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ABSTRACT
Moment estimation is one of the most important tasks to ap-
propriately characterize the performance variability of today’s
nanoscale integrated circuits. In this paper, we propose an efficient
algorithm of multi-population moment estimation via Dirichlet
Process (MPME-DP) for validation of analog and mixed-signal
circuits with extremely small sample size. The key idea is to
partition all populations (e.g., different environmental conditions,
setup configurations, etc.) into groups. The populations within
the same group are similar and their common knowledge can be
extracted to improve the accuracy of moment estimation. As will
be demonstrated by the silicon measurement data of a high-speed
I/O link, MPME-DP reduces the moment estimation error by up to
65% compared to other conventional estimators.

1. INTRODUCTION
For the task of circuit validation, we must accurately evaluate

the circuit performances of interest. However, these quantities are
today no longer well represented by deterministic models and thus
to estimate them one must resort to statistical tools due to two
reasons [1]–[2]: (i) aggressive scaling of IC technology brings
about large-scale process variations, and (ii) ever increasing system
complexity leaves the system susceptible to uncertainties posed by
environmental conditions and/or surrounding circuits. Statistically,
the randomness of a performance metric must be characterized by
its distribution. Once the distribution is estimated, it can be further
used to evaluate parametric yield, qualify a product, guide design
optimization, and/or facilitate process tuning.

There are numerous approaches for density estimation in the
statistics literature [3]–[5]. However, most of these methods come
with a caveat: they typically operate in the big data regime,
requiring a sufficiently large amount of data to obtain accurate
results. For analog and mixed-signal (AMS) circuit validation,
the trustworthy data are often collected by post-layout simulation
(for pre-silicon validation) or silicon measurement (for post-silicon
validation). Such a data collection process is highly expensive,
taking several days or even weeks to finish [6]–[8]. As a result,
due to short time-to-market windows, only a limited amount of
data (e.g., very few samples) may be affordable. The technical
challenge here is how to accurately estimate the AMS performance
distributions under the “small-sample-size” constraint.

Recently, a novel statistical framework of Bayesian model
fusion (BMF) has been proposed to address the aforementioned
issue of small sample size [9]–[14]. In particular, a multi-
population moment estimation (MPME) algorithm [11]–[12]
has been developed with the assumption that the performance
distribution is Gaussian and the data collected at all populations
(e.g., different environmental conditions, setup configurations, etc.)
are highly correlated. Such correlation information is exploited by
MPME to improve the accuracy of moment estimation. To this end,

a statistical model is proposed wherein a prior distribution is used
to encode the common knowledge across all populations and then
maximum-a-posteriori (MAP) estimation is carried out for moment
estimation at each population. Once the first-order and second-
order moments (i.e., mean and variance) are known, the Gaussian
probability density function (PDF) can be uniquely determined for
the performance of interest [11]–[12].

The MPME method proposed in [11]–[12], however, is not
perfect. It is expected that an AMS system may fail at a
particular population and, hence, its performance distribution can
be substantially different from other normal cases. In addition,
the performance distributions at a number of populations may be
similar, but they can be different from the distributions at other
populations, as will be demonstrated by a silicon measurement data
set in Section 5.2. These observations imply that it is not wise to
pool all populations together and extract the common knowledge
by assuming that all these populations are similar. Instead, we
must first partition the populations into different groups based on
their “similarity”, and then apply MPME to each group where the
populations within the same group are similar.

Nonetheless, this simple and seemingly useful idea cannot be
easily implemented in practice, as our data set is plagued by its
small sample size (e.g., 5 samples only for each population). Most
conventional clustering algorithms [3]–[5] cannot successfully
identify the true underlying groups because of large random
variations in the observed data. In other words, with extremely
small sample size, the boundaries between different groups become
“blurred” due to random variations and it is almost impossible
to clearly separate these groups with conventional clustering
algorithms.

In this paper, we propose to borrow the idea of Dirichlet process
(DP) [15]–[17] from the statistics community and develop a new
algorithm of multi-population moment estimation via Dirichlet
process (MPME-DP) to overcome the aforementioned technical
challenge. In particular, a unified flow is proposed to integrate
both clustering and density/moment estimation together which
has twofold innovation. First, we build up a detailed statistical
model to accurately capture the in-group “correlation” and ignore
the between-group “distortion” and thus reduce modelling error.
Second, since the boundaries between different groups cannot be
clearly defined based on limited data, MPME-DP aims to set up
multiple possible boundaries where each boundary is assigned
with a probability based on its likelihood of occurrence. In
other words, unlike the conventional clustering algorithms that
generate a single, deterministic partition, MPME-DP produces
multiple possible partitions in order to take into account the
randomness of the observed data. Furthermore, unlike the
conventional MPME method that is limited to Gaussian distribution
[11]–[12], the proposed approach is generally applicable to other
performance distributions (e.g., log-normal, chi-squared, etc.). Our
experimental results in Section 5 demonstrate that MPME-DP
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can appropriately handle industrial circuit examples and reduce
the moment estimation error by up to 65%, compared to other
conventional estimators.

