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Abstract— In this paper, we propose a post-layout waveform
prediction method by System Identification (SI) based on the fact
that the waveforms of pre-layout and post-layout are always cor-
related. Mathematical models are built to describe the relation-
ships between the pre-layout and post-layout simulation results
via SI techniques. The model parameters are calibrated by us-
ing the simulation results of the first few data points of pre-layout
and post-layout stages. By taking the corresponding pre-layout
simulation results as inputs of the calibrated models, the rest post-
layout waveforms can thus be predicted as the output of the mod-
els. Several examples demonstrate the efficiency of the prediction,
which helps the designers have a quick view of the post-layout
waveforms in the design process.

I. INTRODUCTION

Post-layout simulation is important but computation-
intensive in Analog Mixed-Signal (AMS) circuit design. After
parasitic extraction, the number of nodes and elements of the
AMS circuits increase 10x compared with the pre-layout ones.
The post-layout simulation of AMS circuits would thus take a
long period. It is crucial to develop efficient methods to obtain
the post-layout simulation waveforms.

Model Order Reduction (MOR) is considered as the most
powerful approach to address the post-layout simulation prob-
lem [1–4]. MOR techniques produce reduced-order models
for the interconnects and thus reduce the computational cost
for post-layout simulations. A variety of MOR methods have
been developed in the past decades, among which the elimina-
tion based methods such as PACT [1] and TICER [2] have been
successfully applied to the post-layout simulation of AMS cir-
cuits.

The pre-layout and post-layout simulation data come from
the same circuit. Therefore, they are expected to be strongly
correlated. It is possible to utilize the information from the pre-
layout simulation to accelerate the post-layout analysis. Re-
cently, Bayesian Model Fusion (BMF) has been developed to
employ the early stage simulation data to accelerate the para-
metric yield analysis in the late stage [5]. With the early stage
data, BMF methods can greatly reduce the number of late-
stage samples for parametric yield analysis. On the other hand,
Transient analysis is one of the most critical tasks in AMS cir-
cuit design and verification flow. The transient simulation re-
sults can help the designers to diagnose and optimize the cir-
cuits. For an AMS circuit, the transient simulation waveforms
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of the pre-layout and post-layout stages are also strongly corre-
lated. Therefore, it is possible to predict the post-layout wave-
forms from the pre-layout simulation results. However, this
problem has not been studied before.

System identification methods [6] have been well developed
to build mathematical models of dynamic systems based on the
observed data, and have been successfully applied to many ar-
eas, such as industrial process [7], automatic control [8] and
neural networks [9]. In this paper, we propose a post-layout
waveform prediction method via system identification. Sys-
tem models are used to describe the correlations between the
post-layout and pre-layout waveforms. We treat the waveforms
of pre-layout and post-layout stages as the inputs and outputs
of the systems, respectively. The systems are calibrated via
system identification by using the simulation results of the first
few data points of pre-layout and post-layout stages. By taking
the corresponding pre-layout simulation results as inputs of the
calibrated models, the rest post-layout waveforms can thus be
predicted from the outputs. In this way, we can quickly pre-
dict the waveforms of the critical nodes by only simulating the
post-layout circuits for a short period. The proposed technique
is very helpful for the AMS designers to quickly explore the
waveforms of the critical nodes of post-layout circuits without
expensive circuit simulation.

The remainder of this paper is organized as follows. In Sec-
tion 2, we will introduce the background and motivation of our
work. The proposed post-layout waveform prediction method
via system identification will be presented in Section 3. The
efficiency of the proposed method is demonstrated by several
examples in Section 4. Finally, We conclude the paper in Sec-
tion 5.

II. BACKGROUND AND MOTIVATION

In the AMS circuit design and verification process, designs
would be optimized and verified for several times before fi-
nalization. The parasitic resistors and capacitors could greatly
affect the performance of the designs. Thus, it is necessary to
take the parasitics into consideration even in the design stages.
However, the post-layout simulation is time-consuming and
usually it is impossible to run post-layout simulations during
the design stages. During the design stages, designers just want
to know how the circuit performances are affected by the par-
asitics, which can guide them to diagnose and optimize the
designs. Therefore, an prediction method that can predict the
post-layout waveforms efficiently, would be very helpful for
designers.
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Fig. 1. Part of a sense amplifier circuit. The node N of pre-layout stage on
the left corresponds to nodes n1 · · ·n9 of post-layout stage on the right.

