
 
Fig. 1: (a) Metal-oxide memristor [7]. (b) Device programming [8]. 
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ABSTRACT 
Neuromorphic computing system (NCS) is a promising architec-
ture to combat the well-known memory bottleneck in Von Neu-
mann architecture. The recent breakthrough on memristor devices 
made an important step toward realizing a low-power, small-
footprint NCS on-a-chip. However, the currently low manufactur-
ing reliability of nano-devices and the voltage IR-drop along met-
al wires and memristors arrays severely limits the scale of me-
mristor crossbar based NCS and hinders the design scalability. In 
this work, we propose a novel system reduction scheme that sig-
nificantly lowers the required dimension of the memristor cross-
bars in NCS while maintaining high computing accuracy. An IR-
drop compensation technique is also proposed to overcome the 
adverse impacts of the wire resistance and the sneak-path problem 
in large memristor crossbar designs. Our simulation results show 
that the proposed techniques can improve computing accuracy by 
27.0% and 38.7% less circuit area compared to the original NCS 
design. 

1. INTRODUCTION 
Computer technology has been experiencing great revolutions in 
its two foundation stones: semiconductor manufacturing and 
computing architecture: On the one hand, the scaling of conven-
tional CMOS devices is approaching the limit [1]. Emerging na-
no-devices, such as spintronic [2] and resistive devices (memris-
tor) [8], have been under extensive investigation and studies. On 
the other hand, the well-known “memory wall” challenge in Von 
Neumann architecture [3], i.e., the ever-increasing gap between 
CPU performance and memory bandwidth, has motivated many 
research efforts on new computer architectures.  

Neuro-biological architecture is a promising alterative to Von 
Neumann architecture. After twenty-year through, neuromorphic 
computing, which denotes the VLSI realization of neuro-
biological architecture, is recently revitalized by the discovery of 
nanoscale resistive devices, e.g., the memristors [8]. The similari-
ty between the programmable resistance state of memristors and 
the variable synaptic strengths of biological synapses can lead to a 
dramatically simplified structure of neural network circuits [4]. 
Moreover, the crossbar structure, which is the densest intercon-
nect topology that can be achieved by modern semiconductor 
manufacturing, further boosts the integration density and power 
efficiency of memristor-based neuromorphic computing systems 
(NCS) [5] to the levels of 1010 synapses per square inch and over 

 
 
 
 
 
 
 
 
 

one trillion operations per second (TOPS) per Watt, respectively. 

However, the implementation of an NCS with memristor-based 
crossbar (MBC) is facing several major technical challenges, in-
cluding: 1) the parametric variability, fabrication defects and sto-
chastic programming properties of memristors [5]; and 2) the IR 
drop along the resistance network composed of metal wire and 
memristors. The analysis of the impact of IR-drop on MBC-based 
digital memory shows a 64×64 MBC-based memory already has 
severe voltage degradation [6]. Following the increase of the me-
mristor crossbar size, the impact of the IR drops becomes more 
critical, resulting in the performance variations or even functional 
failures of the NCS.  

The impacts of memristor variation on NCS have been extensive-
ly studied [5]. However, the IR-drop caused physical limitation 
and reliability issue in MBCs still lacks of investigations. In this 
work, we first formulate the effect of IR-drop in NCS designs and 
evaluate its impact. In order to enhance the computing capacity 
and reliability of NCS, we propose a system reduction scheme 
that can effectively reduce the required MBC size for a specific 
problem while still maintaining high computation accuracy and 
robustness, enabling simpler and more scalable NCS implementa-
tions. To further improve the robustness of NCS, we propose a 
novel design method that can actively compensate the IR-drop 
induced signal degradations in training and computing. Note that 
system reduction and IR-drop compensation methods are imple-
mented at different design levels and thus, complementary to each 
other. Experiment results demonstrate much smaller implementa-
tion area (i.e., 61.3% of original design circuit area) and better 
computing robustness (i.e., 27.0% computing accuracy improve-
ment) of NCS after combining these two approaches.  

2. Preliminary 
2.1 Memristor Basics 
As predicted by Prof. Leon Chua [10], memristor is the fourth 
fundamental circuit element uniquely defining the relationship 
between magnetic flux and electrical charge. The resistance state of 
a memristor can be programmed by applying current or voltage. In 
2008, HP Labs reported that the memristive effect was realized by 
moving the doping front along a TiO2 thin-film device [11]. 
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Fig. 1(a) depicts an ion migration filament model of metal-oxide 
memristors [7]. A metal-oxide layer is sandwiched between two 
metal electrodes. During reset process, the memristor switches 
from low resistance state (LRS) to high resistance state (HRS). 
The oxygen ions migrate from the electrode/oxide interface and 
recombine with the oxygen vacancies. A partially ruptured con-
ductive filament region with a high resistance per unit length (Roff) 
is formed on the left of the conductive filament region with a low 
resistance per unit length (Ron). During set process, the memristor 
switches from HRS to LRS. The ruptured conductive filament 
region shrinks. The resistance of a memristor can be programmed 
to any arbitrary value between LRS and HRS by applying a pro-
gramming current or voltage with different pulse widths or magni-
tudes. Note that the relationship between the programming vol-
tage amplitude/pulse-width and the memristor resistance change is 
usually a highly nonlinear function, as shown in Fig. 1(b) [8].  