The remainder of paper is organized as follows. In Section 2, we
formally describe the problem and review the background. Next,
we propose our MPME-DP approach in Section 3 and describe its
implementation details in Section 4. The efficacy of MPME-DP
is demonstrated by a number of experimental examples, including
industrial measurement data, in Section 5. Finally, we conclude in
Section 6.

2. BACKGROUND
In this paper, we target the problem of moment estimation for a

given AMS performance metric over multiple populations:

{xm; m = 1, 2, ...,M} , (1)

where xm denotes the performance metric associated with the m-
th population, and M is the total number of populations. Here,
a population refers to a particular environmental condition, setup
configuration, etc. Suppose that we obtain a set of statistically
independent samples:

X = {x(n)
m ; m = 1, 2, ...,M; n = 1, 2, ...,Nm}, (2)

where Nm stands for the number of samples for the m-th population.
The technical challenge of moment estimation stems from the

fact that the sample sizes {Nm; m = 1, 2, ...,M} are extremely small,
because collecting a large amount of data can be highly expensive,
if not impossible, for both pre-silicon simulation and post-silicon
measurement. Conventionally, the moments are often estimated
by averaging the samples in (2). For instance, the mean and
variance of the performance metric xm at the m-th population can
be estimated by:

µ̃m =
1

Nm

Nm∑
n=1

x(n)
m

σ̃2
m =

1
Nm − 1

Nm∑
n=1

(
x(n)

m − µ̃m

)2
,

(3)

where µ̃m and σ̃2
m denote the empirical estimators for mean and

variance, respectively. However, with an extremely small data set,
the conventional estimators in (3) are not sufficiently accurate.

2.1 Multi-Population Moment Estimation
To address the accuracy issue associated with the conventional

estimators, MPME has been proposed in [11]–[12] to estimate the
mean and variance particularly for Gaussian distributions. Its key
idea is to impose a prior distribution:

p(µm, σ
2
m|ψ) (m = 1, 2, ...,M), (4)

where p(·) denotes the PDF of a continuous random variable,{
(µm, σ

2
m) : m = 1, 2, ...,M

}
represents the mean and variance

values of M populations, and the vector ψ contains a
set of hyper-parameters to parameterize the prior distribution
p(µm, σ

2
m|ψ). A Bayesian inference is then applied to estimate

the moments
{
(µm, σ

2
m) : m = 1, 2, ...,M

}
via two steps. First,

the optimal value of ψ in (4) is learned from the data{
x(n)

m ; m = 1, 2, ...,M; n = 1, 2, ...,Nm

}
over all populations by using

maximum likelihood estimation (MLE). Next, given the prior
distribution p(µm, σ

2
m|ψ) in (4) where the parameter ψ is already

determined, a MAP estimation is further applied to each population
to estimate the mean µm, and the variance σ2

m.

The MPME method, however, has several shortcomings. It
is mentioned in [11]–[12] that an abnormal population (i.e., an
outlier) cannot be directly handled by MPME, since it may strongly
bias the estimation results. In addition, MPME cannot easily
handle clustered populations where a number of populations are
similar but they are different from other populations. In this
case, the prior knowledge of

{
(µm, σ

2
m) : m = 1, 2, ...,M

}
cannot

be simply encoded by a single prior distribution in (4) over all
populations. Finally, the MPME implementation described in
[11]–[12] is limited to Gaussian distribution only.

2.2 Population Grouping
The aforementioned discussions of MPME suggest that we

should not pool all populations together and extract the common
knowledge by assuming that all populations are similar. Instead,
we must first cluster the populations into different groups based on
their similarity. Namely, two populations should be assigned to the
same group, if and only if they are both similar to each other. Once
the clustering step is complete, MPME should be applied to the
populations within the same group for moment estimation.

There are a large number of clustering algorithms developed in
the statistics community that can be possibly adopted here. For
instance, hierarchical clustering [5] is one of the popular methods.
When applying hierarchical clustering to our application of MPME,
we take the moments estimated by the conventional estimators
(e.g., the empirical estimators in (3) for mean and variance) as the
input. Starting with M groups for M populations (i.e., each group
initially containing one population), we merge the two most similar
groups at each iteration step until there is only a single group left
or a stopping criterion is met.