The post-layout circuits are generated from the pre-layout
circuits by adding the parasitic resistors, capacitors and induc-
tors. Take part of a sense amplifier circuit as an example. Fig. 1
shows part of the pre-layout and post-layout circuits of a sense
amplifier. In the left sub-figure, the MOSFETs are connected
directly in the pre-layout circuit. But for the post-layout cir-
cuit shown in the right sub-figure, the MOSFETs are connected
through interconnects modeled by complex RLC sub-circuits.
Several new nodes such as n1, n3, n5 are added in the post-
layout circuit to replace the single node N in the pre-layout
circuit.

Node N in the pre-layout circuit corresponds to nodes
n1 · · ·n9 in the post-layout circuit. The waveforms of nodes
n1 · · ·n9 are similar but not identical to node N because the
existence of parasitic elements. The strong correlations in-
spired us to utilize the simulation data of pre-layout circuits
to predict the post-layout waveforms.

By the complete pre-layout simulation and a limited time
period of post-layout simulation, we can predict the rest post-
layout waveforms. This means that we are able to quickly ex-
plore the post-layout waveforms without time-consuming sim-
ulation. On the other hand, we should point out that due to the
use of system identification instead of solving circuit equation,
the predicted responses may not always be accurate and thus
the prediction method cannot be used for sign-off. However,
the predicted waveforms can provide the designers with guid-
ance for further optimization. Several examples have demon-
strated that compared with the pre-layout waveforms, the pre-
dicted ones are far more similar to the post-layout waveforms,
and some even with high accuracy.

III. THE PROPOSED SIPREDICT METHOD

In this section, we will present the proposed post-
layout waveform prediction method via system identification
(SIPredict).

A. Syetem Models

System models are used to describe the correlations of the
pre-layout and post-layout waveforms. The pre-layout and
post-layout waveforms are taken as the inputs and outputs of
the systems, respectively. We will present the system models
used in our prediction method in this subsection.

The black-box system models are chosen for our SIPredict
method, which means we assume that the system is unknown
and all parameters are adjustable without consideration of the
physical meanings. A variety of models including three linear
and two non-linear models are introduced in this paper. For
an AMS circuit, the waveforms of the post-layout simulations
would not change greatly compared with the pre-layout simu-
lation results. Therefore, a linear model is often sufficient to
accurately describe the correlation between the pre-layout and
post-layout simulation results. In most cases, we will try to
fit linear models first. For the scenarios that the linear models
provide poor fits or the correlation exhibits significant nonlin-
earity, we will use the nonlinear models.

The linear candidate models include ARX model, impulse-
response model and transfer function model. The non-
linear candidate models include nonlinear ARX model and
Hammerstein-Wiener model. We will introduce these models
in the rest of this subsection. After the candidate models are
calibrated and validated, the model with the highest fit-level for
the validation data is selected to predict the post-layout wave-
forms.

A.1 Impulse-response Model

It is well known that for a linear, time-invariant, casual system,
the output response to a general input u(t) can be described as
the convolution with the impulse response. In the continuous-
time domain, we have

y(t) =

∫ t

τ=0

g(τ)u(t− τ)dτ, (1)

where the impulse response g(t) is the output of the system
with the impulse signal as input.

In discrete-time domain, we have

y(k) =

k∑
n=0

g(n)u(k − n), (2)

where g(k) is the discrete time impulse response.
The convolution model fully characterized by the impulse

response function g(k), is able to describe the input-output
relationship of LTI systems. Once g(k) is known, the cor-
responding output can be easily computed for a given input
u(k). This feature explains the interests in impulse response
model representations especially when the prior knowledge
about system behavior is limited [10]. Impulse response model
is one of the simplest linear models, for it has no memory and
the output is only dependent on the input, which exhibits a
static behavior.

A.2 ARX Model

ARX (Auto-Regressive eXogenous) model [6] is a special case
of the general linear polynomial model. It can be described by

A(q)y(k) = B(q)u(k) + e(k), (3)

where

A(q) = 1 + a1q
−1 + · · ·+ ana

q−na ,
B(q) = b1q

−1 + · · ·+ bnb
q−nb ,
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e(k) denotes the measurement noise sequence. Since the data
are obtained via simulation rather than physical measurement,
we can simply ignore e(k). q is a delay operator. For a sig-
nal u(k) in time domain, q−1u(k) means u(k − 1) here. An
equivalent model of (3) can also be expressed as

y(k) + a1y(k − 1) + · · ·+ ana
y(k − na) =

b1u(k − 1) + · · ·+ bnb
u(k − nb).

