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ABSTRACT

We propose an ECG based robust human verification system for
both healthy and cardiac irregular conditions using the heartbeat
level and segment level information fusion. At the heartbeat level,
we first propose a novel beat normalization and outlier removal
algorithm after peak detection to extract normalized representative
beats. Then after principal component analysis (PCA), we apply
linear discriminant analysis (LDA) and within-class covariance
normalization (WCCN) for beat variability compensation followed
by cosine similarity and Snorm as scoring. At the segment level,
we adopt the hierarchical Dirichlet process auto-regressive hidden
Markov model (HDP-AR-HMM) in the Bayesian non-parametric
framework for unsupervised joint segmentation and clustering with-
out any peak detection. It automatically decodes each raw signal
into a string vector. We then apply n-gram language model and
hypothesis testing for scoring. Combining the aforementioned two
subsystems together further improved the performance and outper-
formed the PCA baseline by 25% relatively on the PTB database.

Index Terms— ECG biometrics, beat normalization, outlier re-
moval, nonparametric Bayesian, n-gram language model

1. INTRODUCTION

The ECG signal is an emerging novel behavior biometrics for hu-
man identification [1]. The differences of heart, such as chest geom-
etry, position, size, for different individuals manifest unique char-
acteristics in their ECG signals which can be used as a biometric
trait. Furthermore, the ECG signal is difficult for counterfeit creden-
tials and can provide continuous liveness feedback which makes it
promising in multimodal biometrics fusion and possible for contin-
uous identity unlock without repeated authentications. Moreover,
ECG is an important diagnostic physiological measure in mobile
health and body area sensor networks, thus ECG based subject ver-
ification is also useful in personalized healthcare service.

ECG biometrics is a challenging task since the ECG signal in-
herently varies at different heartbeats of the same subject due to
cardiovascular conditions [2], variations in physical [3, 4], mental
and emotional states [5, 6] as well as variabilities caused by sensor
placement and long term gap between visits. Therefore, most exist-
ing works used a sequence of heartbeats in normal rest condition to
model individuals. Compared to systems using multiple leads [7, 8],
promising results based on a single lead ECG signal have also been
demonstrated in [1, 6, 9, 10, 11, 12, 13, 14]. A recent comparative
literature review on ECG biometrics is provided in [15].

In general, with single lead signals, ECG biometrics methods
could be classified into two main categories depending on whether
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QRS detection is required. With QRS detection, ECG signal is seg-
mented into multiple cardiac heartbeats and a variety of reduced
feature sets derived from the morphological characteristics of these
heartbeats are proposed as features for subsequent supervised learn-
ing. Those features include fiducial points [1, 6, 9, 11], principal
component analysis (PCA) coefficients [10], Hermite polynomial
expansion coefficients [13], discrete wavelet transform coefficients
[8], short time Fourier transform (STFT) log energy [14], Pulse Ac-
tive Ratio [16], etc. Due to the QRS detector’s unreliable perfor-
mance for noisy and cardiac irregular data, several methods without
this computationally expensive segmentation/delinearation frontend
are also proposed, for instance, autocorrelation with discrete cosine
transform (DCT) in [11] and STFT based cepstral features in [13].

As mentioned in [15], most ECG biometrics modeling meth-
ods for the aforementioned features rely on supervised classifiers
(K nearest neighbor, support vector machine, neural networks, etc.)
under the closed set identification framework. However, these clas-
sifiers may not work well for the unseen out-of-set testing samples
in the verification task. Recently, Gao, et.al [17] proposed a verifi-
cation method by scoring each testing sample on LDA based multi-
class classifiers, each trained by a particular target sample against
all the background samples. To the best of our knowledge, there
is no existing work on directly calculating the similarity between
target and test samples and comparing it with a global threshold in
the ECG verification task including out-of-set testing samples. Fur-
thermore, despite [2, 18, 19], the majority of the currently available
algorithms only work well on healthy subjects rather than patients
with cardiac irregular conditions.The high accuracy reported in the
literatures (within session testing) may not hold for cross session
scenarios [15]. It is in this context that we study the verification
problem with cardiac irregular data and cross session evaluation.
The overview of the proposed system is depicted in Figure 1.

