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Abstract— In this paper, we address the problem of limited
training sets for learning the regression functions in alternate
analog test. Typically, a large volume of real data needs to be
collected from different wafers and lots over a long period of
time to be able to train the regression functions with accuracy
across the whole design space and apply alternate test with high
confidence. To avoid this delay and achieve a fast deployment
of alternate test, we propose to use the Bayesian model fusion
technique that leverages prior knowledge from simulation data
and fuses this information with data from few real circuits to
draw accurate regression functions across the whole design space.
The technique is demonstrated for an alternate test designed for
RF low noise amplifiers.

I. INTRODUCTION

The current industry practice for production testing of

analog circuits is specification testing, wherein all the per-

formances promised in the datasheet are measured one by one

and, subsequently, are compared to their specification limits

to reach a pass or fail decision. This approach involves a high

cost since it requires automatic test equipment with advanced

features and it takes up significantly long test times. For many

Systems-on-Chip and Systems-in-Package it has been reported

that testing the analog functions is responsible for up to 50%

of the total test cost, despite the fact that the analog circuits

occupy less than 5% of the total die area.

The alternate test paradigm has been proposed as a replace-

ment of the conventional specification tests with the aim to

largely simplify the test procedure and reduce the test cost

[1], [2]. The underlying idea is to apply appropriate test

stimuli and extract alternate measurements from which we

can infer implicitly the performances. The low cost stems

from the fact that a single test configuration that employs

DC or low-frequency test stimuli and a single acquisition of

alternate DC or low-frequency alternate measurements suffice

to predict accurately all the performances. This has been

demonstrated for different types of analog circuits, including

baseband analog [1], [3], RF [1], [2], [4]–[6], data converters

[7], [8], and PLLs [9].

The feasibility of alternate test lies in the fact that both the

performances and alternate measurements are subject to the

same process variations. This implies that alternate measure-

ments can be selected such that they are highly correlated to

the performances. In this way, variations in the performances

and, specifically, excursions outside their specification limits,

can be tracked implicitly through the variations in the alternate

measurements. With this in mind, the alternate test can only be

applied to circuits that exhibit process variations and a defect

filter is required to screen out circuits that fail due to defects,

before they are actually forwarded to alternate test [10].

The first step in alternate test is to identify information-

rich alternate measurements. This is a circuit-specific problem

since the input, output, frequency band, transfer function, etc.,

depend on the type of the analog circuit, as well as on its

architecture. It is also a very challenging problem since the

large number of process parameters and their intricate interac-

tions make it impossible to argue qualitatively that an alternate

measurement captures all variation scenarios that can occur.

The best practice is to select a test stimulus and associated

alternate measurements and optimize directly the test stimulus

until the accuracy of the alternate test becomes satisfactory

[1], [11]. Very often, however, the alternate measurements are

extracted ad hoc without a specific rationale and are shown

to be effective only experimentally. A typical approach is to

identify as many alternate measurements as possible and then

compact this large set using feature selection algorithms [12]–

[15].

The intricate relationship among performances and alternate

measurements makes it impossible to build the mapping in

the form of a closed-form mathematical relationship. For this

reason, the mapping is built through statistical regression.

Different regression tools can be employed for this purpose,

including polynomial regression, multivariate adaptive regres-

sion splines (MARS), feed-forward neural networks, support

vector machines (SVMs), etc. [16], [17].

The regression models that map the alternate measurements

to each of the performances are learned by employing a

training set of circuits. At the initial phase of the alternate test

deployment, the training set is not fully representative of the

fabrication process and alternate test decisions are unavoidably

prone to error for outlier circuits that lie towards the tails of

the circuit distribution. In this paper, we employ the Bayesian

model fusion (BMF) technique [18]–[21] with the aim to learn

regression models that are valid across the circuit distribution
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Fig. 1. Alternate test flow.

right at the onset of production without needing to hold off to

collect a representative training set before we can fully trust

the alternate test decisions. The underlying idea is to learn the

regression functions by employing in addition to the real data

prior information from post-layout simulation.