(4)

Generally ARX model is denoted as ARX(na, nb, nk),
where na and nb denote the orders of A(q) and B(q) polyno-
mials respectively and nk indicates the number of sampling in-
tervals related to dead time(input-output delay). Consequently,
in case of dead time, b1 = · · · = bnk

= 0 [10].
Compared to impulse response model, ARX model is a more

complex dynamic model since its output depends on not only
the inputs but also the history states. In the special case na =
0, ARX model is reduced to the impulse response model.

A.3 Transfer Function Model

Laplace transformation is one of the basic tools in linear sys-
tem analysis. In Laplace domain, the transfer function of a
system can be generally written as

Y (s) =
num(s)

den(s)
U(s) + E(s), (5)

where Y (s), U(s) and E(s) represent the Laplace transforms
of the output, input and noise respectively. Similarly, we ig-
nore the noise term E(s) here. num(s) and den(s) repre-
sent the numerator and denominator polynomials that define
the relationship between input and output. The roots of the
denominator and the numerator polynomials are referred to as
the poles and zeros of models respectively.

A.4 Nonlinear ARX Model

In linear ARX model (4), the current output y(k) is predicted
by a linear combination of the regressors y(k−1) · · · y(k−na),
u(k−1) · · ·u(k−nb). Nonlinear ARX model [11] extends the
linear formula to a nonlinear mapping function as:

y(k) = f(y(k−1), · · · y(k−na), u(k−1), · · ·u(k−nb)). (6)

The nonlinear function f is a combination of a linearity es-
timator and a nonlinearity estimator. The linearity estimator
has the same form as (4), while the nonlinearity estimator is a
sum of series of nonlinear elements, such as wavelet networks
or sigmoid functions. Nonlinear ARX model is an extension
and supplement for linear models when they are not sufficient
to accurately describe the system dynamics.

A.5 Hammerstein-Wiener Model

Hammerstein-Wiener model [6] is one of the most commonly
used nonlinear models with static nonlinearities both at the in-
puts and outputs.

Fig. 2 shows a block diagram of Hammerstein-Wiener
model, where

w(k) = f(u(k)), x(k) = (B(q)/F (q))w(k), y(k) = h(x(k)).

Fig. 2. A block diagram represents the structure of Hammerstein-Wiener
model.

Fig. 3. A general model to describe the system models.

Here f is a nonlinear function which maps input data u(k)
to the internal linear system. B(q)/F (q) is a linear transfer
function that represent the internal linear system, and h is a
nonlinear function that maps the output of the internal linear
system to the external output.

B. Model Calibration

The parameters of the system models are determined in the
model calibration procedure. We run the post-layout simula-
tions for a short time and combine the simulation results to-
gether with the corresponding pre-layout simulation results for
calibration. The parameters are derived by minimizing the er-
ror of the response predicted by the system models and the real
waveform. For some specific circuits, the waveforms of tran-
sient stages should not be used for model calibration, because
the correlation of pre-layout and post-layout waveforms can be
barely reflected in the transient stages. In this case, we have to
prolong the simulation and start to collect the simulation data
after the circuits work properly.

For linear system models, we use a general model as shown
in Fig. 3 to describe the system models presented in the previ-
ous subsection. In this general model, the system is the func-
tion of the system inputs and the past system outputs. The
task of the calibration procedure is to find the expression of
the function g(φ), which is parameterized by a set of parame-
ters θ [6] as:

g(φ) = θ1φ1 + θ2φ2 + · · ·+ θn+mφn+m,

where

φ =
[
φ1 · · ·φn+m

]T
,[

φ1 · · ·φn

]T
=

[
u(k − 1) · · ·u(k − n)

]T
,[

φn+1 · · ·φn+m

]T
=

[ −y(k − 1) · · · − y(k −m)
]T

.

The goal of model calibration is to find the optimal param-

eters �θc = { θc1 , · · ·, θcn+m
} that minimize the error of the

output ỹ predicted by the model over the first few time points
{0, · · · , s}:

�θc = argminVN (θ), (7)
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where

VN (θ) =
1

N

s∑
i=1

[y(i)− ỹ(i)]2,

and this can be easily solved using ordinary least squares esti-
mation.

Also, for a certain type of linear model, the orders of the
models should be determined before the model calibration pro-
cess. For example, we should determine na and nb in the ARX
model before the model calibration. In our implementation,
besides using prior knowledge about the AMS circuits, we de-
termine a general range of orders according to [10], and then
select the orders that predict the responses in highest accuracy.

Similarly, for nonlinear ARX model and the Hammerstein-
Wiener model, we use iterative search to minimize the simula-
tion error between the model output and the measured output.
Due to the limited space, please refer to [6] and [12] for the
details of the calibration procedure.