At the heartbeat level, in order to handle the variabilities caused
by unreliable R peak detectors, artifacts, noises, and abnormal mor-
phologies in the cardiac irregular data, robust beat normalization
with quality check or outlier removal is needed [2, 18, 19, 20, 21].
In this work, we propose a novel shift-invariant beat normalization
and outlier removal method utilizing the outputs from two different
R peak detectors. Moreover, we apply PCA on the normalized ECG
beat waveforms to extract the low dimensional features followed
by linear discriminant analysis (LDA) and within-class covariance
normalization (WCCN) [22, 23, 24] for beat variability compen-
sation. Finally, cosine similarity with Snorm score normalization
[23, 25, 24] is adopted for verification scoring.

At the segment level, we directly apply the hierarchical Dirich-
let process auto-regressive hidden Markov model (HDP-AR-HMM)
[26, 27] in the Bayesian non-parametric framework to the filtered
raw data for unsupervised joint segmentation and clustering with-
out any peak detection. It automatically decodes each raw ECG
signal into a long string vector. We then apply the n-gram language
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Fig. 1. The overview of the proposed system.
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Table 1. PTB database partition and evaluation protocol

“original” “refined”
subjects/records/segments | subjects/records/segments
target 82 82 248 80 80 230
test 119 | 251 798 119 | 241 733
background | 101 146 388 92 131 333
Snorm 70 70 227 65 65 204
Total 290 | 549 1611 276 | 517 1500

model and log likelihood ratio based hypothesis testing for verifica-
tion scoring followed by the Snorm score normalization.

Since heartbeat and segment level subsystems model the ECG
signal from different views and the latter one also covers informa-
tion from those irregular beats, we perform score level fusion to uti-
lize their complementary information and improve the performance.

2. DATABASE

To investigate the performance of the proposed system, we used
the public available PTB database from PhysioNet[28]. The rea-
sons to select the PTB database for evaluation is as follows: (1)
PTB database contains 549 recordings from 290 individuals, among
which 52 subjects are healthy and the rest 238 subjects suffer from a
variety of cardiac disorders which enables us to evaluate the perfor-
mance for cardiac irregular conditions. (2) 113 individuals of those
290 subjects have more than one recordings, and the average time
interval between any two ECG recording sessions of the same sub-
ject is about 500 days [7] which is important for our cross session
evaluation. In this work, we only perform cross session testing (tar-
get and test segments must come from different recording sessions)
for experimental results. (3) Lead I setup is included and sampled
at 1000 hz. This could provide guidance for the real world mobile
platform or finger based ECG biometrics systems [29, 30, 21].

The “original” and “refined” evaluation protocols are defined
in Table 1. In the “original” protocol, all 549 recordings are di-
vided into 4 non-overlapping sets, namely target, test, background
and snorm. The test set has 119 subjects which not only covers all
82 subjects in the target set but also includes 37 out-of-set subjects.
We only use one recording session for each target subject. Target
and test sets must be excluded from any kinds of training and are
only used for scoring. All the subjects that have only one record-
ing session are divided into background and snorm sets for training.
We also add 35 subjects that have multiple recording sessions to
the background set to enable session variability compensation. The
duration of each recording is from 32s to 120s, therefore we divide
each recording session into multiple non-overlapping 30s-long seg-
ments. The signals of some recordings are highly noisy and severely
contaminated which is not suitable for biometrics application, thus
we rejected 10% of the total segments to form the “refined” pro-
tocol. In this protocol, there are totally 230x733=168590 trials
among which 1721 trials are true, the rest are false. All the list files,
score files and HDP-AR-HMM demo codes are shared at [31].

3. METHODS

3.1. Heartbeat level subsystem
3.1.1. Pre-processing and QRS detection

In the pre-processing, we first estimated and removed the baseline
wander by a bandpass filter. Second, we applied the filtering and
smoothing frontend in [32] to further clean the data. Then, we
adopted two different QRS detectors, namely ecgpuwave from [28]
and PeakDetection from [33] for the R-peak detection.