2.2 MBC-based NCS  
Fig. 2(a) depicts a conceptual overview of a neural network that 
can be implemented with a MBC-based NCS in Fig. 2(b). Two 
groups of neurons are connected by a set of synapses. Input neu-
rons send voltage signals to MBC. The output neurons collect the 
information (current) from the input neurons through the synapses 
(MBC) and process them with an activation function. The syn-
apses apply different weights (synaptic strengths) on the informa-
tion during the transmission. In general, the relationship between 
the activity patterns of the input neurons x and the output neurons 
y can be described as [5]: ࢟ ൌ ൈࢃ ·   .                                       ሺ1ሻ࢞
Here the weight matrix ࢃൈ denotes the synaptic strengths be-
tween the two neuron groups.  

Recall: The computation process defined by Eq. (1) is called “re-
call”. As shown in Fig. 2(b), during the recall process of a MBC-
based NCS, ࢞ is mimicked by the input voltage vector applied to 
the word-lines (WLs) of the MBC while the bit-lines (BLs) are 
grounded. Each memristor is programmed to a resistance state 
representing the weight of the correspondent synapse. The current 
along each BL of the MBC is collected and converted to the out-
put voltage vector y by “neurons”, e.g., CMOS analog circuit or 
emerging domain wall devices. “Neurons” integrate and quantize 
the output. The matrix ࢃൈ is often implemented by two MBCs, 
which represent the positive and negative elements of  ࢃൈ, 
respectively. 

Training: Another important operation of the MBC-based NCS is 
“training”.  For a neural network model, there are two types of 
training schemes: open-loop training and close-loop training. In 
Open-loop training, weight connection matrix W is directly calcu-
lated based on the stored patterns ࢇ ሺݍ ൌ 1,2 ⋯  ,ሻ. For example
by Hebbian learning rule, the W can be calculated as [15]: ࢃ ൌ ∑ ࢇ · ᇱࢇ .ୀଵ                                       ሺ2ሻ  
Close-loop training, however, denotes a recursive algorithm, i.e., 
gradient descent, that updates the W iteratively with the feedback 
from output [22].  

Both open-loop training and close-loop training can be imple-
mented with “pre-design & mapping” method, i.e., directly pro-
gramming the MBC to a resistance R that represents a pre-
calculated W, say, R=1/W. Also, close-loop training can be rea-
lized in an iterative method which adaptively tunes the resistance 
state of the MBC to the target state based on the distance between 
the current output and the target output, as proposed in [22]. Al-
though such method may conceptually achieve higher resolution 

and better robustness than “pre-design & mapping”, its hardware 
implementation is generally expensive in terms of training time, 
energy consumption, and design cost. In this work, we focus on 
only “pre-design & mapping” method. 

During the programming of MBC, different amplitude and dura-
tion of programming pulses are directly applied to the target me-
mristor based on the pre-designed R: the voltages of the WL and 
BL connecting the target memristor are set to  ܸ௦ and ܦܰܩ, 
respectively, while all other WLs and BLs are connected to  ܸ௦/2. Hence, only the target memristor is applied with the 
full ܸ௦ above the threshold that can change the device’s resis-
tance state while the rest of memristors in the crossbar remain 
unchanged because they are only half selected with a voltage of ܸ௦/2 [7].  

3. IMPACT OF IR-DROP 
3.1 Impact of IR-Drop on MBC 
In an MBC, the voltage applied to the two terminals of a memris-
tor is affected by the device location in the crossbar and the resis-
tance states of all other memristors. In [7], the author explained 
that in the worst case, both reading (recall) and writing (training) 
of the MBC will encounter severe reliability issues when the array 
size is beyond 64×64. Although an NCS intrinsically can tolerate 
certain random errors in recall process, IR-drop remains an issue 
in NCS training.  

Fig. 3(a) depicts the distribution of the actual programming vol-
tage V’ on each memristor in a 128×128 MBC during the training 
process. Here Vbias =2.9V. V’ij is the voltage actually applied to 
the memristor between WLi and BLj. The largest IR drop normal-
ly occurs at the far-end of the WL and BL (i.e., V’(128,128)). The 
smallest/largest voltage degradation (IR-drop) occurs when all 
memristors are at their HRS/LRS. Fig. 3(b) shows that in the 
worst case, the largest IR-drop quickly increases to an unaccepta-
ble level as the crossbar size increases. It greatly decreases the 
programmability of the MBC and degrades computation accuracy 
of the NCS. Degradation also occurs in recall process as shown in 
Fig. 3(c) and (d).  

3.2 Problem Formulation 
3.2.1 Training 
Normally the training of an MBC starts with an initial state where 
all memristors are at their HRS. To program the initialized MBC 
(RHRS) to the target memristor resistance state R that representing 
weight matrix W, a training time matrix T is generated based on 
the characterized relationship between the memristor resistance 
change and the programming time and voltage [8]: ࡾ ൌ ݂ሺࢀ, ,ࢂ   ுோௌሻ,                                      ሺ3ሻࡾ
where V is the ideal programming voltage (V (i,j)=Vbias). After 
including the impact of IR-drop, the actual trained MBC resis-
tance state is R’=f (T,V’,RHRS). Thus, if the V’ deviates from the 
ideal V due to IR-drop, the actual trained MBC R’ will be  

 

 

 

 

 

  
Fig. 2: (a) Conceptual overview of a neural [5]. (b) Circuit architecture of 
a MBC-based NCS [4]. 
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Fig. 4: System reduction improves reliability. 
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(c) (d) 
Fig. 3: (a) Write voltage distribution on a 128×128 all-HRS-memristor 
crossbar (the best case). (b) Voltage degradation vs. crossbar size. (c) 
Read voltage distribution on a 128×128 all-HRS-memristor crossbar (the 
best case). (d) Read current discrepancy. 
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distinctive from R. The difference between R and R’ depends on 
the size of MBC. As shown in Fig. 1(b), when the programming 
voltage arriving at the memristor degrades from the ideal 2.9V to 
2.7V (6.8% off). The programmed memristor resistance drifts 
from 900KΩ (point “A”) to 200KΩ (point “C”) at a programming 
duration of 0.4µs. More detailed experiments will be presented in 
Section 6.1.  