C. Model Validation

The minimization of prediction error in model calibration
procedure cannot always lead to accurate models. So after the
system models are calibrated, we further use a set of new post-
layout simulation data to validate them.

We first define a fit-level function (%) [13] to judge the
accuracy of the calibrated models as below

fit level = 100

(
1− ||y − ỹ||

||y −mean(y)||
)
,

where y is the measured data and ỹ is the output of the cal-
ibrated model. mean(y) denotes the mean value of the mea-
sured data over all the time points. The fit-level (%) is the mean
square error between the measured data and the simulated out-
put of the model. 100% fit-level corresponds to a perfect fit (no
error) and 0% fit-level corresponds to a bad fit.

We will choose the best models in the candidate models ac-
cording to their fit-levels for the validation data to predict the
remaining post-layout waveforms.

D. Algorithm Summary

We summarize the proposed algorithm SIPredict in Fig. 4.
In the proposed algorithm, the corresponding pre-layout nodes
of the interested post-layout nodes are extracted firstly. Then,
the post-layout circuit is simulated for a short time period. Part
of the result is taken as calibration data and the rest is taken as
validation data. Afterwards, the calibration data and the cor-
responding data points of the pre-layout simulation are em-
ployed to calibrate the parameters of system models. Finally
the model with highest fit-level for validation data is selected.
If its fit-level is acceptable, we use it for the prediction of the
remaining post-layout waveform.

In our proposed method, we first try all the linear system
models presented in section 3.A. If the fit-level is lower than
a threshold, we will try the more complex nonlinear system
models. If the fit-level of the nonlinear system model is still
unacceptable, a post-layout simulation should be performed to
derive the waveforms.

Fig. 4. SIPredict algorithm flow.
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Fig. 5. The predicted, the pre-layout and post-layout waveforms of the output
node of the operational amplifier.

IV. EXPERIMENTAL RESULTS

In this section, four circuit examples are used to demonstrate
the efficiency of our proposed SIPredict method. Linear mod-
els are accurate enough for prediction of the first two examples,
but they offer poor fit-levels for the last two more complicated
examples. As a result, we use more complex and flexible non-
linear models to predict the waveforms of the last two exam-
ples. All experiments are run on a PC with Intel 2.50GHz CPU
and 4GB memory.

From our experiments, we can find that the waveforms pre-
dicted by our proposed method cannot always achieve very
high accuracy. However, the predicted waveforms can essen-
tially predict the trends of the waveforms, which can guide the
designers to diagnose and optimize their designs.

A. Operational Amplifier

In this example, the test circuit is a folded cascade opera-
tional amplifier (op-amp) designed in a 32nm CMOS process.
The pre-layout and post-layout waveforms of the output node
are depicted in Fig. 5, which shows that the discrepancy is
mainly the amplitude attenuation.

The whole simulation waveforms contain 1000 data points.
Because the output waveform is obvious periodic, we choose
the first 200 data samples containing a complete waveform pe-
riod to calculate the parameters. We picked the next 50 sam-
ples for model validation.
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Fig. 6. The predicted, the pre-layout and post-layout waveforms of node BL
of the sense amplifier

Table I shows the fit-level and the runtime of model calibra-
tion and model validation of the three candidate linear models.
Since ARX model achieves the highest fit-level, we use it to
predict the final waveform with fit-level of 98.43%. Thus we
achieved a nearly 100% accuracy by using the first 1/4 data.
The predicted waveform is also shown in Fig. 5, from which
we can see the predicted waveform is nearly identical to the
post-layout waveform while there is obvious amplitude differ-
ence from the pre-layout waveform.

B. Sense Amplifier

Sense amplifier is an important component to perform the
read operation for static random-access memory (SRAM). We
use the simplified circuit of a latch-based sense amplifier de-
signed in a 32nm CMOS process in this experiment. Its differ-
ential outputs (BL and BL ) are connected to two bit lines of an
SRAM. After a small voltage difference is imposed to BL and
BL , the waveform of BL first goes down and then gradually
climbs to high level.

The whole simulation waveforms contain 1000 data points.
We choose the first 250 data points of pre-layout and post-
layout waveform for prediction, with the first 150 data points
for model calibration and the rest 100 data points for model
validation. Since transfer function model achieves the highest
fit-level, we use it to be the best approximate of the system and
it predicts the final waveform with fit-level of 93.4%. Fig. 6
also shows the predicted waveform of node BL, which is nearly
identical at first and keep almost the same slope afterwards.
The pre-layout waveform, on the other hand, is quite different
from the post-layout waveform. By using the first 1/4 data,
we successfully predict the trend and shape of the post-layout
waveform.

