ௔௣௣௫ฮ, is 
decided by the coverage of ∑ ௜ߜ

௥
௜ୀଵ on the overall summed ∑ ௜ߜ

௠
௜ୀଵ . 

The difference, hence, ∆ࢃ can be controlled by the value of r. [5] 
gives the strategy to select r.  

Based on the approximation result, we are able to transform the 
weight connection function in Eq. (1) to: 

ࢃ ∙ ࢞ ൎ ሺ∑ ௜ߜ ∙ ௜࢛ ∙ ௜࢜
௥
௜ୀଵ ሻ ∙ 	            																																						࢞

	ൌ ࢚ࢌࢋ࢒ࢃ ∙ ࢚ࢎࢍ࢏࢘ࢃ ∙  (7)                                 ࢞
where  

௟௘௙௧ࢃ ൌ ሾߜଵ ∙ ଵ࢛ ௥ߜ… ∙ ௥௜௚௛௧ࢃ	,௥ሿ࢛ ൌ ൥
ଵ࢜
⋮
௥࢜
൩            (8) 

Here W was originally represented on an n×m crossbar and 
m×1 vector x is represented by the input voltage vector. Eq. (7) 
and (8) show that the connection function can be transformed to a 
new two-stage system that consists of a n×r weight matrix Wleft 
and a r×m weight matrix Wright. Note that r << n or m. This meth-
od is named as one-dimensional (1-D) reduction.  

Figure 4 illustrates the programming voltage distribution on a 
128×128 memristor crossbar when IR-drop is considered. Here all 
memristors are at LRS to demonstrate the worst-case impact of 
IR-drop. We highlighted (colored) the memristor locations with a 
voltage drop higher than Vbias /2 under “half-selected” program-
ming scheme introduced in Section 2.2. We name the boundary of 
the highlighted area as the “hard-limit”. Any memristor outside 
the “hard-limit” will not be effectively programmed because they 
are practically “half-selected”. Increasing the programming volt-
age to raise the voltage applied on the memristors outside the 
“hard-limit”, however, will affect the memristors that should be 
“half-selected”. Hence, the scale of the “hard-limit” serves as a 
good measurement of programming robustness of the memristor 
crossbar. As shown in Figure 4(a), the size of the largest “hard-
limit” is 48×48, or say, the maximum dimension of the data that 
can be processed is only 48. Our “2-D reduction method” pro-
posed in [5] can reduce the required memristor crossbar size at 
both dimensions. However, by reducing the size of one dimension 
down to a smaller value, say, r = 22, the size of another dimension 
can be extended to 128, as depicted in Figure 4(b). Such a cross-
bar is sufficient to process the data with a size of 128 leveraging 
our proposed 1-D reduction method, as long as the rank of ࢃ௔௣௣௫ 
is not higher than 22.  

4.3 Neural Network Partitioning  
Spectral graph partitioning (also spectral clustering) is a candi-

date to partition the graph which representing a neural network 
into multiple groups. The optimization target is to minimize the 
between-group similarity and maximize the within-group similari-
ties [3]. As the message propagation direction on the neural net-
work has no impact on the optimization function, the neural net-
work can be abstracted as an undirected graph to perform spectral 
partitioning. In NCS design, by specifying the “similarity” as “the 
number of connections”, the goal of our spectral graph partition-

 
Figure 4: Reduction improves reliability [5]. 

 
Figure 5. Trained memristor resistance discrepancy (a) without IR-

drop compensation. (b) with IR-drop compensation [6]. 
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ing becomes minimizing the (between-group) connections that 
need to be mapped to DSD and maximizing the (within-groups) 
connections that fit into the crossbars (MCD), thus, decreasing the 
routing congestion and increasing the crossbar utilization.  

5. Experiments 
5.1 Evaluations of IR-drop Compensation 
and Crossbar Reduction 

Figure 5 shows our experiment results about the resistance dis-
crepancy between the targeted crossbar and the actual trained one 
impacted by IR-drop and process variations. In our experiment, 
the programmed memristor resistance is assumed to follow the 
log-normal distribution as ݎ ൌ ଴ݎ ∙ expሺߠሻ [12], where, ߠ ~ N (0, 
σ) is Gaussian distribution and ݎ଴ is the mean value.  

We use Hopfield network as an example to illustrate the effec-
tiveness of IR-drop compensation and crossbar reduction schemes.  
A crossbar with a scale of 128×128 (original n×n) can be reduced 
to 128×19 (n×r) by applying 1-D reduction and to 19×19 (r×r) by 
2-D reduction scheme [5]. Here r is set to 15% of n, or the maxi-
mum pattern numbers that can be stored in a 128×128 Hopfield 
network in theory [13]. As Figure 5(a) shows, reduction schemes 
significantly reduce the resistance discrepancy as the crossbar size 
decreases, resulting in a higher quality of training. Moreover, as 
shown in Figure 5(b), the IR-Drop compensation scheme effec-
tively minimizes the crossbar resistance discrepancy. More exper-
iments also showed that the training quality enhancement could 
substantially improve recall successful rate of the NCS [5]. 

5.2 Evaluations of clustering 
Figure 6(a) and (b) demonstrates the adjacency matrix of a 

Hopfield network with 200 neurons before and after spectral parti-
tioning, respectively. In the figure, the i-th neuron is indexed on 
the i-th row (also on the i-th column). A black element at location 
(i, j) shows the connection between the i-th and the j-th neurons, 
and an empty (white) space shows no connections. The connec-
tion topologies in (a) and (b) are the same and the only difference 
is the order of the neurons. Reordering neurons through spectral 
partitioning, clusters are formed in the red squares. Experiment 
shows that the connections are efficiently concentrated into sever-
al dense clusters, which can be efficiently implemented by MCD.  

In a hybrid design (DSD+MCD), however, there are still some 
fundamental challenges need to be solved: Firstly, the size of a 
formed cluster should not exceed the maximum size of the availa-
ble crossbars. Conventional spectral partitioning [3], however, 
does not consider this limitation; Secondly, it is usually difficult 
to cluster majority of the connections into clusters by simply per-
forming spectral partitioning algorithm because random neural 
networks may not have a good clustering property. For instance, 
52% of total connections in Figure 6(b) are still outside clusters. 

6. Conclusion 
In this paper, we summarized some EDA challenges in neuro-

morphic computing system design, such as the IR-drop issue and 

the routing congestion and low crossbar utilization of large-scale 
sparse neural network implementation. We also introduced some 
techniques, i.e., IR-drop compensation, crossbar reduction and 
neural network clustering to overcome these challenges. 
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