Hierarchical clustering is expected to accurately identify the
clustered data structure and detect the abnormal populations (i.e.,
the outliers). However, when the observed data set is extremely
small, the moments estimated by the conventional estimators may
not be accurate and, hence, the boundaries between different groups
become “blurred”. For this reason, hierarchical clustering, as well
as other conventional clustering algorithms, often fails to work, as
will be demonstrated by our experimental example shown in Figure
5 of Section 5.1. It, in turn, motivates us to fundamentally re-
think the conventional wisdom of data clustering in order to further
develop a novel algorithm for our proposed application of moment
estimation.

3. PROPOSED APPROACH
In this section, we describe the proposed MPME-DP method. In

particular, we will explain the details of its Bayesian model based
on DP.

3.1 “Elastic” Clustering
As previously discussed, correctly identifying the underlying

groups based on an extremely small data set is not trivial. Most
conventional clustering algorithms (e.g., hierarchical clustering)
attempt to make a “hard” decision on the clustering result. Namely,
they deterministically partition the populations into different
groups and each population is assigned to a single group only. Such
a strategy is built upon the assumption that the underlying groups
are clearly separable. However, this fundamental assumption does
not hold in our application, since our observed data are subject
to large variations. Taking hierarchical clustering as example, it
relies on the moments estimated by the conventional estimators
that may not be highly accurate due to small sample size. Hence,
hierarchical clustering is likely to generate a wrong result that does
not match the actual structure of the data.
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(a) “Hard” Clustering (b) “Elastic” Clustering
Figure 1: The conventional “hard” clustering finds a single, deterministic
partition only whereas the “elastic” clustering in DP finds multiple possible
partitions with each partition having its likelihood of occurrence.

To address this technical challenge, we borrow a radically new
idea from statistics community [15]–[17] where the objective is not
to find a single, deterministic partition. Instead, it aims to make
a “elastic” decision on the clustering result. In other words, we
will generate “multiple” possible partitions of different sizes where
each partition is assigned to a probability based on its likelihood
of occurrence. The optimal estimator is obtained through model
averaging, i.e. taking the expectation of multiple models associated
with these possible partitions.

Figure 1 intuitively illustrates the difference between “hard”
and “elastic” clustering. Due to the randomness posed by small
sample size, there exist a number of possible partitions over the
populations of interest. When a “hard” clustering algorithm is
applied, it only finds one (hopefully the “best”) of these possible
partitions, while ignoring the others, as shown in Figure 1(a). Even
if the identified partition has a high probability to occur, the other
possible partitions may be equally good or, at least, their likelihood
of occurrence is not negligible. Hence, “hard” clustering may not
reveal the full structure of the data set and, consequently, fails to
work.

On the other hand, “elastic” clustering aims to statistically
capture all possible partitions. As a result, it is unlikely to bias
towards a specific partition and is expected to be more accurate than
“hard” clustering. In this paper, our implementation of “elastic”
clustering is based upon the Bayesian framework developed by the
statistics community [3]–[5], as will be discussed in detail in the
following sub-sections.

3.2 Bayesian Modelling
We assume that the performance xm at the m-th population

follows a parameterized PDF:

xm ∼ p(xm|ηm), (5)

where ηm represents a set of parameters specifying the distribution.
There are two important clarifications that should be made for the
PDF p(xm|ηm) in (5). First, the parameters in ηm are generally
different for different populations, implying that the distributions
are different for these populations. For instance, Table 1 shows two
examples (i.e., Gaussian and log-normal distributions) to define the
parameterized PDF p(xm|ηm) where the values of η1 and η2 can
be different for different populations. Second, since the PDF is
uniquely specified by ηm, the moments of xm are also uniquely
determined by ηm. In other words, once the parameters ηm are
known, we can calculate the moments of xm as a function of
ηm, as shown by the examples in Table 1. For this reason, our
moment estimation problem can be cast to an equivalent problem
of estimating the unknown parameters ηm.

Similar to the conventional MPME method [11]–[12], we
attempt to exploit the correlation between different populations
to maximize the estimation accuracy. To encode this common

Table 1: Two examples (i.e. Gaussian and log-normal) of parametric PDFs
and their moments up to third order

Distribution Gaussian Log-Normal

Parameters η1 and η2 η1 and η2

PDF 1√
2πη2

exp
{
−

(x−η1)2

2η2

}
1√

2πη2 x
exp

{
−

(ln x−η1)2

2η2

}
Mean η1 exp (η1 + η2/2)

Variance η2
[
exp (η2) − 1

]
exp (2η1 + η2)

Skewness 0
[
exp (η2) + 2

] √
exp (η2) − 1

knowledge across multiple populations, a prior distribution for ηm
needs to be imposed. However, we must carefully distinguish
the populations that are inherently different from each other.
Otherwise, arbitrarily imposing a similarity assumption among
substantially different populations can introduce a large bias to
the estimation result. Therefore, we cannot use a single prior
distribution to model all populations; instead, we need different
prior distributions for different groups where each group contains
one or multiple similar populations.