C. Ring Oscillator

In this case, we use a ring oscillator which consists of several
inverters in series to show the efficiency of the nonlinear mod-
els. The pre-layout and post-layout waveforms of the output
of the ring oscillator are depicted in Fig. 7. The discrepancy
is much more complex, since it is not a simple time delay but
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Fig. 7. The predicted, the pre-layout and post-layout waveforms of the output
of the ring oscillator.

acts as the period prolongation. Therefore, the linear models
are not able to describe the complex correlations any more. We
use Hammerstein-Wiener model for prediction in this example
because the nonlinearity in the input and output blocks should
be suitable to represent the period prolongation.

The whole simulation waveforms contain 500 data points.
Although the input and output are also periodic signals, we
cannot choose only one period of data as the operation am-
plifier example. Because the main difference of pre-stage and
post-stage is period prolongation rather than amplitude attenu-
ation and more than one period data is essential for defining
the period difference. We choose the first 150 data, which
comprise about three periods of pre-layout and post-layout
waveforms, for model calibration. The next 50 data samples
are picked for model validation. In the validation process,
Hammerstein-Wiener model achieves a fit-level of 91.07%, so
it is qualified to describe the system and finally it predicts the
final waveform with fit-level of 78.95%. Fig. 7 shows the pre-
dicted waveform of the output node, from which we can see
the period prolongation is accurately predicted, although there
are some detail errors in amplitude.

D. Phase Locked Loop

In this example, we use a much more complicated circuit:
Phase Locked Loop (PLL). The waveform of the “locked” sig-
nal is critical to a PLL design. The pre-layout and post-layout
waveforms of the “locked” signal are depicted in Fig. 8, from
which we can see the locking time and final voltage is quite
different, and the discrepancies appear as both time delay and
amplitude difference.

In this case, nonlinear ARX model is used to describe the
complex correlation between the waveforms. The whole wave-
forms contain 5000 data points. We drop the first 500 points
because the PLL is still initializing at these points. We choose
the following 800 data samples for model calibration. The next
500 data samples are picked for model validation. Finally the
nonlinear ARX model achieves a fit-level of 89.85% for the
validation data, and it predicts the remaining waveform with
fit-level of 73.5%. Fig. 8 shows the predicted waveform of the
output node, from which we can see it is much more similar to
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TABLE I
LINEAR MODEL PREDICTION INFORMATION OF SENSE AMPLIFIER AND

OPERATIONAL AMPLIFIER

Model Fit-level of Fit-level of Model Prediction

Circuits type validation prediction calibration time

(%) (%) time(s) (s)

ARXa 98.79 98.43 0.202 0.042

op-amp TFb 95.07 93.46 3.162 0.035

IMPc 94.73 94.75 0.292 0.041

ARX 97.63 87.38 0.423 0.058

sense-amp TF 99.57 93.50 4.819 0.053

IMP 94.59 84.71 0.683 0.035

aARX Model
bTransfer Function Model
cImpulse Response Model

the post-layout waveform and the indicated lock time is almost
the same.

The post-layout simulation of PLL takes 1853.4 seconds.
However, the SIPredict method uses only several seconds to
predict the desired waveform. Although the actual post-layout
simulation time may vary for different circuits, the correspond-
ing prediction time by the proposed SIPredict method is nearly
constant. As a result, the proposed method can effectively re-
duce the post-layout analysis time.

V. CONCLUSION

In this paper, we propose a method for post-layout wave-
form prediction via system identification. We build mathemati-
cal models to describe the relationships between the pre-layout
and post-layout simulation results by the first few data samples
of pre-layout and post-layout waveforms. The rest post-layout
waveform can be predicted from the output of the system. Sev-
eral examples demonstrate that the predicted waveforms pro-
vide more accurate information than the pre-layout waveforms
and give the general trends of the post-layout waveforms. This
method can be used to quickly explore the post-layout wave-

TABLE II
NONLINEAR MODEL PREDICTION INFORMATION OF RING OSCILLATOR

AND PLL

Model Fit-level of Fit-level of Model Prediction

Circuits type validation prediction calibration time

(%) (%) time(s) (s)

ring-oscil HMa 91.07 78.95 3.482 0.181

PLL N-ARXb 89.85 73.50 1.358 1.819

aHammerstein-Wiener Model
bNonlinear ARX Model

forms in the design process without time-consuming simula-
tions.
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