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Abstract—The advent of the nanoscale integrated circuit (IC)
technology makes high performance analog and RF circuits
increasingly susceptible to large-scale process variations. On-chip
self-healing has been proposed as a promising remedy to address
the variability issue. The key idea of on-chip self-healing is to
adaptively adjust a set of on-chip tuning knobs (e.g., bias voltage)
in order to satisfy all performance specifications. One major chal-
lenge with on-chip self-healing is to efficiently implement on-chip
sensors to accurately measure various analog and RF performance
metrics. In this paper, we propose a novel indirect performance
sensing technique to facilitate inexpensive-yet-accurate on-chip
performance measurement. Towards this goal, several advanced
statistical algorithms (i.e., sparse regression and Bayesian in-
ference) are adopted from the statistics community. A 25 GHz
differential Colpitts voltage-controlled oscillator (VCO) designed
in a 32 nm CMOS SOI process is used to validate the proposed
indirect performance sensing and self-healing methodology. Our
silicon measurement results demonstrate that the parametric
yield of the VCO is significantly improved for a wafer after the
proposed self-healing is applied.

Index Terms—Indirect performance sensing, integrated circuit,
parametric yield, process variation, self-healing.
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I. INTRODUCTION

W ITH THE aggressive scaling of nanoscale integrated cir-
cuit (IC) technology, large-scale process variation be-

comes a critical issue for today’s analog and RF ICs [3]–[7].
As the traditional overdesign technique becomes impractical,
on-chip self-healing has emerged as a promising methodology
to address the variability issue [9]–[15]. The key idea of self-
healing is to actively monitor the post-manufacturing circuit per-
formance metrics and then adaptively adjust a number of tuning
knobs (e.g., bias voltage) in order to meet the given performance
specifications.
To practically implement on-chip self-healing, a large number

of performance metrics must be measured accurately and inex-
pensively by on-chip sensors. Such a measurement task, how-
ever, is not trivial, because many analog and RF performance
metrics (e.g., phase noise) cannot be easily measured by on-chip
sensors. For this reason, alternate test methodology, also called
indirect performance sensing, has recently attracted great atten-
tion [8], [9], [11]–[13], [15], where the performance of interest
(PoI) is not directly measured by an on-chip sensor. Instead,
it is accurately predicted from a set of other performance met-
rics, referred to as the performances of measurement (PoMs)
that are highly correlated with PoI and are easy to measure.
Towards this goal, indirect sensor modeling is a critical task
where the objective is to build a mathematical model to capture
the correlation between PoI and PoMs so that PoI can be accu-
rately predicted from PoMs. To achieve this goal, PoMs and PoI
are first measured from several training chips, and then indirect
sensor models are constructed off-line based on these measure-
ment data. Such indirect sensor models are eventually stored in
an on-chip microcontroller for self-healing.
To describe an indirect senor, its model coefficients are

stored in an on-chip microcontroller as fixed-point values. A
complex model that is composed of many model terms would
consume massive hardware resources, since a large number of
model coefficients must be stored. Furthermore, during on-chip
self-healing, an indirect sensor model is repeatedly evaluated
to predict the corresponding PoI based on different PoMs
and, therefore, a compact model could dramatically reduce
the computational cost. Here, the computational cost accounts
for on-chip multiplication and addition, and multiplication
dominates the overall computational cost. For these reasons, an
indirect sensor model should be compact in order to minimize
the cost of on-chip self-healing.
Such a modeling task, however, is nontrivial since there is a

tradeoff between the model complexity and the model accuracy.
In general, it is likely that an oversimplified model will induce
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a large modeling error. Here, how to construct a compact indi-
rect sensor model without sacrificing its modeling accuracy re-
mains an open question. In addition, these indirect sensor models
must be repeatedly calibrated to accommodate the process shift
associated with manufacturing lines. Such a model calibration
issue has not been extensively studied yet. Hence, there is a
strong need to develop a new methodology to facilitate efficient
model calibration with low cost (i.e., requiring few additional
measurement data). As such, the overhead of indirect perfor-
mance sensing and, eventually, the overhead of analog and RF
self-healing can be minimized.
To address the aforementioned issues, a novel indirect per-

formance sensing approach is proposed in this paper. The pro-
posed method consists of two major steps: i) pre-silicon indi-
rect sensor modeling, and ii) post-silicon indirect sensor calibra-
tion. In the first step, a compact indirect sensor model between
PoMs and PoI is constructed based on pre-silicon simulation
data by using sparse regression (SR) [16], [17]. SR starts with a
complicated model template (e.g., a high-order polynomial) that
can accurately capture the correlation between PoMs and PoI.
-norm regularization is then applied, resulting in a convex op-

