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Abstract – Reconfigurable radio frequency (RF) system is an 
emerging component to mitigate the growing engineering cost 
for wireless chip design. In this paper, we propose a new 
methodology for efficient programming of reconfigurable RF 
receiver. The proposed method is facilitated by two novel 
techniques: two-phase relaxation search and Pareto-based 
search space reduction. Our numerical experiments 
demonstrate that the proposed methodology is more robust 
(i.e., close to global optimum) and/or efficient (i.e., with low 
computational cost) than other traditional algorithms based on 
either local relaxation or simulated annealing. 

I. Introduction 
For most commercial wireless communication applications, 

rapid introduction of new wireless standards, increased autonomous 
applications and aggressive miniaturization result in a significant 
growth of engineering cost for developing various dedicated 
wireless chips. The advent of reprogrammable RF electronic 
systems provides a promising avenue for cost reduction by 
allowing circuit reuse via post-manufacturing reprogrammability 
[1]. 

Generally speaking, a reconfigurable RF system consists of a 
number of circuit blocks (e.g., low noise amplifier (LNA), mixer, 
filter, etc.) that can be adaptively reconfigured in terms of their 
block-level performance metrics (e.g., gain, bandwidth, 
nonlinearity, noise figure (NF), etc.) in order to meet a set of given 
performance specifications at system level (e.g., signal-to-noise 
ratio (SNR), bit error rate, etc.). Recently, several reconfigurable 
RF systems have been developed, including reconfigurable vector 
signal analyzer and software-defined receiver [2], multi-standard 
RF front-end [3] and ultra-low-power RF transmitter [4]. For a 
reconfigurable RF system, all circuit blocks must be carefully 
configured to ensure their desired functionality and performance. 
The process of finding the optimal configurations for all circuit 
blocks to meet the given system-level specifications is referred to 
as RF system programming in this paper. Our objective is to 
develop efficient algorithms to accomplish this programming task. 

It is important to mention that most traditional algorithms 
developed for general-purpose analog optimization are not directly 
applicable to RF receiver programming. Traditionally, analog 
optimization often takes a fixed circuit topology and optimizes the 
device-level parameters, such as the widths and lengths of 
transistors, to meet a set of given performance specifications [5]. 
These traditional methods fall into two broad categories [6]: 
equation-based [7] and simulation-based [8]-[9]. Equation-based 
methods, such as geometric programming [7], rely on design 
equations that may require a lot of efforts to derive. Furthermore, 
these design equations may not be sufficiently accurate since 
various approximations are often made [5]. On the other hand, 
simulation-based methods, such as simulated annealing [8] and 
genetic programming [9], often take excessive computational time 
to extensively search the design space in hopes of reaching a 
solution close to global optimum [5]. For these reasons, there is a 
strong need to develop a new optimization technique that can solve 

our proposed problem of RF receiver programming both robustly 
(i.e., close to global optimum) and efficiently (i.e., with low 
computational cost). 

Towards this goal, two novel techniques are proposed in this 
paper by exploiting the unique characteristics of RF receiver 
programming. 
• Two-phase relaxation search: As will be discussed in Section 

II, RF receiver programming can be cast into an optimization 
problem that minimizes a cost function subject to a single 
constraint. Given this unique problem formulation, we propose 
to adopt a two-phase relaxation search algorithm. During the 
first phase, the constraint function is maximized without taking 
into account the cost function. Next, the cost function is 
minimized subject to the given constraint during the second 
phase. Such a two-phase approach was initially developed to 
explore the performance trade-offs between power and delay 
for gate sizing of digital circuits [10]. It has been demonstrated 
to be extremely robust (i.e., avoiding a large number of local 
optima) in the literature. 

• Pareto-driven search space reduction: While most traditional 
algorithms were developed to optimize analog circuit blocks by 
tuning the device-level parameters, RF receiver programming 
should be performed at system level based on reconfigurable 
circuit blocks. In this case, we can take advantage of block-
level Pareto optimal fronts (POFs) [11] to substantially reduce 
the search space. The POF of a circuit block captures the 
optimal trade-offs of the block-level performance metrics, such 
as the trade-off between nonlinearity and power of an LNA. 
For RF receiver programming, the block-level configurations 
on POFs are most likely to yield the optimal system-level 
performance. Therefore, it is desirable to search the optimal 
configurations among these candidates on POFs only for RF 
receiver programming. 
The remainder of this paper is organized as follows. In Section 

II, we first describe the problem formulation of RF receiver 
programming and then develop the proposed programming 
algorithm in Section III. The efficiency of our proposed technique 
is demonstrated by a reconfigurable RF receiver example in 
Section IV. Finally, we draw conclusions in Section V. 