The rest of the paper is structured as follows. In Section

II, we provide a brief and concise overview of alternate

test. In Section III, we discuss the motivation behind this

work. In Section IV, we discuss in detail the BMF learning

procedure. In Section V, we demonstrate the BMF learning

procedure in the case of an alternate test approach for a low

noise amplifier (LNA) and we compare it to the conventional

learning procedure. Finally, Section VI concludes the paper.

II. BRIEF OVERVIEW OF ALTERNATE TEST

The alternate test flow is illustrated in Fig. 1. Let

P1, P2, . . . , Pk denote the k performances of the circuit under

test (CUT) that need to be determined during the conventional

specification test approach. Let also x = [x1, x2, . . . , xd]
denote a pattern of d low-cost alternate measurements. The

mapping between x and performance Pj denoted by fj

fj : x → Pj , j = 1, 2, . . . k (1)

is learned through regression modeling in an off-line, prepara-

tory training phase that employs N circuits collected from

different lots, wafers, and sites on the same wafer, such that

they are as representative as possible of the fabrication process.

In the conventional learning procedure, the N circuits are split

into training and validation sets. The training set is used to

learn the regression model while the validation set is used

as an independent set to assess the prediction error of the

regression model that we would observe on previously unseen

circuits that are not employed during training. If the prediction

error on the validation set is deemed low enough, then the

regression model can be readily used in production test to

predict the performances of a CUT by relying solely on the

alternate measurements and without needing to perform the

conventional specification tests.

By definition, the alternate test can be applied to any CUT

that exhibit process variations as long as it does not contain any

defects. In the presence of a defect, the alternate measurement

pattern will lie far away from the convex body that encloses

the training set and any alternate test entails a risk since the

regression model will extrapolate resulting in a somewhat

random prediction. For this purpose, a defect filter is also

learned during the training phase so as to screen out circuits

with defects in the production test phase before they are

forwarded to the regression models [10].

III. MOTIVATION FOR THIS WORK

Alternate test can be accurate as long as the follow-

ing criteria are satisfied: (a) the alternate measurements are

information-rich and correlate well with the performances;

(b) the regression models are accurately trained; and (c) the

training set is fully representative of the fabrication process.

As mentioned in the introduction, criterion (a) is a circuit-

specific problem and is outside the scope of this paper.

Criterion (b) can be satisfied by choosing an advanced

regression modeling technique. Thereafter, any inaccuracies

ascribed to regression modeling can be circumvented by train-

ing different regression models, for example, using different

training sets and/or different sets of alternate measurements,

and choosing to retest a circuit through the conventional

specification tests in case there is a disagreement amongst the

predictions of the regression models [22].

If criterion (c) is not satisfied, then there will be outlier

CUT towards the tails of the circuit distribution (e.g. process

corners) whose alternate measurements lie outside the convex

body that encloses the alternate measurements of the circuits

that are employed for training the regression models. For those

outlier CUT the alternate test entails a risk since, as in the case

of CUT with defects, the regression model will extrapolate,

resulting in a somewhat random prediction. Therefore, a large

volume of data need to be collected over a large period

of time until we have at hand a training set that is fully

representative of the fabrication process to train the regression

models accurately and start applying alternate test with high

confidence. Alternatively, the defect filter can also be used

to screen out the outlier circuits and forward them instead

to the conventional specification tests. The defect filter and

the regression models can be calibrated as we keep retesting

CUT and enhancing the training set, such that after a point

in time the alternate test can be applied blindly for every

circuit resulting in accurate decisions. However, in addition to

increasing test cost for a fraction of CUT for a period of time,

this two-tier test approach poses certain difficulties in the test

floor. Another approach is to generate large synthetic data sets

from real data to train the regression models [23]. However,

this approach is unlikely to succeed since the synthetic data

are generated without having any information about the tails

of the circuit distribution.

In this paper, the “incompleteness” of a small training

set collected from the first production wafers and lots is
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circumvented by employing in the analysis post-layout sim-

ulations. The real data are not combined with the post-layout

simulation data in a naive manner. Instead, we employ the

more sophisticated BMF technique which is explained in detail

in the next section.

IV. BAYESIAN MODEL FUSION

We assume without loss of generality a single performance

P . Our objective is to learn the regression function f : x → P .

Let us assume that we have at hand data from N real circuits.