To this end, we first introduce the indicator variables {cm; m =

1, 2, ...,M}. The m-th indicator variable cm defines the group that
the m-th population belongs to. If we partition all populations into
K groups, each indicator variable can take one of the K integer
values: cm ∈ {1, 2, ...,K}. Based on these indicator variables, we
define our prior knowledge as a parameterized distribution:

ηm ∼ p(ηm|ψcm
), (6)

where ψcm
contains a set of parameters describing the distribution.

For instance, the prior distribution is defined as a parameterized
Normal-inverse-Chi-squared (NIX) PDF in [12]. Note that each
group (say, the cm-th group) should be associated with a unique
prior distribution p(ηm|ψcm

) with its own value for ψcm
. In total,

there are K different values for ψcm
, (i.e., {ψk; k = 1, 2, ...,K},

corresponding to K different groups.
Figure 2 illustrates a simple example of using different prior

distributions for different groups present in the data. In this
example, there are eight populations in total that can be partitioned
into two groups. It is natural to make all the populations in the
left group to share common knowledge and likewise for the right
group, while not between these two groups. To do this, we need
to use two different prior distributions p(ηm|ψ1) and p(ηm|ψ2) with
different parameters ψ1 and ψ2 for the two groups respectively.

Since the values of {ψk; k = 1, 2, ...,K} are different for
different groups, we further assume that they follow a shared prior
distribution:

ψk ∼ p(ψk). (7)

Conceptually, each ψk can be viewed as a a random sample drawn
from p(ψk). It, in turn, results in different values for {ψk; k =

1, 2, ...,K}. The distribution p(ψk) can be chosen in several different

Figure 2: An example of eight populations belonging to two groups is
shown for illustration purposes. Two different prior distributions p(ηm |ψ1)
and p(ηm |ψ2) with different parameters ψ1 and ψ2 are used for these two
groups respectively.
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ways. For example, it can be a uninformative (e.g. a uniform
distribution over the entire range) or engineered to encode the
domain-specific knowledge from experts.

When a conventional clustering algorithm is applied, the groups
and, hence, the indicator variables {cm; m = 1, 2, ...,M} are defined
deterministically. However, since we consider “elastic” clustering
in this paper, there exist multiple possible partitions among the
populations where each partition is assigned to a probability of
occurrence. In this case, the indicator variables {cm; m = 1, 2, ...,M}
should be considered as random variables that follow a discrete
distribution over {1, 2, ...,K}:

cm ∼ p(cm) =

K∑
k=1

πkδk(cm), (8)

where p(·) denotes the probability mass function (PMF) of a
discrete random variable,

δk(cm) =

{
1 if cm = k

0 if cm , k
(k = 1, 2, ...,K) (9)

denotes the k-th component of p(cm), and πk represents the weight
of the k-th component. To simplify our notation, we use the same
symbol p(·) to represent both PDF and PMF in this paper, since the
meaning of p(·) is self-explained in the context.

The weight values {πk; k = 1, 2, ...,K} in (8) must satisfy the
following constraints:

πk ≥ 0 (k = 1, 2, ...,K)
K∑

k=1

πk = 1.
(10)

Otherwise, the PMF p(cm) in (8) may not be non-negative or its
summation over all possible values of cm may not equal 1. In this
case, p(cm) in (8) is no longer a valid PMF.

Eq. (5)-(8) defines the Bayesian model for MPME-DP. Two
important clarifications should be made here. First, the Bayesian
model is defined hierarchically. Namely, the prior distribution
p(xm|ηm) is parameterized by ηm in (5), ηm follows the prior
distribution p(ηm|ψcm

) parameterized by ψcm
in (6), and finally ψk

and cm are specified by the prior distributions p(ψk) in (7) and
p(cm) in (8) respectively. Second, but more importantly, we do
not know the number of groups (i.e., K) in practice. Hence, the
prior distribution p(cm) in (8) must cover all possible values of
K. To address this challenge, we will adopt the idea of DP from
the statistics community to define the prior distribution p(cm). The
details of DP will be discussed in the next sub-section.

3.3 Dirichlet Process
Since the value of K is unknown in (8), the DP [15]–[17]

attempts to define the distribution p(cm) where K can possibly vary
from 1 to an extremely large value (e.g., K → ∞ in the extreme
case). As such, we are able to consider all possible values for K
that must be a positive integer. It is important to note that these
different scenarios with different K values do not occur with equal
probability. Once the measurement data are observed, we will solve
the posterior distribution for {cm; m = 1, 2, ...,M} to identify a small
number of “active” scenarios with high probability to occur, as will
be discussed in Section 4.