3.2.2 Recall 
Normally during recall process, the MBC is read column by col-
umn, e.g., the WLs are connected to a certain input pattern and 
BLs are all grounded. As a result, the IR-drop induced voltage 
degradation demonstrates different patterns from that in training 
process. For example, when all WLs and BLs are respectively 
connected to 1 (1V) and 0 (GND), the ideal voltage distribution V 
of a 128×128 MBC should be an all-ones matrix and the ideal 
output will be: ࢟ ൌ ࢃ ∘ ࢂ · ࢞ ൌ ࢃ ·    ሺ4ሻ                           ,࢞
where “∘” denotes the Hadamard product of two matrices and we 
assume the MBC is ideally trained. However, as shown in Fig. 
3(c), the actual voltage distribution V* deviates from V and gene-
rates the actual output as: 

כ࢟   ൌ ሺࢃ ∘ ሻכࢂ · ࢞ ൌ כࢃ ·   ሺ5ሻ                          . ࢞
Here, we define W* as the distorted weight matrix producing the 
actual current output of the MBC when IR-drop is taken into ac-
count. As MBC is a pure resistance network, W* is a function of 
memristor resistance state and wire resistance R_wire: 

כࢃ  ൌ ݃൫ࡾ, ܴ_௪൯.                                   ሺ6ሻ  
Here R is the target memristor resistance state. Fig. 3(d) shows 
that y* is directly determined by V*. 

4. MBC SYSTEM REDUCTION 
The impact of IR-drop is heavily determined by the size of the 
MBC. Hence, if we can reduce the scale of the involved computa-
tion on the MBC, the required size of the MBC will decrease and 
the computation reliability of the NCS will improve.  

4.1 Weight Matrix Approximation 
The first step of our proposed MBC system reduction scheme is to 
approximate the weight matrix W (n×m) in Eq. (1). In general, for 
any given weight matrix W, we can leverage singular value de-

composition (SVD) method to approximate W as [14]: ࢃ ൌ ࢁ ∑ ࢂ ൎ ௫ࢃ ൌ ∑ ߜ · ࢛ · ୀଵ࢜ ,                     ሺ7) 
where U and V are unitary matrices, Σ is an rectangular diagonal 
matrix with singular values of W. δi (i=1,…r) are the first r (i.e., 
the rank of Wappx) singular values of W. ui and vi are the approx-
imate left and right singular vectors of W [14], respectively. The 
sequence of δi indicates the weights of each item of ui · vi. By 
collecting a few multiplication product of ui (an n×1 vector) and 
vi (a 1×m vector), we can obtain a very good approximation of W. 
The difference between W and Wappx, that is ∆ࢃ ൌ ฮࢃ െࢃ௫ԡ, is decided by the coverage of ∑ ୀଵߜ on the overall 
summed∑ ୀଵߜ . The difference, hence, ∆ࢃ can be controlled by 
the value of r.  

In general, a larger rank r leads to a better approximation of W but 
increases MBC size and training time cost. However, increasing r 
does  not  necessarily  result  in  a  more robust  MBC  hardware 
implementation due to the following reasons: First, r is limited by 
an upper bound, say, the rank of W. Increasing r beyond this up-
per bound is meaningless; Second, r solely defines the size of one 
dimension of the reduced MBC (say, n×r, which will be shown in 
the next section). Increasing r will directly aggravate the impact 
of IR-drop.  

For the above reasons, a threshold “ε” of singular value coverage 
is heuristically predefined for r selection during the approximation 
of W.  Here ε∈ [0,1]. r is then selected as: ݉݅݊: ,ݎ .ݏ 1  .ݐ െ ∑ ఋೝసభ∑ ఋసభ ൏  ε.                               ሺ8) 

The efficacy of this select strategy will be shown in Section VI.B.  

4.2 One-dimensional (1-D) Reduction 
Based on the approximation result, we are able to transform the 
weight connection function in Eq. (1) as: 
ࢃ  · ࢞ ൎ ሺ∑ ߜ · ࢛ · ୀଵ࢜ ሻ · ൌ                                                                      ࢞ ሺߜଵ · ଵሻ࢛ · ሺ࢜ଵ · ሻ࢞  ሺߜଶ · ଶሻ࢛ · ሺ࢜ଶ · ሻ࢞ ⋯ ሺߜ · ሻ࢛ · ሺ࢜ · ሻ ൌ࢞ ሾߜଵ · ଵ࢛ … ߜ · ሿ࢛ · ࢜ଵ · ࢜ڭ࢞ · ൩࢞ ൌ ሾߜଵ · ଵ࢛ … ߜ · ሿ࢛ · ࢜ଵ࢜ڭ൩ · ൌ      ࢞ ࢚ࢌࢋࢃ · ࢚ࢎࢍ࢘ࢃ ·   ሺ9ሻ                                                                   , ࢞
where  ࢃ௧ ൌ ሾߜଵ · ଵ࢛ … ߜ · ௧ࢃ ,ሿ࢛ ൌ ࢜ଵ࢜ڭ൩ .                        ሺ10ሻ 

Here W was originally represented on an n×m MBC and m×1 
vector x is represented by the input voltage vector of the MBC. 