We define the vectors PL = [P (1), · · · , P (N)] and xL =
[x(1), · · · ,x(N)], where P (n) and x(n) denote the performance

and alternate measurement pattern, respectively, for the n-th

circuit n = 1, · · · , N .

The conventional learning procedure is to use a fraction of

the real data for training and the rest of the real data for vali-

dating the generalization ability on previously unseen circuits.

However, as explained above, in a practical scenario this real

data set contains very limited information about the process

corners and the regression function will be valid mainly around

the nominal point. The aim of the BMF technique is to learn

the regression function by leveraging information about the

process corners from a large volume of post-layout simulation

data that is readily available and combining this information

with the real data. We refer to the post-layout simulation data

as early-stage data and to the real data as late-stage data.

Formally, we consider two versions of the regression func-

tion f , namely an early-stage regression function, denoted by

fE , that is trained using only early-stage data and a late-stage

regression function, denoted by fL, that is trained using the

BMF learning procedure. We use the following general forms

fE(x) =
M∑

m=1

aE,m · bm(x) (2)

fL(x) =

M∑
m=1

aL,m · bm(x), (3)

where bm(x) is the m-th basis function and aE,m, aL,m
correspond to the m-th coefficient of the early-stage and late-

stage regression function, respectively, m = 1, · · · , M .

The BMF learning procedure consists of solving for the

late-stage model coefficients that maximize the posterior dis-

tribution pdf(aL|PL,xL), that is,

max
aL

pdf(aL|PL,xL), (4)

where aL = [aL,1, · · · , aL,M ]. By applying Bayes’ theorem,

we can write

pdf(aL|PL,xL) ∝ pdf(aL) · pdf(PL,xL|aL). (5)

Thus, the problem boils down to

max
aL

pdf(aL) · pdf(PL,xL|aL). (6)

Assuming that the late-stage model coefficients are inde-

pendent, we can write

pdf(aL) =

M∏
m=1

pdf(aL,m). (7)

We define the prior distribution pdf(aL,m) by involving

the prior knowledge from the early-stage data. Specifically,

pdf(aL,m) is assumed to follow a Gaussian distribution with

mean aE,m and standard deviation λ|aE,m|

pdf(aL,m) =
1√

2πλ|aE,m| · exp

[
− (aL,m − aE,m)

2

2λ2a2E,m

]
. (8)

This approach accounts for the fact that aL,m is expected to

be similar to aE,m and deviate from aE,m according to the

absolute magnitude of aE,m.
The likelihood function pdf(PL,xL|aL) is expressed in

terms of the real data. Specifically, since the real data are

obtained independently, we can write

pdf (PL,xL|aL) =

N∏
n=1

pdf
(

P (n),x(n)|aL
)

. (9)

Furthermore,

pdf
(

P (n),x(n)|aL
)

= pdf(ε(n)), (10)

where ε(n) is the prediction error introduced by the late-stage

regression for the n-th real circuit

ε(n) = P (n) − fL(x(n)). (11)

This error is a random variable that is assumed to follow a

zero-mean Gaussian distribution with some standard deviation

σ0

pdf(ε(n)) =
1√

2πσ0

· exp

(
−
(
ε(n)

)2
2σ2

0

)
. (12)

Therefore, combining (10), (11), (12), and (3), we can write

pdf
(

P (n),x(n)|aL
)

=
1√

2πσ0

·

· exp

⎧⎨
⎩− 1

2σ2
0

·
[

P (n) −
M∑

m=1

aL,m · bm

(
x(n)

)]2⎫⎬
⎭ . (13)

By combining (7), (8), (9), and (13) and taking the natural

logarithm, the maximization problem in (6) becomes

max
aL

M∑
m=1

log[pdf(aL,m)] − 1

2σ2
0

·

·
N∑
n=1

[
P
(n)
L −

M∑
m=1

aL,m · bm

(
x(n)

)]2
. (14)

The optimal values of σ0 and λ are determined by k-fold

cross-validation [16], [17].
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Fig. 2. CMOS inductively degenerated cascode LNA.

V. CASE STUDY

A. CUT and alternate test

Our test vehicle is a 2.4 GHz inductively degenerated

cascode LNA shown in Fig. 2. We consider the alternate

approach based on non-intrusive sensors proposed in [24].