3.1.2. Beat normalization and outlier removal

After QRS R-peak detection, we could get two different sets of R-
peaks. For each QRS detector, let us denote the sample frequency
fs as 1000, the number of beats as N, D; as the data associated
with the 7., beat, RRY™ and RR?°** as the RR interval of the i¢p,
beat measured against the previous and post R peaks, respectively.
The proposed shift-invariant beat normalization and outlier removal
algorithm for a particular R peak detector is defined in Algorithm
1. In the time domain normalization, each beat is normalized to a
201 dimensional vector based on the associated phase values [33].
Since the phase values are calculated based on the R peaks, the
middle point (index 101) corresponds to the detected R peak index.

Algorithm 1 Beat normalization and outlier removal for one peak detector

Require: D, RRP™¢, RRP°%t, fs ,N,k=0,n=0,T =0
Ensure: O

1: fori =1 — N do

2: if (0.4* fs<length(D;)<1.7* fs)
3: &(| RRP™® — RRP°*" |< 1/20(RRP™® 4+ RRP°®")) then
4: D; < time domain normalization (201 bins) of D;
5: D; «— D; —mean(D;);n — n+1
6
7
8
9

[V;ee, 1] — maa(Dy)
[Vinin In]  min(D;) |
T, (D — (Voo + Vnin) /2)/(Vmes — Vmin) /2

: end if
10: end for ) ]
11 voar  « median(V™me®); VR median(V™)
12: forj =1 — ndo
ymaz VhLin
13: if 0.5 < VWJLT < 1.5and 0.5 < V,,JT < 1.5 then
median . median
14: if | vmar > Veen | then
15: if I;.’““”::IOI (middle of the 201 bins) then
16: k‘<—k+1;ok:Tj
17: else if (I;"i”::IOI)&(mode(Im“‘”)::I;-"’a“) then
18: k «— k4 1,04 = circshift(T;,101 — I;’wz)
19: end if
20: else )
21: if I]’.””L::lOl (middle of the 201 bins) then
22: k—k+ 1,0, = —-Tj
23: else if (I;’L“w==101)&(mode(["”")==IJ’-'””) then
24: k&k+10k:ammuﬂ—ngm1—qmﬂ
25: end if
26: end if
27: end if
28: end for

In the first stage (lines 1-10), we selected those statable beats
with reasonable heart rate, perform time-scale and amplitude-scale
normalization into template candidates 1" and calculate both posi-
tive and negative peak values and indexes. Then in the second stage
(line 12-28), we perform quality check and circular shifts based on
the peak indexes for shift-invariant outputs. Since we do not know
whether the detected R peak is true or some irregular T/P/S peaks,
we can only guarantee that the positive peak lies in the middle of the
template (dim 101) and has the biggest distance to the beat mean.
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Thus, we treat those beats with normal peak values in the candidates
pool T" separately based on the relation of their global peak values.
Line 18 and 24 are for some special abnormal beat cases (e.g., the S
peak is misidentified as the R peak by the detector in some myocar-
dial infarction cases). It can recover some shift errors by the peak
detector to make the proposed normalization shift-invariant.

Due to the R peak detector’s unreliable performance in cardiac
irregular data, we adopt two different detectors. We perform Al-
gorithm 1 for each detector, and then select the one with the most
qualified beats. Finally, we fit each dimension (total 201 bins) of
those multiple qualified normalized beats independently into a sin-
gle gaussian distribution with maximum likelihood estimation and
only keep those beats always within the 2 sigma range. Figure 2
shows the normalized beat waveforms before and after outlier re-
moval which indicates the effectiveness of the proposed algorithm.

3.1.3. Robust feature extraction and verification scoring

Once we get the outlier-removed normalized beat waveforms, we
performed the PCA [10], LDA and WCCN [22] using the back-
ground and Snorm data sets to extract robust features for lower
dimensional and better discriminative representation. The reason
to choose LDA after PCA is because PCA preserves most of the
variance after the projection but not necessarily make the coeffi-
cients more discriminative. WCCN is typically useful for verifi-
cation tasks since it helps to cancel out the directions related to
the variabilities [22]. Similar to the works in speaker recognition
[23, 24] and face recognition [34], we hereby perform LDA and
WCCN on top of the PCA to further compensate the beat variabil-
ity and derive better subject-wise discriminative low-dimensional
features. We applied the cosine similarity instead of the inner prod-
uct for scoring [23] and normalized all the feature vectors into unit
L2 norm after each stage of PCA, LDA and WCCN. Finally, Snorm
based score normalization (in Equation 1) is employed to further
reduce the error rate in the verification task [23, 25]. By scoring the
target segment against the whole Snorm cohort set, we can retain
the mean ;1 and standard deviation o1 of these scores, vise versa
for the test segment in terms of 2 and o2.