Eq. (9) and (10) show that the connection function can be trans-
formed to a new two-stage system that consists of a n×r weight 
matrix Wleft and a r×m weight matrix Wright. Note that r << n or m. 
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Fig. 5: Conceptual schematics of (a) One-dimensional reduction (b) Two-
dimensional reduction. 
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GND
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We named this method as one-dimensional (1-D) reduction, 
which has several significant advantages: First, after the original 
n×m memristor array is divided into two smaller arrays of n×r 
and r×m, respectively, the programming time of the NCS is re-
duced from O(n×m) to O(n+m); Second, 1-D reduction signifi-
cantly improves the programming robustness of an single MBC, 
which can be described below:  

Fig. 4 depicts the programming voltage drop distribution on a 
128×128 MBC, similar to Fig. 3(a). The only difference is that in 
Fig. 4, all memristors are at LRS, demonstrating the worst-case 
impact of IR-drop on MBC programming. As aforementioned in 
Section 3.1, during the programming of the MBC, the voltage 
reaching the target memristor may degrade from the original pro-
gramming voltage when IR-drop is considered. And the degrada-
tion level relies on the location of the target memristor. In Fig. 4, 
we highlight (colored) the memristor locations with a voltage drop 
higher than Vbias /2 when the voltages of the WL and BL connect-
ing the memristor are set to  ܸ௦ and ܦܰܩ, respectively. We 
name the boundary of the highlighted area as the “hard-limit” of a 
single MBC scale. Any memristors outside the “hard-limit” will 
not be effectively programmed because they are practically “half-
selected” (see Section 2.2). Increasing the programming voltage to 
raise the voltage applied on the memristors outside the “hard-
limit”, however, will affect the memristors that should be “half-
selected”. Hence, the scale of the “hard-limit” serves as a good 
measurement of MBC programming robustness. As shown in Fig. 
4(a), the largest MBC size within the “hard-limit” is only 48×48 
by assuming the sizes of the two dimensions of the MBC are the 
same, i.e., n = m. The maximum size of the data can be processed 
is only 48. If we can reduce the size of one dimension down to a 
smaller value, say, r = 22, then the size of the another dimension 
can be extended to 128, as shown in Fig. 4(b). Such a MBC is 
sufficient to process the data with a size of 128 by leveraging our 
proposed 1-D reduction method, as long as the rank of ࢃ௫ is 
not higher than 22. 

4.3 Two-dimensional (2-D) Reduction 
1-D reduction can downscale the size of the needed MBC from 
n×m to n×r and r×m, resulting in significant saving on the hard-
ware design cost and better robustness. In some pattern classifica-
tion tasks, we may further reduce the MBC size in both dimen-
sions. For example, when classifying a noisy input pattern xi (e.g., 
an n×1 vector), weighted network connections (a n×n matrix) are 
needed to associate a noisy input pattern to as one of the standard 
pattern aq (q=1, 2, ⋯, r). Our proposed two-dimensional (2-D) 
reduction can further reduce the scale of the computing system by 
transforming the concerned neuromorphic algorithm to a distance 
comparison based classification as follows: 

Without loss of generality, the similarity between the output vec-
tor W·xi and the standard pattern vector aq (q=1,2,⋯r) can be 
quantitatively measured by:  ܲ ൌ ሺࢃ · ሻᇱ࢞ · ࢇ ൌ ሺࢇଵᇱ · ሻݔ · ൫ࢇଵᇱ · ൯ࢇ                            ሺࢇଶᇱ · ሻ࢞ · ൫ࢇଶᇱ · ൯ࢇ  ⋯ ሺࢇᇱ · ሻ࢞ · ൫ࢇᇱ ·        ൯.     ሺ11ሻࢇ

Similar to Eq. (9), we can use ࢇᇱ · ݍ ሺ࢞ ൌ 1, 2 ⋯  ሻ to form aݎ
new input vector ࢞ప and calculate the similarity between ࢞ప and 
other patterns as: 

ܲ ൌ  ܲଵܲڭ൩ ൌ ࢇଵԢ · ଵࢇ ⋯ Ԣࢇ · ڭଵࢇ ڰ ଵԢࢇڭ · ࢇ ⋯ Ԣࢇ · ൩ࢇ · ࢇଵԢ · Ԣࢇڭ࢞ · ൩࢞ ൌ ࢃ · ࢇଵԢ · Ԣࢇڭ࢞ ·  ൩.   (12)࢞

where ࢃ is the new weight matrix with a dimension of r×r. 

Eq. (12) implies that after the proposed 2-D reduction, the size of 
the needed MBC is no longer determined by the large dimension 
size of data pattern (n) but the number of the patterns needs to be 
trained (r). This new property is of particularly importance to 
applications that process the data with large dimensions but only 
limited number of patterns to be concerned, e.g., identifying ob-
jects on high resolution image or video. 

4.4 Implementation Example 
The proposed 1-D reduction scheme is applicable to any network 
models that contain the operation described in Eq. (1) while the 2-
D reduction scheme can fit in some applications like Auto-
Associate Memory (AAM) well. Here we use Hopfield-network 
as an example to illustrate the basic concept of hardware imple-
mentation of the two proposed system reduction schemes. 