The non-intrusive sensors consist of dummy analog stages

and single components extracted directly from the topology

of the LNA. In particular, we consider a dummy bias stage

identical to the bias stage of the LNA formed by transistor

M3 and resistor R1, a dummy gain stage identical to the

gain stage of the LNA formed by transistors M1 and M2,

a dummy diode-connected transistor identical to the transistor

M1, and a dummy capacitor identical to the capacitor Cin.

These dummy analog stages and single components are placed

on the same die in close physical proximity to the analog

stages and components of the LNA that they are mimicking

without being electrically connected to the LNA. The alternate

measurement pattern provided by these sensors includes the

DC bias, DC voltage gain, transistor transconductance, and

capacitance value. The underlying idea is that the sensors

“witness” the same process variations as the LNA, thus the

alternate measurements are correlated to the performances of

the LNA and can be used to predict the variations in the

LNA performances following the alternate test paradigm. We

consider the four main performances of the LNA typically

measured in production testing, namely the gain (S21), noise

figure (NF), 1 dB-compression point (1-dB CP), and input

third-order intercept point (IIP3). This built-in alternate test

approach, in addition to being low-cost and incurring low area

overhead, has the important property that is totally transparent

to the LNA. The built-in sensors are non-intrusive, thus the

performances of the LNA are unaffected by the test and the

design and test are dissociated. For more details, the interested

reader is referred to [24].

The LNA and the non-intrusive sensors are designed using

the 0.25 μm Qubic4+ BiCMOS technology by NXP Semicon-

ductors. The photo of the fabricated chip is shown in Fig. 3.

In total, 140 chips were fabricated in a Multi-Project-Wafer

Non-intrusive 
sensors

Dummy 
bias 
stage

Dummy gain 
stage

Dummy capacitor

Dummy
transistor

Fig. 3. Photo of fabricated chip [24].

(MPW) run. The chips are scattered across different sites on

a wafer. The four LNA performances and the alternate mea-

surement pattern were obtained on each chip using benchtop

equipment. There is sufficient measurement dispersion due to

process variations, larger than the measurement error, which

allows us to formulate appropriately the learning problem.

Again, for more details, the interested reader is referred to

[24].

B. Experiment design

The late-stage real data in our case study come from the

140 fabricated circuits. The early-stage simulation data are

generated through a Monte Carlo post-layout simulation with

1000 runs. The simulation takes into account the complete

signal path, including the circuit, pins, package, test board, etc.

Before proceeding with our experiment, we first confirmed the

basic underlying assumption of BMF that the early-stage and

late-stage real data distributions are similar.

The course of the experiment is as follows:

Step 1: Select randomly 100 real circuits out of the 140

available real circuits.

Step 2: Build the sets of late-stage real inliers and late-

stage real outliers. The set of late-stage real inliers contains

Ntr = 100 − Nval circuits and the set of late-stage real

outliers contains the rest Nval circuits. Nval is selected in

the range [30, 70] (see step 5). The late-stage real outliers are

the Nval most distant circuits from the sample mean in an

Euclidian sense when all circuits are projected onto the space

of alternate measurements. For the purpose of our experiment,

we consider that the late-stage real inliers are the circuits that

are typically available at the onset of production for training

the regression functions in alternate test. The late-stage real

outliers correspond to “extreme” circuits that are met much

more rarely and are unlikely to be available at the onset of

production.

Step 3: Select learning procedure and build the correspond-

ing training set. We consider the four learning procedures

listed in Table I. In particular, the BMF learning procedure

is compared to the conventional learning procedure that uses

as training set (a) only the late-stage real inliers, (b) a “raw”

combination of early-stage simulation data and late-stage real
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TABLE I

ALTERNATE TEST LEARNING PROCEDURES

learning

method
training set validation set

“intelligent” mixture of

BMF early-stage simulation data

and late-stage real inliers

standard late-stage real inliers

“raw” mixture of
late-stage real outliers

straightforward
early-stage simulation data

combination
and late-stage real inliers

simulation-based early-stage simulation data

inliers, and (c) only the early-stage simulation data. Case (a) is

the standard learning procedure used today, case (b) combines

together simulation with real data in a straightforward manner,

unlike the BMF learning procedure that relies on an “intelli-

gent” combination, and case (c) is a “naive” simulation-based

approach. For all learning procedures, we use polynomial

regression with pure quadratic polynomial basis functions and

no interaction terms.