rawscore — 1 rawscore — o

Snorm (rawscore(target, test)) =

@

o1 o2

3.2. Segment level subsystem and information fusion

As depicted in Figure 3 that the proposed segment level approach
consists of three main blocks, namely HDP-AR-HMM frontend, n-
gram language model and the hypothesis testing based likelihood
ratio scoring. HDP-AR-HMM is adopted to map the raw ECG
data into a sequence of state labels (strings) by performing joint
segmentation and clustering [27] rather than simple quantization
[35]. Compared to the traditional HMM model for ECG segmenta-
tion [36], this unsupervised HDP-AR-HMM does not require pre-
annotated segment labels and boundaries for training and can au-

= o Background
<—|HDP-AR-HMM‘ﬁConcatenatlonK):l S and Snorm
O datasets

TargelTﬁfQﬁt Ianguage Target string [
Segmem—} decoding —> S,r,,.,g model og likelihood fﬂmet

Stnng #> Joint Ianguage Joint string
concatenation Strlng model log likelihood
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Test me Setodn Test Ianguage Test string L L
segment C 9 E string 2 model oghkehhood test

Fig. 3. Overview of the proposed segment level approach
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Fig. 4. The filtered waveform and state sequence after 3000 itera-
tions trained/tested on the first 30s of s0015Irem. Code is in [31].

tomatically determine the model size and refine model for new un-
seen data [26, 27]. Particularly, in our model, each state is repre-
sented by an order-2 auto-regressive curve which fits the continuous
ECG data very well and the quasi-periodic characteristics of ECG
signal make the transition probability matrix estimation accurate.
Although HDP-AR-HMM has been successfully applied to motion
capture and financial data analysis [37, 27], this is the first time to
use HDP-AR-HMM on the ECG data to our best knowledge. We
show one example in Figure 4 and provide the demo code in [31].
After mapping ECG signals into a set of strings, we use n-gram lan-
guage model and hypertensin testing based log likelihood ratio (see
Figure 3) for scoring. Joint and individual language models are for
the same subject and different subjects hypothesis testing. SRILM
[38] with smoothing is used for n-gram language modeling.

P(same subject)
rawscore(target, test) = m = Lijoint —

Finally, we simply summed the aforementioned two subsystems’
normalized (Snorm) scores in equal weight as our final score.

Ltarget — Liest

3.3. Relation to prior works

First, we focus on the cross session verification task including
unseen out-of-set testing samples and cardiac irregular data rather
than the conventional within session in-set identification task with
healthy subjects. Second, we propose a novel shift-invariant beat
normalization and outlier removal algorithm. Third, we apply LDA,
WCCN on top of PCA to further improve the performance. Fourth,
we propose a novel peak detection free framework by using HDP-
AR-HMM based frontend for joint segmentation and clustering and
followed by the n-gram language model based hypothesis testing
scoring. Finally, we show that heartbeat and segment level subsys-
tems are complementary, thus fusion enhances the performance.

4. EXPERIMENTAL RESULTS

As introduced in Section 2 that we evaluate the proposed methods
using Equal Error Rate (EER) by the “refined” protocol on the PTB
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Table 2. Heartbeat level performance with or without outlier re-
moval and Snorm on the normalized waveforms (width=201)

Methods Cosine Cosine+Snorm
without Outlier Removal | EER=25.1% EER=22.0%
with Outlier Removal EER=23.6% EER=20.3%
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Fig. 5. Heartbeat level performance of cosine scoring on the se-
lected central waveforms with outlier removal and Snorm