Conventional Hopfield-network uses recurrent data process archi-
tecture to implement associative memory by training the connect-
ing synapse weights based on stored standard patterns [9]. Each of 
the neurons has an activation “sign” function, which determines 
whether this neuron fires an excitation or not. The input of each 
neuron is the summation of the activations from all the neurons of 
the synapse network during last iteration. Weight matrix W is 
trained with Hibbian rule as shown in Eq. (2).  

Fig. 5 shows the conceptual schematic of our proposed system 
reduction schemes, including both 1-D and 2-D designs. For the 
purpose of demonstration, here we assume that the inputs of the 
NCS, i.e.,xi, are all binary information (0 or 1). Both 1-D and 2-D 
reduction schemes require the inputs to be preprocessed by mul-
tiplying with the concerned patterns. In normal implementation of 
Hopfield network, the outputs of the MBC are directly sent to 
comparators which conduct “sign” function. In our reduction 
schemes, a slightly more complex post-processing is performed at 
the outputs, which can be implemented with a traditional analog 
selecting circuit [13]. The analysis of system robustness and im-
plementation area tradeoff will be presented in Section 6.6.3. 

Compared to the 1-D reduced weight matrixࢃ෪, the 2-D reduced 
weight matrix ࢃis more sensitive to memristor device variations 
as the variability of one memristor has relatively higher impact on 
the computation accuracy due to significantly reduced number of 
the memristors participating in the computation. More details 
onthe design tradeoffs between the two reduction schemes will be 
discussed in Section 6. 

5. IR-DROP COMPEMSATION 
In addition to reducing the dimension sizes of the MBC, we can 
also actively compensate the impact of IR-drop to further improve 
the computation reliability of the NCS. In this section, we propose 
an adaptive compensation method that can compensate the impact 
of IR-drop in both training and recall processes.  

5.1 Recall Compensation 
Based on Eq. (6), the weight matrix represented by a MBC with 
resistance state R is not W = 1/R but  כࢃ ൌ ݃ሺࡾ, ܴ_௪ሻ when 
IR-drop is considered. As summarized in  Fig. 6,  the IR-drop 
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Fig. 6: Compensation for both training and recall process. 
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Fig. 7: Sensitivity analysis based compensation. 

update steps 

N
or

m
al

iz
ed

 d
iff

er
en

ce

0         1        2         3        4         5        6         7 

TABLE I. Experiment parameters setup  
 
 
 
 
 
 
 
 
compensation can be performed by searching the new MBC resis-
tance state Rc that generates a weight matrix Wc  closest to the 
ideal target W as: minࡾ ԡࢃ െ ሻࡾԡிଶᇩᇭᇭᇭᇪᇭᇭᇭᇫிሺࢃ ൌ ∑ ∑ ሺࢃሺ,ሻ െ ሺ,ሻሻଶୀଵୀଵࢃ .     ሺ13ሻ    
Here, we define a  cost function ܨሺࡾሻ as  the  square  of  F-norm 
distance. ࢃ is a n×m matrix. This optimization problem can be 
solved by the gradient search method with Rc starting from Rc =R 
as [18]:  ࡾ_ାଵ ൌ _ࡾ െ _൯                                                            ൌࡾ൫ܨߛ _ࡾ  ߛ ·  ሺ2 · ቀࢃሺ,ሻ െ ሺ,ሻቁࢃ

ୀଵ


ୀଵ · _ࡾሺ,ሻ߲ࢃ߲ ሻ,     ሺ14ሻ 

where ߛ is the step length. The gradient direction relies on the 
relation between Wc and Rc, i.e., ࢃ ൌ ݃ሺࢉࡾ, ܴ_௪ሻ. Here ݃ is a 
function that can be explicitly measured as follows: when we 
apply 1V on i-th WL of a MBC with resistance state of Rc and 
wire resistance of R_wire and ground all other WLs and BLs, the 
magnitudes of the output current from BLs are equal to the ele-
ments in the i-th row of Wc.  

In general, the currents from every BL can be calculated by Mod-
ified Nodal Analysis as [21]: ࢅሺࢉࡾ, ܴ_௪ሻ · ቂ࢜ቃ ൌ ቂࢋቃ.                               ሺ15ሻ ࢅሺ,ሻ ൌ ∑ ∑ ሺܽሺ,ሻ/ࢉࡾሺ,ሻሻ   ܾ/ܴ_௪ୀଵୀଵ .           ሺ16ሻ  
Here ࢅ denotes a conductance matrix that is a polynomial function 
of Rc and R_wire. v is the vector of total 2×n×m node voltages. k is 
the vector of n+m WL/BL currents. i is the vector of current 
sources at each node, most of which are zeros except for the ele-
ments corresponding to WL/BL ports. e is the vector of n+m vol-
tage sources (e(i,1)=1V, other=0V). Then we have, ࢃሺ,ሻ ൌ ሺା,ଵሻ ሺ݆ ൌ 1 ⋯ ݉ሻ.                       ሺ17ሻ 
For the last term in Eq. (14), we have: డࢃሺ,ೕሻడࢉࡾ ൌ డࢃሺ,ೕሻడࢅሺࢉࡾ,ோ_ೢೝሻ · డࢅ൫ࢉࡾ,ோ_ೢೝ൯డࢉࡾ ൌ డሺశೕ,భሻడࢅ൫ࢉࡾ,ோ_ೢೝ൯ · డࢅ൫ࢉࡾ,ோ_ೢೝ൯డࢉࡾ (18) 