Step 4: Compute the error of the learned regression function

on the validation set. For all learning procedures, the late-

stage real outliers are used as the validation set. We employ

two different accuracy metrics to express the error, namely

the root-mean-square (RMS) error (εRMS) and the maximum

absolute error (|ε|max).

Step 5: Repeat steps 2-4 for different values of Nval in the

range [30, 70], in order to study how each learning procedure

performs with respect to the size of the late-stage real data set

that is employed for training.

Step 6: Repeat steps 1-5 10 times and report the average

value of the two accuracy metrics observed for each perfor-

mance, learning method, and value of Nval. This step applies

the bootstrapping idea so to report as trustworthy accuracy

metrics as possible given the small real data set that we have

at hand.

C. Results

The results are shown in Fig. 4, where columns correspond

to the four performances and rows correspond to the two

accuracy metrics. In each plot, we show the average accuracy

metric for each of the four learning procedures listed in Table I

versus Nval. The markers indicate the exact average values of

the accuracy metrics. To enhance the readability of the plots,

we fit quadratic lines to the markers, in order to smooth out

the statistical variations that are due to the small sample.

The main conclusion drawn by studying carefully the plots

in Fig. 4 is that, for any performance and any accuracy metric

and regardless the number of the late-stage real inlier circuits

used for training, the BMF learning procedure either performs

better than the other three conventional learning procedures

or, at worst, it is equivalent to one of them in statistical terms.

In particular, the simulation-based learning procedure shows

consistently the worst performance. This is expected since

the distributions of simulation and real data inevitably show

some discrepancy. The performance of the standard learning

procedure deteriorates monotonically as Ntr becomes smaller

or, equivalently, Nval becomes larger. This is expected since

the information available for training is weakened and our

ability to extrapolate the regression towards the tails of the

distribution deteriorates, resulting in large prediction error on

the validation set. In some cases, for very small training set

sizes, it turns out that the standard learning procedure presents

even a worst performance compared to the “naive” simulation-

based approach. The straightforward combination learning

procedure performs better than the standard and simulation-

based learning procedures since information about outliers is

included during training. However, it is observed to be less

effective than the BMF learning procedure. This is explained

by the fact that the straightforward combination learning pro-

cedure combines simulation and real data with equal weight,

while the BMF learning procedure appropriately assigns the

optimal weight through cross-validation. The improvement

that the BMF learning procedure offers as compared to the

straightforward combination learning procedure is significant

if we project it to parts-per-million. It should also be noticed

that the BMF learning procedure shows a remarkably stable

behaviour, maintaining nearly constant accuracy metrics even

when the number of the late-stage real inliers used for training

is small. This implies that the BMF learning procedure, by

statistically extracting prior knowledge from simulation data,

is capable of generating accurate regression functions across

the design space based only on few real circuits. Thus, the

BMF learning procedure can be used to start deploying the

alternate test right at the onset of production, without needing

to wait to collect beforehand a large volume of data, as

is the standard practice today. This result showing that the

BMF learning procedure reduces the burden of collecting late-

stage data is consistent with the outcome of other studies

that employ the BMF learning procedure in the context of

pre-silicon validation, yield learning, and post-manufacturing

tuning [18]–[21].

VI. CONCLUSION

We demonstrated the use of the BMF learning procedure

in the context of alternate test with the aim to reduce the

real data that need to be collected before the alternate test

is deployed with high confidence. We demonstrated that the

BMF learning procedure is very stable providing accurate

performance predictions even in the case where the available

real data is really limited. This is achieved by reusing readily

available simulation data as prior knowledge when learning

the regression functions based on the limited real data. In our

example case study, the BMF learning procedure outperformed

the standard learning procedure for a given small training set

of real data. It also outperformed two other more simplistic

learning procedures, one that uses as a training set a straight-

forward combination of simulation and real data and one that

uses as a training set only simulation data.
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Fig. 4. Alternate test accuracy metrics for various performances and model construction cases.
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