There are several different yet equivalent ways to mathematically
describe DP. In this paper, we borrow the stick breaking model
described in [18]. It starts from a set of random variables {βk; k =

1, 2, ...,K} that follow a Beta distribution:

p(βk |α) = α(1 − βk)α−1 (k = 1, 2, ...,K), (11)
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Figure 3: Several different Beta distributions are shown with different
values of α.

where βk is within the interval [0, 1], and α is a parameter that
should be empirically set. Several general guidelines to set α can
be found in [19]. Figure 3 shows a few different Beta distributions
with different values of α.

Next, we define a set of new random variables
{πk : k = 1, 2, ...,K} based on {βk : k = 1, 2, ...,K}:

πk = βk

k−1∏
i=1

(1 − βi) (k = 1, 2, ...,K). (12)

There are two important properties carried by these new random
variables {πk : k = 1, 2, ...,K} in (12). First, since 1−βi is within the
interval [0, 1], the magnitude of πk decays as k increases. Second,
but more importantly, it can be proven that the following equality
holds, as K approaches infinite [18]:

lim
K→∞

K∑
k=1

πk = 1. (13)

The property in (13) implies that the variables {πk : k = 1, 2, ...,K}
in (12) can be used as the weight values to define our prior
distribution p(cm) when K approaches infinite, i.e.:

p(cm) =

∞∑
k=1

πkδk(cm). (14)

In theory, the distribution p(cm) in (8) is composed of an infinite
number of components {δk(cm); k = 1, 2, ...}. In practice, however,
since πk decays with k, the value of πk is almost zero once k is
sufficiently large (say, k ≥ KDP). In other words, only the first
KDP components are “active”. The number of “active” components
(i.e., KDP) heavily depends on the value of α in (11). As shown in
Figure 3, if α is small, the values of {βk : k = 1, 2, ...} in (11) are
likely to be large. In this case, πk decays quickly with k and, hence,
only a small number of components would be active for p(cm) in
(8). Otherwise, if α is large, a large number of components may be
active for p(cm).

Eq. (11)-(14) describes the basic mathematical framework for
DP. Combining (5)-(8) and (11)-(14), our hierarchical Bayesian
model is now fully defined for MPME-DP. Next, we need to
further solve the Bayesian inference to estimate the moments for
all populations, as will be discussed in the following sub-section.

3.4 Moment Estimation
Given the measurement data X in (2) and the Bayesian model

defined in Section 3.2-3.3, MPME-DP estimates the moments of
interest via three major steps. First, we consider different possible
partitions of the populations and solve the Bayesian inference to
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find the posterior distribution p(ηm|X). The posterior PDF p(ηm|X)
tells us the probability of observing different possible values of ηm,
after the measurement data X is known. Second, we calculate the
Bayes estimator for ηm:

η̂m =

∫
ηm p

(
ηm|X

)
dηm. (15)

The estimator η̂m in (15) essentially averages all possible values
of ηm based on its posterior probability. Finally, since the PDF
p(xm|ηm) in (5) is fully specified by ηm for the performance xm at
the m-th population, we can easily calculate the moments of xm

once ηm is known.
Implementing the aforementioned three steps, however, is

not trivial. In particular, since the DP model in (11)-(14)
defines numerous possible partitions for the populations, directly
solving the posterior distribution p(ηm|X) with consideration of all
these partitions may be computationally intractable. To address
this issue, we will further develop a computationally efficient
implementation for MPME-DP in the next section.

4. IMPLEMENTATION DETAILS
As shown in (15), the value of ηm is estimated by calculating the

average based on the posterior distribution p(ηm|X). Unfortunately,
analytically calculating the expectation in (15) is extremely
difficult, if not impossible. Hence, we resort to Monte Carlo
method to estimate the expected value:

η̂m ≈
1
T

T∑
t=1

η(t)
m , (16)

where η(t)
m denotes the t-th random sample drawn from the posterior

PDF p(ηm|X), and T is the total number of random samples.
Towards this goal, we must know the posterior distribution p(ηm|X)
in the first place, before we can draw random samples from
it. This, however, is another challenging task, since it is not
trivial to analytically solve p(ηm|X) from the Bayesian inference.
To overcome this issue, we will take a detour to employ a
sampling strategy, referred to as Gibbs sampling in the statistics
community [20], for obtaining random samples from the posterior
PDF p(ηm|X) and finally being able to estimate ηm by (16). In
what follows, we will describe the Gibbs sampling approach and
highlight its novelty.

4.1 Gibbs Sampling
To apply Gibbs sampling, we first re-write the Bayes estimator

in (15) as:

η̂m =

$
ηm p (c,Λ,Ψ|X) dcdΛdΨ, (17)

where

c =
[

c1 c2 · · · cM
]

Λ =
[
η1 η2 · · · ηM

]
Ψ =

[
ψ1 ψ2 · · · ψK

]
.