timization problem which can be efficiently solved to determine
the most important model terms in the template without sacri-
ficing any modeling accuracy. Other model coefficients corre-
sponding to the unimportant terms are simply set to zero, and are
ignored in the final indirect sensor model. Intuitively, the unim-
portant model terms have negligible contribution for accurately
predicting the value of PoI and, hence, can be discarded to min-
imize the self-healing cost.
Furthermore, in the second step, an indirect sensor model is

repeatedly calibrated based on post-silicon measurement data.
To perform efficient model calibration with low cost, a novel
Bayesian model fusion (BMF) technique is proposed. The key
idea of BMF is to combine the old (i.e., before process shift) in-
direct sensor model with very few new (i.e., after process shift)
measurement data to generate a new model that is aligned with
the new process condition. Mathematically, the old model is en-
coded as prior knowledge, and a Bayesian inference is derived
to optimally fit the new model by maximum-a-posteriori (MAP)
estimation.
Finally, an on-chip self-healing flow is developed where the

indirect sensor models are extracted by the proposed technique.
Measurement data of a 25 GHz differential Colpitts VCO de-
signed in a 32 nm CMOS SOI process are used to perform an
off-chip data analysis to validate the aforementioned on-chip
self-healing flow. Our silicon measurement results demonstrate
that the parametric yield of the VCO is significantly improved
for a wafer after self-healing is applied.
The remainder of this paper is organized as follows. In Sec-

tion II, we will present an overview of our proposed indirect
sensing methodology. The mathematical details for pre-silicon
indirect sensor modeling and post-silicon indirect sensor calibra-
tion will be discussed in Section III and Section IV respectively.
In Section V, an on-chip self-healing flow based on our proposed
indirect sensing approach is described. A 25 GHz differential
Colpitts VCO example designed in a 32 nm CMOS SOI process
is used to validate our proposed on-chip self-healing flow in Sec-
tion VI. Finally, we conclude in Section VII.

II. INDIRECT PERFORMANCE SENSING

Without loss of generality, we denote PoI as and PoMs as:

(1)

where stands for the number of performance metrics be-
longing to PoMs. The objective of indirect performance sensing
is to accurately predict the PoI from the PoMs that are
highly correlated with and can be easily measured by on-chip
sensors.
Generating an indirect sensor model consists of two

major steps:
• Pre-silicon indirect sensor modeling aims to construct a
compact model that can accurately capture the correla-
tion between the PoI and the PoMs based on pre-silicon
simulation data.

• Post-silicon indirect sensor calibration aims to calibrate
the indirect sensor model based on post-silicon mea-
surement data. Such model calibration must be repeatedly
performed in order to accommodate the process shift asso-
ciated with manufacturing lines.

We start with a generic and complicated model template (e.g.,
a high-order polynomial) to accurately capture the mapping be-
tween PoI and PoMs. The reason we choose a generic model is
simply because we do not know the relation between PoI and
PoMs in advance. Mathematically, we can write the model
as the linear combination of several basis functions:

(2)

where are the basis functions (e.g.,
linear and quadratic polynomials), are the
model coefficients, and is the total number of basis functions.
Such a complicated model, though accurate, consumes con-

siderable hardware resources to implement, as all model coeffi-
cients must be stored in an on-chip microcontroller to perform
on-chip self-healing. To reduce the overhead of on-chip self-
healing, we aim to select a small set of basis functions during
pre-silicon modeling without surrendering any accuracy. Such a
basis function selection task, however, is extremely challenging
due to the tradeoff between the model complexity and the mod-
eling error. In general, an oversimplified model is likely to have
a large modeling error. SR [16], [17] is applied to efficiently ad-
dress the aforementioned basis function selection problem.More
details about pre-silicon indirect sensor modeling via SR will be
discussed in Section III.
Furthermore, at the post-silicon stage, the indirect sensor must

be repeatedly calibrated to accommodate the process shift asso-
ciated with manufacturing lines. Since post-silicon measurement
is extremely expensive, sensor calibration must be accomplished
with very few post-silicon measurement data to facilitate effi-
cient generation of accurate indirect sensor models and, eventu-
ally, minimize the overhead of on-chip self-healing. To this end,
a novel Bayesian model fusion (BMF) technique is proposed to
keep the calibration cost affordable. The details about post-sil-
icon indirect sensor calibration via BMF will be presented in
Section IV.