where ߲ࢅሺࢉࡾ, ܴ_௪ሻ/߲ࢉࡾ can be directly calculated based on 
Eq. (16). ߲ሺା,ଵሻ/߲ࢅ൫ࢉࡾ, ܴ_௪൯ is the sensitivity of current k 
to the conductance parameters Y in Eq. (15). This sensitivity can 
be solved by Adjoint Sensitivity Analysis (ASA) [21]. Fig. 7 
demonstrated an example about how the imapct of IR-drop in 
a64×64 MBC is compensated. Simulation results show that the 
difference between ࢃ and ࢃ (ԡࢃ െ  ԡிଶ, as Y-axis) can beࢃ
reduced down to below 1% only within 6 update steps described 
in Eq. (14). 

 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 

5.2 Training Compensation 
The objective of IR-drop compensation during MBC training is to 
minimize the difference between the trained resistance state R’ of 
the MBC and the ideal resistance state R that represents target 
weight matrixࢃ. According to[7], IR-drop leads to minimum 
voltage degradation when all memristors are set to HRS. Thus, 
before training starts, all the memristors in the MBC should be 
initialized to HRS (ࡿࡾࡴࢃ) to minimize the impact of IR-drops.  

We define the ideal training time matrix ࢀ as the required pro-
gramming pulse widths on the memristors and ࢂ as the ideal train-
ing voltage distribution applied on the memristors without consi-
dering IR-drop. R is the function of ࢀ, ,ࢂ and ࡾுோௌ or ࡾ ൌ݂ሺࢀ, ,ࢂ  is the programming pulse width applied ࢀ  ுோௌሻ. Hereࡾ
on the memristor connected by WLi and BLj.. f is the memristor 
switching function that can be derived from Fig. 1(b).  However, 
when IR-drop is considered, the training voltage distribution ma-
trix is distorted to ࢂԢ. To compensate the voltage degradation in ࢂԢ, we can first calculate ࢂԢ before programming each memristor 
and then derive a new training time matrix ࢀԢ in order to obtain a 
trained MBC ࡾԢ close to ࡾ. For example, when programming 
voltage reduces from 2.9V to 2.7V (see Fig. 1 (b)), the required 
programming time needs to be extended from 500ns to 3μs to 
program the memristor to the same resistant state.  

6. EXPERIMENTAL RESULTS 
In this section, we will evaluate the effectiveness of the proposed 
schemes through a set of experiments: Section 6.1 shows the 
training quality improvement via IR-drop compensation; Section 
VI.B defines reading accuracy and discusses the selection of rank 
r in system reduction; Section 6.3, 4 and 5 evaluate implementa-
tion area, performance and robustness of both system reduction 
methods, respectively. The trade-off between two methods will be 
particularly discussed in Section 6.5.3; Section 6.6 gives a case 
study of the applications of the proposed methods. TABLE I 
summarizes the parameters of the memristors and MBC designs 
used in our simulations.  

6.1 Training Quality 
In an MBC, the voltage applied to the two terminals of a memris-
tor is affected by the device’s location in the crossbar Fig. 8 
shows the simulation results on the memristor resistance discre-
pancy between the target MBC and the actual trained MBC under 
the impacts of IR-drop and process variations. Similar to the train-
ing voltage degradation pattern shown in Fig. 3, the largest me-
mristor resistance discrepancy of occurs at the far end of the 
MBC. Here we assume that the programmed memristor resistance 
follows the log-normal distribution as ݎ ൌ ݎ · expሺߠሻ [16]. ݎ 
stands for the mean of the programmed memristor resistance and ߠ ~ N (0, σ) is a random variable that follows Gaussian distribu-
tion.  

We use the example from Section 4.4 to illustrate the design of 
NCS.  The MBC scale can be reduced from  128×128  (original  
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Fig. 9: Recall discrepancy comparison (a) discrepancy with respect to r/n, 

(b) discrepancy with respect to ε. 
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Fig. 8: Trained memristor resistance discrepancy (a) without IR-

drop compensation. (b) with IR-drop compensation. 
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n×n) down to 128×19 (n×r) and 19×19 (r×r) by applying 1-D and 
2-D reduction schemes, respectively. Here r is selected as 15%·n, 
which is the maximum pattern numbers that can be stored in a 
128×128 Hopfield network in theory [17].As shown in Fig. 8(a), 
the memristor resistance discrepancy significantly reduces when 
MBC size decreases, implying a better training quality.  

To further enhance NCS training quality, we introduce the IR-
drop compensation technique given in Section 5 into training 
process. Fig. 8(b) shows that the compensation technique effec-
tively minimizes the memristor resistance discrepancy. As weshall 
show in Section 6.5, the training quality enhancement can sub-
stantially improve recall successful rate of the NCS.  

6.2 Reading Accuracy and Selection of r 
In this experiment, reading of a MBC is defined as the case that 
all WLs of the MBC are connected to 1V while all BLs are 
grounded. In such a case, the ideal output current from the BLs 
should equal ࢃ ·  ,However, due to IR-drop .(x is all one vector) ࢞
the actual output current I will show deviation from ࢃ ·  which ,࢞
can be described as reading accuracy issue. In this experiment, we 
evaluate the reading accuracy of the proposed reduction schemes 
under different conditions. We will also discuss the rank selection 
(r) of the 1-D reduced weight matrix based on the read accuracy. 
To achieve the maximum representation, the benchmarks adopted 
in the experiment include Hopfield network, BP training based 
weight connection and random weight matrix, all of which have a 
size of 100×100. We program the MBC to target weight matrix W 
for different benchmarks under impact of same memristor varia-
tion as section 6.1.  