(18)

At first glance, the expression in (17) seems more complicated than
the one in (15). However, as will be explained in this sub-section,
sampling the “joint” posterior distribution p (c,Λ,Ψ|X) in (17)
is substantially easier than the “marginal” posterior distribution
p
(
ηm|X

)
in (15).

In general, Gibbs sampling is a Markov Chain Monte Carlo
method to obtain samples from complicated joint distributions
[20]. To achieve this goal, Gibbs sampling iteratively generates
a sample from the conditional distribution of each variable. For

example, if we want to sample from the joint PDF p(z1, z2, ..., zR),
where {zr; r = 1, 2, ...,R} denotes a set of random variables and
R is the total number of these random variables, Gibbs sampling
starts from an initial point

[
z(0)

1 z(0)
2 ... z(0)

R

]
and it draws a sequence

of random samples based on conditional probabilities: z(1)
1 ∼

p
(
z1|z

(0)
2 , z(0)

3 , ..., z(0)
R

)
, z(1)

2 ∼ p
(
z2|z

(1)
1 , z(0)

3 , ..., z(0)
R

)
, etc. It can

be mathematically proven that these Gibbs samples constitute a
Markov chain and their stationary distribution follows the given
joint PDF p(z1, z2, ..., zR) [20].

In our case, the joint posterior distribution p (c,Λ,Ψ|X) in (17)
contains three categories of random variables: (i) the indicator
variables c, (ii) the distribution parameters Λ, and (iii) the cluster
parameters Ψ. By following the Gibbs sampling idea, we need
to iteratively sample each of these random variables from its
conditional posterior distribution given the current values of all
other random variables. To this end, we need to form the
conditional posterior distributions for c, Λ and Ψ, respectively.

• The indicator variables c: For each cm where m ∈ {1, 2, ...,M},
we adopt the statistical method from [21] to derive the conditional
PDF:

p
(
cm|c\{cm},Λ,Ψ,X

)
∝ p

(
cm|c\{cm}

)
p
(
ηm|ψcm

)
, (19)

where c\{cm} denotes the vector c with the element cm removed.
In (19), p

(
cm|c\{cm}

)
is a discrete PMF that can be analytically

derived [21]. Given p
(
cm|c\{cm}

)
and p

(
ηm|ψcm

)
, we can

compute the discrete PMF p
(
cm|c\{cm},Λ,Ψ,X

)
by (19). Once

p
(
cm|c\{cm},Λ,Ψ,X

)
is known, we can draw random samples from

it by using inverse transform sampling [20].

• The cluster parametersΨ: For each ψk where k ∈ {1, 2, ...,K},
we need to sample the following conditional distribution:

p
(
ψk |c,Λ,Ψ\{ψk},X

)
, (20)

where Ψ\{ψk} denotes the matrix Ψ with the column ψk removed.

The PDF p
(
ψk |c,Λ,Ψ\{ψk},X

)
cannot be analytically found.

Hence, we need to apply another Markov chain Monte Carlo in the
inner loop of Gibbs sampling to sample from p

(
ψk |c,Λ,Ψ\{ψk},X

)
.

For example, the No-U-Turn sampler (NUTS) [22] can be used for
this purpose.

• The distribution parameters Λ: To sample ηm where
m ∈ {1, 2, ...,M}, we need to know the following conditional
distribution:

p
(
ηm|c,Λ\{ηm},Ψ,X

)
, (21)

where Λ\{ηm} denotes the matrix Λ with the column ηm removed. In
general, solving the analytical expression for p

(
ηm|c,Λ\{ηm},Ψ,X

)
is extremely difficult. Hence, we have to apply another Markov
chain Monte Carlo (e.g., NUTS [22]) in the inner loop of
Gibbs sampling to sample from p

(
ηm|c,Λ\{ηm},Ψ,X

)
. However,

if the prior distribution p
(
ηm|ψcm

)
in (6) and the performance

distribution p(xm|ηm) in (5) are conjugate, the analytical expression
of p

(
ηm|c,Λ\{ηm},Ψ,X

)
can be found and, hence, sampling from it

becomes much easier.

When implementing the aforementioned Gibbs sampling
algorithm, we must consider a large number of groups formed by
the populations. As discussed earlier, the number of groups can
approaches infinite (i.e., K → ∞) in the extreme case. To efficiently
generate Gibbs samples, we repeatedly perform the following
operations: (i) identifying the group to which each population
belongs (i.e. determining the indicator variable cm) (ii) updating
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Algorithm 1 Multi-Population Moment Estimation via Dirichlet
Process (MPME-DP)
Inputs: The data set: X = {xmn : m = 1, 2, ...,M; n = 1, 2, ...,Nm}

Outputs: The desired moments for performance at each population

1: Set the initial values c(0) for the indicator variables, Λ(0) for the
distribution parameters, and Ψ(0) for the cluster parameters.