III. PRE-SILICON INDIRECT SENSOR MODELING VIA SPARSE
REGRESSION

In this section, we aim to construct a compact indirect sensor
model to accurately capture the relation between PoI and PoMs.
Since the mapping from PoMs to PoI is not known in advance,
we start with a generic and complicated model template con-
sisting of a large number of basis functions (e.g., a high-order
polynomial), as shown in (2). Our objective here is to automati-
cally identify a small set of most important basis functions, and
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then determine their corresponding model coefficients based on
pre-silicon simulation data.
To start with, we first collect a number of pre-silicon simula-

tion samples , where and
denote the values of and for the -th sampling point respec-
tively, and denotes the total number of sampling points. Based
on these sampling points, a set of linear equations can be ex-
pressed as:

(3)

where

...
...

...
...

(4)

(5)

(6)

One simple approach to solve the model coefficients is to
apply the traditional ordinary least squares (OLS) fitting method
[18]. OLS determines the model coefficients by solving the
following optimization problem:

(7)

where denotes the -norm of a vector. Intuitively, OLS
intends to find a solution that can minimize the mean squared
modeling error.
As mentioned at the beginning of this section, we aim to iden-

tify a small set of important basis functions from a large number
of possible candidates. All other unimportant basis functions will
be discarded due to their negligible contribution for accurately
predicting the value of PoI. From this point of view, all model
coefficients associated with these unimportant basis functions
should be set to zero. Hence, identifying themost important basis
functions is equivalent to finding a sparse solution for the linear
equation in (3). The OLS formulation in (7) poses no constraint
on the sparsity of . In other words, the unconstrained optimiza-
tion in (7) used by OLS cannot fit our need of basis function
selection. Realizing this limitation of OLS, SR, instead, solves
the following -norm regularization problem:

(8)

where denotes the -norm of a vector, and is
a user-defined parameter. The formulation in (8) is a convex
optimization problem and can be solved both efficiently (i.e.,
with low computational cost) and robustly (i.e., with guaranteed
global optimum) [20].
There are several important properties associated with the op-

timization problem in (8). First, unlike the conventional OLS that
minimizes the mean squared error only, the formulation in (8)
minimizes the mean squared error subject to an -norm con-
straint posed on the model coefficients . It, in turn, promotes a
sparse solution of [16], [17] that is desired by our application
of basis function selection for on-chip self-healing.
Second, the parameter in (8) provides a tradeoff between the

sparsity of the solution and the modeling error. For instance,
a large is likely to result in a small modeling error, but mean-
while it will increase the number of non-zeros in . It is impor-
tant to note that if the vector contains many non-zeros, a large
number of model coefficients have to be stored in the on-chip

microcontroller to predict the PoI and, hence, the cost of indi-
rect performance sensing can be overly expensive. In practice,
the value of must be appropriately set to accurately predict
the PoI with a small set of basis functions. To find the optimal
value of , we must accurately estimate the modeling error for
different values. To avoid overfitting, we cannot simply mea-
sure the modeling error from the set of sampling data that is used
to calculate the model coefficients. Instead, modeling error must
be measured from an independent data set.
To determine the modeling error for a given value, we adopt

the idea of -fold cross-validation from the statistics community
[18]. Namely, we partition the entire data set

into groups. Modeling error is estimated from
independent runs. In each run, one of the groups is used to esti-
mate the modeling error and all other groups are used to calculate
the model coefficients by solving (8). Note that the training data
for coefficient estimation and the testing data for error estimation
are not overlapped. Hence, overfitting can be easily detected. In
addition, different groups should be selected for error estima-
tion in different runs. As such, each run results in an error value

that is measured from a unique group of the
data set. The final modeling error is computed as the average of

, i.e., . More de-
tails about cross-validation can be found in [18].
So far, we only consider how to reduce the number of basis

functions (i.e., the number of non-zeros in ) in order to save
on-chip self-healing cost. Actually, different basis functions may
involve different number of multiplications, and the computa-
tional cost to calculate each basis function when evaluating the
indirect sensor can be quite different. For instance, requires
only one multiplication, while needs three multiplica-
tions. To further reduce the computational cost, we can assign
different weights for different coefficients (e.g., a small weight
for while a large weight for ) in the constraint of (8). Intu-
itively, a coefficient with a larger weight is more likely to be set
to zero in a weighted -norm regularization [20]. Because of the
space limitation, the extended version of (8) to handle weighted
is not mentioned here.
The aforementioned SR method can be efficiently applied to

pre-silicon basis function selection andmodel coefficient estima-
tion. However, the device models used for pre-silicon simulation
are not perfectly accurate and may differ from the post-silicon
measurement results. For this reason, there is a strong need to
further calibrate the proposed indirect sensor models based on
post-silicon measurement data, as will be discussed in the next
section.