We first scan r from 1 to 100 and see how the value of r/n  
(n=100) affects reading discrepancy,  i.e.,  |ࡵ െ ࢃ · ࢃ|/|࢞ ·  .|࢞
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on the experiment results shown in Fig. 9(a), the optimal r 
varies significantly in different benchmarks. For example, Hop-
field network reaches the lowest read discrepancywhen 
r/n=0.08~0.19, while random weight matrix reaches it when 
r/n=0.3~0.8. So finding a generic proper range of r/n for all 
benchmarks becomes impossible. The main reason is because 
each benchmark has different distributions of SVD singular value. 
The singular value sequence of the Hopfiled network used in our 
experiment, for example, is 53.7, 4.6, 3.8, 3.2…. while that of the 
random weight matrix is 5.03, 2.89, 2.77, 2.62….. Due to the 
highly skewed distribution of the singular values, a small r (low 
rank) is sufficient for the Hopfield network. The random weight 
matrix, however, needs a large r because of the relatively similar 
singular values.  

We note that the threshold ε introduced in Eq. (8) serves a gener-
ally good guidance for the rank selection. Fig. 9(b) shows the read 
accuracy degradation followed by the increase of ε. The optimal 
values of ε for the three benchmarks all locate within the range of 
[0.1, 0.3]. Note that ε = 0 means r equals the rank of the original 
weight matrix W. Continue increasing r beyond the rank of W will 
not improve the read accuracy of the MBC but introducing extra 
IR-drop and noise. In the following experiments, we heuristically 
choose r by setting ε to 0.2.  

6.3 Training Performance  
Neither system reduction nor IR-drop compensation will affect the 
recall time of the NCS. However, training time can be affected by 
both techniques. Here we still use the example from Section 4.4.  
Fig. 10 compares the training times of the corresponding NCS 
designs with and without system reduction techniques and the 
training compensation time overheads. As memristors are pro-
grammed one by one in MBC, system reduction naturally shortens 
the training time by reducing the total memristor number. The 
overall training time of 2-D reduced design is only 3.3% of that of 
the original design. When MBC size rises, longer time is con-
sumed on IR-drop compensation because of the severer voltage 
degradation. For instance, compensation overhead contributes to 
4.12% of total training time when n = m = 32, and 28.3% when n 
= m = 128.  

6.4 Area  
As discussed in Section 4.3, system reduction scales down the size 
of MBC while introducing additional peripheral circuit. We eva-
luate the overall circuit area cost of original, 1-D and 2-D reduced 
NCS designs, as shown in Fig. 11. The circuit design details are 
also illustrated in Table I. 1-D reduced design always has a small-
er area than original design until n = 96, beyond which the over-
head of extra circuit starts to dominate. 2-D reduced design, how-
ever, always has the smallest area: when n = 128, the area of 2-D 
reduced design is only 61.3% of that of original design. Note that 
the areas cost shown in Fig. 11 is for only a single MBC and its 
peripheral circuit. When the NCS is scaled up to a level capable of  
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TABLE II. Recall successful rate of NCS with different sizes 

 

 
Fig. 12: Recall successful rates of three NCS designs considering IR-drop: (a) Training and Recall with IR-drop, (b) with training compensation, (c) with 

both training and recall compensation 
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processing large data size, e.g., high resolution image, multiple 
MBC may be needed. Routing and analog data transmission will 
occupy significant portion of the circuit area. A relevant case 
study will be presented in Section 6.6. 

6.5 Robustness  
Similar to Section 6.1, we set the number of standard patterns 
stored in a MBC to 0.15·n in our recall robustness analysis on the 
circuit implementation from Section 4.3. Each standard pattern is 
a randomly-generated binary vector. Test input patterns are the 
defected standard patterns where each digit has a 15% probability 
to be inversed. We determine whether a recall is successful by 
comparing the mismatch between the outputs of the test inputs 
and the corresponding standard patterns. Recall successful rate is 
obtained by running 1000 times Monte-Carlo simulations. Besides 
the process variations of memristor devices (ߪ ൌ 0.2), we also 
assume each memristor has 0.1% chance to be stuck at HRS or 
LRS.  

6.5.1 Training and recall with IR-drop 
We first evaluate the NCS performance under the impact of IR-
drop. The same experiment setup and training method in Section 
6.2 are adopted in these simulations. Fig. 12(a) shows the recall 
successful rate of three NCS designs when IR-drop is considered 
during both training and recall process. Conventional NCS design 
suffers from the largest degradation among all the designs when 
the scale of the MBC increases from 16×16 to 128×128. And 1-D 
reduction outperforms the other two designs.  

Fig. 12(b) shows the results when IR-drop compensation is intro-
duced during only training process. When the size of the MBC 
increases, the training quality of the original MBC is significantly 
improved by IR-drop compensation.  