2: for t = 1→ T do
3: for m = 1→ M do
4: Apply Gibbs sampling to draw a new indicator variable

c(t)
m according to the conditional posterior PDF in (19)

5: end for
6: for k = 1→ K (active number of clusters only) do
7: Apply Gibbs sampling to draw a new cluster parameter

ψ(t)
k according to the conditional posterior PDF in (20)

8: end for
9: for m = 1→ M do

10: Apply Gibbs sampling to draw a new distribution
parameters η(t)

m according to the conditional posterior PDF
in (21)

11: end for
12: end for
13: Calculate the Bayes estimator η̂m in (17) for the distribution

parameters ηm, where m ∈ {1, 2, ...,M}
14: Based on the PDF in (5), calculate the desired moments for the

performance xm at the m-th population, where m ∈ {1, 2, ...,M}

the cluster parameter ψk based on the clustering result defined by
the indicator variables {cm; m = 1, 2, ...,M}, and (iii) using the
common knowledge within the updated groups to re-calculate the
distribution parameter ηm. Note that during the last two operations,
i.e., in step (ii) and (iii), we only need to handle the groups which
have at least one population assigned to it (i.e., the “active” groups).
In practice, only a small number of groups will be simultaneously
active for a particular Gibbs sample. However, as we generate more
and more Gibbs samples over iterations, we will be able to visit an
increasingly large number of possible groups.

The aforementioned discussions summarize the basic idea of
solving our proposed Bayesian inference by Gibbs sampling. Once
a set of Gibbs samples are generated, we can estimate the expected
value of ηm by (16) and, consequently, the moments of the
performance xm, where m ∈ {1, 2, ...,M}. Due to the page limit, a
number of mathematical derivations and implementation details are
omitted in the paper. More background information about Gibbs
sampling and Markov chain Monte Carlo can be further found
in [20]–[22].

4.2 Summary
Algorithm 1 summarizes the major steps of the proposed

MPME-DP method. Starting from a set of random samples X, we
first initialize the indicator variables c, the distribution parameters
Λ, and the cluster parameters Ψ. Next, Gibbs sampling is applied
to generate a set of random samples

{(
c(t),Λ(t),Ψ(t)

)
; t = 1, 2, ...,T

}
and the expected values of

{
ηm; m = 1, 2, ...,M

}
are estimated by

these samples. Finally, once the parameters ηm are determined, we
know the performance distribution p(xm|ηm) in (5) and can estimate
the moments of each performance xm based on ηm.

It is important to note that a number of Gibbs samples generated
at the beginning of the iterations in Algorithm 1 may not follow
the desired posterior distribution p (c,Λ,Ψ|X), since a Markov
chain must go through an initial “burn-in” period before reaching
its stationary distribution [20]. For this reason, we must remove

these initial Gibbs samples when calculating the Bayes estimator
ηm in (17). Otherwise, these samples may substantially distort our
estimation results.

5. EXPERIMENTAL RESULTS
In this section, the efficacy of MPME-DP is demonstrated by

several experimental examples. In these examples, we assume that
the AMS performance metrics of interest follow Gaussian distribu-
tion [1] even though our proposed MPME-DP method is applicable
to other non-Gaussian distributions in practice. Our objective
here is to estimate the moments

{
(µm, σ

2
m) : m = 1, 2, ...,M

}
based

on the observed data
{
x(n)

m : m = 1, 2, ...,M; n = 1, 2, ...,Nm

}
for all

populations. For testing and comparison purposes, four different
algorithms are implemented:

• Empirical: The empirical estimators in (3) are used to estimate
the mean and variance for each population separately.

• MPME: MPME [11]–[12] is applied to estimate the mean
and variance based on the common knowledge extracted from all
populations.

• MPME-HIE: Hierarchical clustering is first applied to partition
the populations into different groups and then MPME [11]–[12]
is applied to estimate the mean and variance for the populations
within the same group.

• MPME-DP: The proposed MPME via Dirichlet process (i.e.,
Algorithm 1) is applied for mean and variance estimation.

5.1 Synthetic Data
In this sub-section, we consider a synthetic example with 11

populations. The mean and variance values of these 11 populations
are defined as:

µm =

{
8.5 if m = 1, 2, ..., 10
10.5 if m = 11

σ2
m =

{
0.85 if m = 1, 2, ..., 10
1.15 if m = 11

(22)

Note that the first 10 populations in (22) share the same mean
and variance, while the last population is completely different. In
other words, the last population should be considered as an outlier.
Ideally, we should first detect and remove the outlier (i.e., the
last population), and then apply MPME to extract the common
knowledge across the first 10 populations for mean and variance
estimation.