IV. POST-SILICON INDIRECT SENSOR CALIBRATION VIA
BAYESIAN MODEL FUSION

The objective of post-silicon indirect sensor calibration is to
further correct the modeling error posed by pre-silicon simu-
lation and also accommodate the process shift associated with
manufacturing lines. One straightforward approach for sensor
calibration is to collect a large amount of post-silicon measure-
ment data and then completely re-fit the indirect sensor model.
Such a simple approach, however, can be practically unafford-
able, since post-silicon testing is time-consuming and, hence, it
is overly expensive to collect a large set of post-silicon measure-
ment data.
To address this cost issue, we propose a novel statistical frame-

work, referred to as Bayesian model fusion (BMF) [19], for effi-
cient post-silicon sensor calibration. BMF relies on an important
observation that even though the simulation and/or measurement
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data collected at multiple stages (e.g., pre-silicon vs. post-sil-
icon) are not exactly identical, they are expected to be strongly
correlated. Hence, it is possible to borrow the data from an early
stage (e.g., pre-silicon) for sensor calibration at a late stage (e.g.,
post-silicon). As such, only few post-silicon data should be mea-
sured at the late stage and, hence, the cost of sensor calibration
is substantially reduced.
More specifically, our indirect sensor models are initially

fitted by using the early-stage (e.g., pre-silicon) data. Next, the
early-stage sensor model is encoded as our prior knowledge. Fi-
nally, the indirect sensor model is further calibrated by applying
Bayesian inference with very few late-stage (e.g., post-sil-
icon) measurement data. Here, by “fusing” the early-stage
and late-stage sensor models through Bayesian inference, the
amount of required measurement data (hence, the measurement
cost) can be substantially reduced at the late stage.
To fully understand the proposed BMFmethod, let us consider

two different models: the early-stage model and the late-
stage model :

(9)

(10)

where are the basis functions selected
by SR at the early stage, and

contain the early-stage and late-stage model coeffi-
cients respectively, and and denote the modeling error as-
sociated with the early-stage and late-stage models respectively.
The early-stage model in (9) is fitted by using the early-

stage (e.g., pre-silicon) data. Hence, we assume that the early-
stage model coefficients are already
known, before fitting the late-stage model in (10) based on
the late-stage (e.g., post-silicon) measurement data. The objec-
tive of BMF is to accurately determine the late-stage model co-
efficients by combining the early-stage
model coefficients with very few late-
stage measurement data.
Our proposed BMF method consists of two major steps: i)

statistically extracting the prior knowledge from the early-stage
model coefficients and encoding it as
a prior distribution, and ii) optimally determining the late-stage
model coefficients by MAP estimation.
In what follows, we will describe these two steps in detail.

A. Prior Knowledge Definition

Since the two models and in (9), (10) both ap-
proximate the mathematical mapping from PoMs to PoI, we ex-
pect that the model coefficients and

are similar. On the other hand,
and cannot be exactly identical, since they represent the
indirect sensor models at two different stages. To statistically en-
code the “common” information between and , we
define a Gaussian distribution as our prior distribution for each
late-stage model coefficient :

(11)

where and are the mean and variance of the
Gaussian distribution respectively, and is a parameter that
can be determined by cross-validation [18].
The prior distribution in (11) has a two-fold meaning. First,

the Gaussian distribution is peaked at its mean value
, implying that the early-stage model coefficient and

the late-stage model coefficient are likely to be similar. In
other words, since the Gaussian distribution exponen-
tially decays with , it is unlikely to observe a
late-stage coefficient that is extremely different from the
early-stage coefficient . Second, the standard deviation of
the prior distribution is proportional to . It means
that the absolute difference between the late-stage coefficient

and the early-stage coefficient can be large (or small),
if the magnitude of the early-stage coefficient is large (or
small). Restating in words, each late-stage coefficient has
been providedwith a relatively equal opportunity to deviate from
the corresponding early-stage coefficient .
To complete the definition of the prior distribution for all

late-stage model coefficients , we further
assume that these coefficients are statistically independent and
their joint distribution is represented as:

(12)

where

(13)

is a vector containing all late-stage coefficients
. Combining (11) and (12) yields:

(14)

where

(15)

is a vector containing all early-stage coefficients
, and

(16)

denotes a diagonal matrix. The independence assumption in (12)
simply implies that we do not know the correlation information
among these coefficients as our prior knowledge. The correla-
tion information will be learned from the late-stage measurement
data, when the posterior distribution is calculated by MAP esti-
mation in the next sub-section.