10 15 20 25 30 35
states number

Fig. 6. Segment level small subset performance using 3-gram lan-
guage model (smoothed), 2500 frontend iterations and no Snorm
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Fig. 7. Segment level fullset performance and information fusion

database. Heartbeat level subsystem performances are shown in Ta-
ble 2, 3 and Figure 5, respectively. From Table 2, we can see that
both outlier removal and Snorm score normalization improved the
verification system performance significantly. In Figure 5, we show
that using the entire normalized waveform may not generate bet-
ter performance than just cropping the central part. The best result
was obtained by using the central 141 dimensions which covers the
PQRST main cardiac cycle. Results in table 3 demonstrate the ef-
fectiveness of PCA, LDA and WCCN for both dimension reduction
and discriminative feature extraction. The central cropped version
(width 141) achieved the best result. Dual cosine scoring is for a
few segments that the sign condition (line 14) in Algorithm 1 may
be unreliable determined (R peak and S peak have almost the same
relative amplitudes), so we allow them to have an alternative model
trained by the normalized waveform with the opposite direction.
Since evaluating the segment level subsystem on the full trial
set is computationally expensive, we first adopted an internal small
trial set with 2784 trials for parameter tuning in Table 4, 5 and Fig-
ure 6, then use the full set for the final subsystem evaluation and

Table 3. Heartbeat level performance with outlier removal

Width=201 | Width=141
Methods dim/EER% | dim/EER%
Cosine 201/23.6 141/22.8
Cosine+Snorm 201/20.3 141/20.1
PCA+Cosine+Snorm 13/20.6 12/20.4
PCA+LDA+Cosine+Snorm 9/19.0 9/18.1
PCA+LDA+WCCN+Cosine+Snorm 9/17.7 9/17.2
PCA+LDA+WCCN+dual Cosine+Snorm 9/16.6 9/16.1

Table 4. Segment level small subset performance using 3-gram lan-
guage model (smoothed) on 15 states frontend without Snorm

Iterations | 800 | 1600 | 2500 | 5000 | 7000
EER (%) | 27.6 | 27.6 | 250 | 249 | 264

Table 5. Segment level small subset performance using n-gram lan-
guage model on 15 states 2500 iterations frontend without Snorm

Methods N-gram | EER%

SRILM default smoothing 3-gram 38.4
Witten-Bell smoothing 3-gram 25.0
Witten-Bell interpolated smoothing | 3-gram 23.7
Kneser-Ney interpolated smoothing | 3-gram 25.0
Witten-Bell interpolated smoothing | 2-gram 27.7
Witten-Bell interpolated smoothing | 4-gram 23.7
Witten-Bell interpolated smoothing | 5-gram 25.5

fusion in Figure 7. Table 4 shows that after 2500 iterations sam-
pling, the HDP-AR-HMM becomes stable. Various language model
smoothing techniques [38] as well as different n-gram orders are
evaluated in Table 5. We can observe that Witten-Bell interpolated
smoothing based 3-gram language model has the best performance.
Extending the model order beyond 3-gram did not improve the re-
sults. In Figure 6 we observe that setting states number between 15
and 30 yielded good results which is reasonable. With less states,
the model may not be able to represent all those different ECG pat-
terns; with more states, there might be multiple states associated
with similar patterns which reduces the discriminative power.

Finally, on the full trial set (Figure 7) with Snorm, the segment
level subsystem achieved 19.1% EER which is comparable to the
heartbeat level one with 16.1% EER. By fusing both with equal
weight, we observe a significant EER reduction to 14.5% which is
more than 25% relatively lower than the PCA baseline in Table 3
and outperformed the state-of-art results (19.2% EER) in [16].

5. CONCLUSIONS

We propose a heartbeat and segment level fusion system for the
cross session verification task including unseen out-of-set testing
samples and cardiac irregular data. At the heartbeat level, beat nor-
malization with outlier removal is crucial and LDA, WCCN, Snorm
could be applied on top of PCA for better performance. At the seg-
ment level, HDP-AR-HMM performs excellent unsupervised joint
segmentation and clustering which decodes the ECG raw data into
string vectors. Smoothed 3-gram language model with log likeli-
hood ratio based hypothesis testing scoring on those strings provide
good results and can be combined with heartbeat level system to-
gether for further improving the overall system performance.
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