In this examples, 5 independent random samples are generated
for each population. We apply four different algorithms (i.e.,
Empirical, MPME, MPME-HIE, and MPME-DP) to estimate the
mean and variance values for all populations. We repeatedly run
our experiments with independently generated data sets for 500
times and calculate the average errors:

εMEAN,m =

√√
1

500

500∑
i=1

(
µ̂(i)

m − µm

)2

εVAR,m =

√√
1

500

500∑
i=1

(
σ̂2(i)

m − σ2
m

)2
,

(23)

where µ̂(i)
m and σ̂2(i)

m denote the estimated mean and variance of the
m-th population at the i-th run, respectively.

Figure 4 plots the estimation errors for all 11 populations.
Studying Figure 4 reveals several important observations. First,
even though MPME is able to achieve good accuracy for the first
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Figure 4: Average errors calculated from 500 repeated runs are plotted at
11 populations for (a) mean estimation, and (b) variance estimation.

10 populations, it results in an extremely large error for the last
population (i.e., the outlier). This observation is consistent with
our expectation that since MPME assumes similarity among all
populations including the outlier, it strongly biases the estimation
results at the outlier. Since an outlier corresponds to a specific
population (e.g., a specific environmental corner), it implies that
the validation result is inaccurate and the circuit behavior is not
appropriately assessed at this population.

Second, but more importantly, MPME-HIE fails to detect the
outlier in this example. To intuitively understand the reason, we
plot the hierarchical clustering result in Figure 5 for one of the 500
runs. In this case, even though the actual mean values are 8.5 for
the first 10 populations, the empirical mean values estimated from 5
random samples vary from 7.6 to 9.1. Given such a large variation
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Figure 5: A representative example where hierarchical clustering fails to
correctly detect the outlier.
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Figure 6: Mean and variance values are plotted for 13 different populations
from silicon measurement.

range, hierarchical clustering merges the outlier with other normal
populations. Since the outlier is not correctly detected, the results
of both mean and variance estimation are strongly biased at the
outlier, as shown in Figure 4.

Finally, MPME-DP is able to accurately detect the outlier and,
hence, its results are not substantially biased at the outlier, as shown
in Figure 4. For the normal populations, MPME-DP provides
superior accuracy over all other estimators. It reduces the average
error by up to 24% and 42% for mean and variance estimation,
respectively. For these reasons, MPME-DP is preferred over other
moment estimation algorithms in this example.

5.2 Silicon Measurement Data
In this sub-section, we apply MPME-DP to a data set that is

obtained by measuring the receiver eye width of a high-speed
I/O link. Since such a silicon measurement is extremely time-
consuming, we are only able to collect the data from 50 dies with
13 different populations. We calculate the empirical mean and
variance values based on all 50 dies for different populations, as
shown in Figure 6. Note that three different groups are observed
for these 13 populations.

To validate the accuracy of the different estimators we adopt
a bootstrap approach [4]. Namely, we randomly select 5 dies
out of 50 candidates for each population, and apply four different
algorithms (i.e., Empirical, MPME, MPME-HIE and MPME-
DP) to estimate the mean and variance values based on these
selected dies. The average errors are computed by (23) where
the empirical mean and variance values calculated from all 50
dies are considered as the “golden” results for error evaluation.
Figure 7 compares the accuracy of mean and variance estimation
for different algorithms. Note that MPME-DP achieves the minimal
error, since it successfully identifies the clustered data structure in
this example. Compared to other conventional methods, MPME-
DP reduces the average error by up to 26% and 65% for mean and
variance estimation, respectively.

Finally, it is worth mentioning that the proposed MPME-DP
method takes about 5 minutes to run on a server with 2.2GHz
CPU and 64GB memory in this example. In practice, collecting
the measurement data often takes a few days or even weeks and is
substantially more expensive than running MPME-DP. Hence, the
measurement cost often dominates the overall validation cost and
the computational time of MPME-DP is almost negligible for the
practical application of AMS validation.

6. CONCLUSIONS
In this paper, a novel MPME-DP algorithm is proposed

for efficient moment estimation of analog and mixed-signal
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Figure 7: Average errors calculated from 500 repeated runs are plotted at
13 populations for (a) mean estimation, and (b) variance estimation.

circuits. MPME-DP attempts to improve the estimation accuracy
with extremely small sample size by taking advantage of
the data collected from multiple populations (e.g., different
environmental conditions, setup configurations, etc.). Built upon
the conventional MPME method [11]–[12], MPME-DP can further
handle clustered data and outliers, which are often observed in
practical applications, by adopting a Bayesian approach based
on Dirichlet process. The proposed MPME-DP algorithm has
been validated on two different data sets, including the silicon
measurement data of a high-speed I/O link. Our experimental
results demonstrate that MPME-DP consistently out-performs
other conventional estimators with up to 65% error reduction. The
aforementioned accuracy improvement can be directly translated to
a valuable cost reduction for analog and mixed-signal validation.
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