B. Maximum-A-Posteriori Estimation

Once the prior distribution is defined, we collect a few (i.e.,
) late-stage measurement data ,

where and are the values of and for the -th
data point respectively. These new measurement data can tell us
additional information about the difference between early and
late stages and, hence, help us to determine the late-stage coeffi-
cients .
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Based on Bayes’ theorem [18], the uncertainties of the late-
stage coefficients after knowing the data

can be mathematically described by the following
posterior distribution:

(17)

where

(18)

(19)

In (17), the prior distribution is defined by (14). The
conditional distribution is referred to as the likeli-
hood function. It measures the probability of observing the new
data .
To derive the likelihood function , we assume

that the modeling error in (10) can be represented as a random
variable with zero-mean Gaussian distribution:

(20)

where the standard deviation indicates the magnitude of the
modeling error. Similar to the parameter in (11), the value of
can be determined by cross-validation [18]. Since the modeling
error associated with the -th data point is simply
one sampling point of the random variable that follows the
Gaussian distribution in (20), the probability of observing the
-th data point is:

(21)

Note that the likelihood function in (21)
depends on the late-stage model coefficients

. Assuming that all data points
are independently generated, we can write the

likelihood function as:

(22)

Eq. (22) can be re-written as:

(23)

where , and are defined in (4), (13) and (18), respectively.
After the new data are avail-

able, the late-stage coefficients can be
described by the probability density function (i.e.,
the posterior distribution) in (17). Depending on the shape of
the posterior distribution , the late-stage coeffi-
cients do not take all possible values
with equal probability. If the posterior distribution
reaches its maximum value at , these
values are the optimal estimation of the

late-stage coefficients, since these coefficient values are most
likely to occur. Such a method is referred to as the MAP esti-
mation in the literature [18].
The aforementioned MAP estimation can be formulated as an

optimization problem:

(24)

Substituting (17) into (24) yields:

(25)

Combining (14), (23) and (25), we have:

(26)

Since the exponential function is monotonically increasing, Eq.
(26) can be re-written as:

(27)

where

(28)

It is straightforward to prove that the cost function in (27) is
convex [20]. Hence, its global optimum can be directly solved
by applying the first-order optimality condition [20]:

(29)

Solving the linear equation in (29) results in the optimal value of
:

(30)

Studying (30), we observe that only the value of is required
to find the late-stage model coefficients
and, hence, we only need to determine , instead of the individual
parameters and . In our work, the optimal value of is de-
termined by cross-validation [18].
Once the optimal value is found, the late-stage model co-

efficients are calculated from (30), and
then an updated indirect sensor model in (10) is gener-
ated to match the late-stage measurement data. Such a calibrated
indirect sensor model is eventually stored in an on-chip micro-
controller to facilitate efficient on-chip self-healing, as will be
discussed in detail in the next section.
Finally, it is important to mention that the post-silicon indirect

sensor calibration is performed off-chip and, hence, no hardware
overhead is introduced. To further reduce the indirect sensor cal-
ibration cost (i.e., with very few number of post-silicon measure-
ment data), we can calibrate the indirect sensor if and only if the
new measurement data are not consistent with the old indirect
sensor model. In practice, such inconsistency can be detected by
measuring a small number of dies from each wafer or lot to es-
timate the indirect sensing error. If the error is not sufficiently
small, the indirect sensor model must be calibrated.
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V. ON-CHIP SELF-HEALING FLOW

In this section, wewill further develop a practical on-chip self-
healing flow based on our proposed indirect sensing approach.
As mentioned earlier, the key idea of on-chip self-healing is
to actively monitor the post-manufacturing circuit performance
metrics and then adaptively adjust a number of tuning knobs
(e.g., bias voltage) in order to meet the given performance spec-
ifications. In this work, we mathematically formulate the self-
healing problem as a constrained optimization where one partic-
ular performance metric is minimized subject to a set of given
performance constraints:

(31)

where denotes the set of tuning knobs, denotes
the performance metric that we aim to minimize, and

denote the other performance
metrics with the given specifications . Take
mixer as an example. We aim to minimize the mixer power
while keeping its gain and 1 dB compression point larger than
their specifications. In this case, is the mixer power,
is the mixer gain, and is the 1 dB compression point.
There are two important clarifications we need to make for

the optimization formulation in (31). First, the formulation
in (31) is set up for a circuit where one performance metric

should be minimized while constraining all other perfor-
mance metrics to their lower bounds

. For a circuit where a performance metric
should be maximized, the objective function in (31) can be

simply modified to . Similarly, for a circuit where the per-
formance metrics should be constrained
to their upper bounds , the constraints in
(31) can be adjusted as . Second,
not all the performance metrics and
in our self-healing circuit can be directly measured by on-chip
sensors. For the performance metrics that cannot be easily mea-
sured by on-chip sensors, the proposed indirect performance
sensing technique is applied to efficiently and accurately predict
their values.
To find the optimal solution in (31), we propose an

on-chip self-healing flow shown in Fig. 1 where the indirect
sensors are modeled and calibrated by our proposed SR and
BMF techniques described in previous sections. The indirect
sensor models are stored and evaluated by a microcontroller
for on-chip self-healing. The search algorithm starts with an
initial guess . We set and all performance metrics

and are measured either directly
or indirectly. Here, we use the symbol PMs to represent the
performance metrics that are directly measured by on-chip
sensors, and the symbol PoIs to represent the performance
metrics that are estimated by the proposed indirect sensors. In
particular, to estimate the PoIs, the corresponding PoMs are first
measured by on-chip sensors. Next, the indirect sensor models
stored in the on-chip microcontroller are evaluated to predict
the PoIs, as shown in Fig. 1. Based on the performance values

, is updated and the aforemen-
tioned process is repeated until the optimal solution is found.
Algorithm 1 summarizes the details of such an optimization
flow with indirect performance sensing for on-chip self-healing.
Once the optimal solution is found, tuning knobs are adjusted
to the values of and the self-healing process is complete.

Fig. 1. A simplified block diagram describes the on-chip self-healing flow.

Algorithm 1: On-chip Self-healing Flow

1. Start with the constrained optimization problem in (31) and
an initial guess .

2. Set .
3. Measure and either directly or
indirectly.

4. Based on the performance values
, update .

5. If is the optimal solution, stop iteration. Otherwise, go to
Step 3.

For different circuits of interest with different performance
metrics and tuning knobs, the search strategy of updating in
Step 4 of Algorithm 1 could be substantially different. For in-
stance, if there is only a small number of (e.g., one or two)
tuning knobs, we can apply a simple brute-force search algo-
rithm to find the optimal solution of (31). Without loss of gen-
erality, we assume that the tuning knobs can take possible
values . The initial value of is set as
in the first iteration, and are ei-
ther directly or indirectly measured. Next, in the second itera-
tion, is updated to , and are
measured. Similarly, in the -th iteration,

are measured. In the end, we have a large data set
. The optimal

solution for the optimization in (31) can be eventually de-
termined based on the performance values

. Algorithm 2 summarizes the de-
tails of the aforementioned brute-force search algorithm.

Algorithm 2: Brute-force Search for On-chip Self-healing

1. Start with the constrained optimization problem in (31) and
possible values for the tuning knobs.

Set .
2. Set the tuning knobs to .
3. Measure and and set

, and .
4. If , and go to Step 2. Otherwise, go to Step 5.
5. Based on the performance values

, determine the optimal solution
for the optimization in (31).

The brute-force search algorithm (i.e., Algorithm 2), though
simple to implement, has no practical utility if we have a large
number of tuning knobs. To understand the reason, let us con-
sider the general case of tuning knobs where the -th tuning
knob can take possible values. In this case, we have
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Fig. 2. Simplified circuit schematic is shown for a Colpitts VCO.

TABLE I
FREQUENCIES AND CORRESPONDING PHASE NOISE SPECIFICATIONS

possible values for in (31).With the increasing
number of tuning knobs, the total number of possible values for
these tuning knobs (i.e., ) will dramatically increase, thereby
making the brute-force search algorithm quickly intractable. In
these cases, other efficient search algorithms (e.g., interior point
method [20]) must be applied to solve the optimization in (31)
for on-chip self-healing.
Before ending this section, it is important to discuss the de-

sign overhead of on-chip self-healing that requires a number of
additional circuitries (e.g., on-chip sensors, on-chip microcon-
troller, etc.), as shown in Fig. 1. There are several important
clarifications we need to make here. First, many analog and RF
circuit blocks on the same chip may require self-healing, and
they can possibly share the same on-chip sensors and microcon-
troller. Second, for a typical system-on-chip (SoC) application,
the microcontroller is needed for other computing tasks during
the normal operation. In other words, the microcontroller is not
added for on-chip self-healing only. For these reasons, the design
overhead of on-chip self-healing is fairly small, or even negli-
gible, in many application scenarios.