Fig. 12(c) shows the recall successful rate of all NCS designs 
when the IR-drop compensation is applied during both training 
and recall. IR-drop compensation substantially enhanced the ro-
bustness of original and 1-D reduced designs. As the MBC size of 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

all 2-D reduced designs is smaller than20×20, neither the IR-drop 
effect nor the compensation improvement is significant. When n = 
m = 128, the 1-D reduced design shows a recall successful rate of 
85.3%, which is 27.0% higher than original design (68.3%). 

6.5.2 Impact of memristor/wire resistance variation 
In neural network model development, hardware device varia-
tions, e.g., memristor variation and metal wire resistance variation 
are generally not considered. In our IR-drop compensation design, 
wire resistance is also considered as a fixed value. In reality, these 
variations may harm the robustness of both training and recall 
process. Based on the experiment setup in section 6.5.1, we simu-
lated the impacts of memristor and metal wire resistance varia-
tions and IR-drop. Table 2 shows the simulated recall successful 
rates of the NCS with different MBC sizes and memristor varia-
tion assumptions. When the memristors have lower variation (i.e., ߪ ൌ 0.1), all three designs have better recall successful rates.  
However, the recall successful rate of the 2-D reduced MBC de-
grades more phenomenally than the other two designs when ߪ 
increases, implying less tolerance to process variations as dis-
cussed in Section 4.4.  

Although wire resistance greatly affects the impact of IR-drop, its 
variation ߪ௪ does not show visible impact on overall system 
robustness due to its relatively small magnitude (2.5 ohm) and 
variance (ߪ௪ ൌ 0.05).  

6.5.3 Tradeoff between 1-D/2-D system reduction 
It is clear that among all the designs, 2-D reduced design has the 
best area efficiency even though it may not offer the same compu-
tation reliability as the 1-D reduced and conventional designs. 
However, computation reliability of 2-D reduced design shows 
higher sensitivity to the variation of memristor resistance (ߪ) 
than that of other two designs, as shown in Table 2. Hence, 2-D 
reduced design is a good solution for a large-scale data processing 
with well-controlled variability of memristor device as well as the 
relatively low computation accuracy per iteration.  

1-D reduced design offers a good balance among area efficiency, 
computation accuracy, and tolerance to IR-drop and memristor 
variations. In fact, 1-D reduced design even shows better compu-
tation accuracy then the original design when the problem size is 
large because of the significantly improved tolerance to IR-drop 
and memristor variations, as shown in Fig. 12.  

6.6 Case study 
The advantages of system reduction become prominent when the 
size of the NCS is large. In our case study, a two-layer neural 
network for fingerprint recognition is demonstrated. Here, the 
network is trained with BP training method. A set of 256 finger-
print patterns ai (i=1…256) with 64×64 pixels from SFinGe is 
used as training patterns [20]. 
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Fig. 13: Case study: (a) Conventional hardware design. (b) 1-D reduced 

hardware design. 
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Fig. 14: Case study: (a) Finger prints pattern. (b) Area comparison. 
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After training, defects and noises are added on one randomly 
picked training pattern to generate a test pattern. Memristor device 
parameters and other experiment variables can be found in Table 
I. In the neural network, the input layer has 64×64=4096 neurons, 
and the output layer has 256 neurons, each of which indicates one 
of the training patterns. During the test, if the input pattern origi-
nates from pattern ai, the output of the ith output neuron will be 
“1” while that of any other neurons will be “0”.   

Fig. 13 (a) illustrates the hardware implementation of the network 
with conventional MBC designs. Since we have 256 output neu-
rons, a process block (PB) contains a 16×256 MBC the size of 
which is constrained by the “hard-limit” described in Section 4.B. 
Each PB also has 16 input drivers and 1 output sensing amplifier 
that can be shared by all columns of the MBC. Total 256 PBs are 
needed to process the input data with a size of 4096 while the 
signals from all PBs will be summed in an extra PB.  

Fig. 13(b) shows the designs with 1-D reduction scheme. The 
input and output sizes of each PB are all 256. Hence, each PB can 
be implemented with two reduced MBCs (256×8 and 8×256). 
Compared with the conventional design, eight amplifies are 
needed between the two MBCs in every PB. Since a PB with re-
duced MBCs can have an input data size of 256 without violating 
the “hard-limit”, only 16 PBs are needed in this implementation. 
The significant decrease of total number of PBs is associated with 
the reduction in the number of sensing amplifiers, which con-
sumes a large proportion of circuit area. Fig. 14 (b) compares 
areas of the two designs in Fig. 13(a) and (b). 1-D reduction 
scheme saves 81.4% of the circuit area.  Moreover, the recogni-
tion successful rate of the 1-D reduced design is 85.3%, which is 
substantially improved from the one of the conventional design 
(71.7%). The adopted MBC parameter details are listed in Table I 
and ߪ ൌ 0.2. Due to space limit, we did not include the case 
study on 2-D reduction scheme but the details will be similar to 
the discussions in Section 6.5.3.  

7. CONCLUSION  
 

 

 

 

 

  

 

 

MBC-based NCS is a promising solution to combat the memory 
bottleneck in Von Neumann architecture. Our analysis reveals that 
the IR-drop along the metal wires and memristor arrays in MBCs 
significantly affects the reliability and scalability of the NCS. In 
this work, we proposed system reduction schemes that can sub-
stantially reduce the size of the MBC required in NCS implemen-
tation for system robustness enhancement. We also proposed IR-
drop compensation technique that can improve the training and 
recall reliability of the NCS. Simulations show that these tech-
niques substantially improve the operation robustness of the NCS 
by 27.0% and reduce 38.7% of circuit area.  
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