VI. CASE STUDY

In this section, a 25 GHz differential Colpitts VCO designed
in a 32 nm CMOS SOI process is used to validate the proposed
on-chip self-healing flow based on off-line data analysis. Fig. 2
shows the simplified schematic of theVCO. It consists of a cross-
coupled differential pair connected to two common-gate Colpitts
oscillators. The capacitor at the output is tunable so that the VCO
frequency can be centered at different frequency bands. The bias
voltage is controlled by a DAC for self-healing. More details
about the VCO design can be found in [21].
For the VCO shown in Fig. 2, since we only have one tuning

knob (i.e., the bias voltage ), the simple brute-force search
algorithm described in Algorithm 2 is applied for self-healing.
In this example, phase noise is an important performance of in-
terest, and its specifications derived from the system requirement
for four different center frequencies are shown in Table I. If the
phase noise value of a VCO is smaller than the given specifica-
tion at all four frequencies shown in Table I, this VCO is con-
sidered as “PASS.” Otherwise, we consider it as “FAIL.” The
objective of self-healing is to find the optimal bias voltage to
minimize the phase noise.
Accurately measuring the phase noise at 25 GHz is not trivial.

Hence, an indirect sensor is used for on-chip phase noise mea-
surement (i.e., phase noise is considered as a PoI in Fig. 1). Ac-

Fig. 3. Scatter plot is shown for the actual phase noise and the predicted phase
noise based on the simplified quadratic model.

TABLE II
POI AND POMS OF INDIRECT PHASE NOISE SENSOR

TABLE III
POMS AND MEASUREMENT SENSORS

TABLE IV
BASIS FUNCTIONS SELECTED FOR INDIRECT PHASE NOISE SENSOR

cording to Leeson’smodel [22], oscillation frequency , oscil-
lation amplitude , and bias current , all of which are easy
to measure using fully integrated sub-circuits, have strong corre-
lation with phase noise and, hence, are first chosen as PoMs. The
sensors used to measure these three PoMs are listed in Table III.
An on-chip current sensor to measure bias current will be in-
tegrated in our future work. More details about how to mea-
sure these three PoMs can be found in [15]. In addition, the
tuning knob is considered as another PoM. Since
is directly controlled by a DAC, the digitized value of is
known, and nomeasurement is required. In total, four PoMs (i.e.,

) are chosen as the indirect sensor inputs, and
are summarized in Table II. Next, a quadratic model template
with four input variables (i.e., , , and ) and, hence, fif-
teen polynomial terms in total is used to build the indirect sensor
for phase noise. With all fifteen polynomial terms, the average
modeling error is 0.36 dBc/Hz. SR is then applied to simplify the
quadratic model template. Nine polynomial terms are eventually
selected by SR, as summarized in Table IV. The average mod-
eling error of the simplified quadratic model is 0.41 dBc/Hz. The
degradation of the modeling accuracy is negligible (0.05 dBc/Hz
only). The accuracy of the simplified quadratic model with nine
polynomial terms can be further demonstrated by the scatter plot
between the actual phase noise and the predicted phase noise
shown in Fig. 3.
Next, we collect four PoMs and phase noise at all possible bias

voltages from a silicon wafer that contains 61 functional VCOs.
The VCOs that are not functioning in this wafer are not con-
sidered here. These data are further used to calibrate the indirect
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TABLE V
PARAMETRIC YIELD OF THE WAFER BY USING A FIXED BIAS VOLTAGE

Fig. 4. Post-self-healing parametric yield of the wafer is shown as a function
of the number of measured VCOs from the wafer.

phase noise sensor to improve its accuracy.Without self-healing,
the parametric yield achieved by using a fixed bias voltage for
all the VCOs on the wafer is summarized in Table V. Here,
bias code denotes a digitized bias voltage, and parametric yield
is defined as the ratio between the number of functional VCOs
that can meet all four given phase noise specifications shown in
Table I and the total number of functional VCOs. From Table V,
we can see that the best parametric yield achieved by using a
fixed bias voltage (i.e., bias code is 4) is only 11.48%. If other
bias voltages are selected during the design, the parametric yield
is even worse, which is almost zero for this wafer. It, in turn,
serves as an excellent design case to demonstrate the importance
of self-healing.
For testing and comparison purposes, three different

self-healing methods are implemented:
• Ideal: The optimal bias voltage is determined by directly mea-
suring the phase noise with an off-chip tester for all bias volt-
ages. As a result, no indirect phase noise sensor is needed, and
all the off-chip measurement data from the wafer will be used.
This approach is not considered as on-chip self-healing; how-
ever, it provides the upper bound of the yield improvement
that can be achieved by self-healing.

• OLS: The traditional OLS method is applied to fit the indi-
rect phase noise sensor based on a number of measured VCOs
from the wafer. Next, the indirect sensor is applied to self-heal
all the VCOs on the wafer.

• BMF: The indirect phase noise sensor learned by SR is con-
sidered as the early-stage model. Next, the proposed BMF al-
gorithm is applied to calibrate the early-stage model and gen-
erate a late-stage model based on a few measured VCOs from
the wafer. The late-stage model is then applied to self-heal all
the VCOs on the wafer.
Fig. 4 shows the parametric yield of the wafer achieved by

three different self-healing methods given different number of
measured VCOs from the wafer. Table VI further summarizes
the measurement cost for self-healing. Studying Fig. 4 and
Table VI reveals several important observations. First, BMF
requires substantially less number of measured VCOs to build
the indirect phase noise sensor than the traditional OLS method.
In this example, BMF needs to measure one VCO only, while
OLS requires measuring four VCOs (4 ) to achieve a similar
yield.
Second, studying the BMF results in Fig. 4, we notice that

if no measurement data is collected from the wafer (i.e., the
number of measured VCOs from the wafer is zero) and the
self-healing is performed with the indirect sensor fitted from the

TABLE VI
MEASUREMENT COST AND PARAMETRIC YIELD BY SELF-HEALING

Fig. 5. Histogram of the measured phase noise values from all the VCOs on
the wafer. Blue bars represent the results from Fixed where bias code is 4, and
red bars represent the results from BMF where a single measured VCO is used
from the wafer.

early-stage data by SR, the post-self-healing parametric yield is
only 27.87%. Once a single VCO is measured from the wafer,
the indirect phase noise sensor is calibrated by BMF and the
post-self-healing parametric yield is increased to 66.80%. It, in
turn, demonstrates that the aforementioned model calibration is
a critical step for yield enhancement.
Finally, it is important to note that the post-self-healing para-

metric yield of BMF is close to that of the “ideal” case. It, in turn,
implies that the modeling error of our proposed BMF method is
fairly small, even if only a single VCO is measured from the
wafer.
Before ending this section, we compare the phase noise

values from the proposed self-healing flow to those from the
fixed bias voltage method (Fixed) to study why the proposed
flow can achieve a much better parametric yield than Fixed.
Fig. 5 shows the histogram of the measured phase noise values
from all the VCOs at different frequencies. The blue bars show
the results from Fixed where bias code is 4, and the red bars
show the results from our proposed BMF technique with a
single measured VCO from the wafer. From Fig. 5, we have
several observations. First, both BMF and Fixed get larger
phase noise values at higher frequencies, which is consistent
with our expectation. Hence, the phase noise specification at
26.2 GHz is the most difficult one to meet among all four phase
noise specifications. Second, the proposed BMF technique can
get much smaller phase noise values than Fixed at 26.2 GHz,
which is the reason that BMF achieves a much better parametric
yield than Fixed.

VII. CONCLUSIONS

In this paper, we propose a novel indirect performance sensing
technique for on-chip self-healing of analog and RF circuits. In
particular, a set of important basis functions are first identified
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by SR so that the overhead of on-chip self-healing can be min-
imized. Next, the indirect sensors are repeatedly calibrated by
BMF to accommodate the process shift associated with man-
ufacturing lines. The indirect sensors are eventually stored in
an on-chip microcontroller to facilitate efficient on-chip self-
healing. The proposed indirect performance sensing and on-chip
self-healing methodology is validated by a 25 GHz differential
Colpitts VCO designed in a 32 nm CMOS SOI process. Our
silicon measurement data show that the parametric yield of the
VCO is significantly improved after applying self-healing. In our
future work, we will further extend the proposed indirect perfor-
mance sensing and on-chip self-healing methodology to other
large-scale circuits such as phase-locked loop (PLL).
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