II. Problem Formulation 
The general goal of reconfigurable RF system design is to 

enable a common hardware architecture that reuses a set of circuit 
blocks for disparate wireless applications and standards through 
programming. As a result, the design cost can be reduced 
dramatically compared to the traditional non-configurable system. 
A reconfigurable RF system should be able to operate in the 
severely crowded and rapidly changing modern commercial 
environment, while maintaining the optimal performance. To arrive 
at an optimal reconfigurable RF system, it is crucial to minimize 
silicon area and power consumption for multiple wireless 
applications and standards by maximizing hardware sharing [3]. In 
addition, programming a reconfigurable RF system must be 
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efficiently done by appropriately setting a number of 
programmable “knobs”. 

For a reconfigurable RF receiver, its programming can be 
performed through two possible avenues. First, the receiver can be 
programmed at system level by changing its architecture (e.g., 
transforming an RF receiver from superheterodyne to homodyne by 
using switch boxes). Second, the receiver can be programmed at 
block level by changing its block-level performances (e.g., varying 
the gain of an LNA by tuning its bias current) [2]. To successfully 
program a reconfigurable RF receiver, both system-level and 
block-level knobs must be appropriately set to achieve the desired 
functionality and performance. In this paper, we will first derive 
efficient algorithms for block-level programming, and then extend 
our proposed techniques to system-level programming for multiple 
receiver architectures. 

As an example for system-level and block-level programming, 
a reconfigurable RF receiver is shown in Figure 1. In this system, 
the RF receiver can be programmed to two different architectures: 
superheterodyne and homodyne, by using system-level knobs, i.e., 
switch boxes. All circuit blocks, including LNAs, band-pass filter 
(BPF), low-pass filter (LPF), oscillators (LO1, LO2 and LO3), 
mixers, and variable gain amplifier (VGA), can be reconfigured by 
block-level programmable knobs, such as block-level switch boxes 
and/or tunable bias currents. 

Figure 1. Simplified schematic is shown for a reconfigurable RF 
receiver which can be programmed to two different architectures: 
superheterodyne (the upper signal path) and homodyne (the lower 
signal path). 

Mathematically, let  denote all block-level programmable 
knobs (e.g., the values of tunable bias currents used to control the 
performance metrics of circuit blocks) and  denote all system-
level programmable knobs (e.g., the configurations of switch boxes 
used to set the receiver architecture). In general, the possible values 
of these programmable knobs are discrete and they are controlled 
by a finite number of digital bits (e.g., a finite set of possible bias 
current values controlled by a digital-to-analog converter). The 
problem of reconfigurable RF receiver programming can be 
formulated as an optimization with multiple constraints: 

1
( )
( ) ( )

min               

s.t.        1,2, ,j j

F

g G j J≥ =
, (1) 

where  (i.e., the cost function) and  (i.e., the 
constraint function) denote different system-level performances 
(e.g., power, area, SNR, etc.), and  is the given specification. In 
order to simplify the RF receiver programming problem, Eq. (1) 
can be rewritten as an optimization formulation that minimizes the 
cost function subject to a single constraint: 

2
( )
( ) ( ) ( )( )1 1

min    

s.t.     min , ,   0J J

F

S g G g G= − − ≥
, (2) 

where  is a new constraint function constructed by all the 
original constraints in (1). In the remainder of this paper, we will 

take the formulation in (2) to derive the algorithm for efficient 
receiver programming. 

The optimization problem in (2) is nonlinear, non-convex and 
discrete. There are two important technical challenges when 
developing efficient numerical algorithms to solve (2) for RF 
receiver programming. 

• Robustness: The proposed optimization algorithm must be 
sufficiently robust to find the optimum of (2) that is at least 
close to global optimum. In other words, the optimization 
algorithm should not easily get stuck at local optima. Note that 
finding a robust solution for (2) is not trivial, since the problem 
formulation in (2) is non-convex and, hence, there may exist a 
large number of local optima in the search space. 

• Complexity: The optimization algorithm for solving (2) must be 
computationally inexpensive so that programming an RF 
receiver can be done quickly. In particular, since evaluating the 
system-level performance metrics (i.e.,  and gj(x,y) in 
(2)) requires expensive simulation (e.g., more than 10 minutes 
per simulation for our receiver example shown in Section IV), 
the proposed optimization algorithm must “smartly” explore 
the search space with few simulations. For this reason, even 
though many traditional analog optimization algorithms (e.g., 
simulated annealing [8]) can find a robust solution that is close 
to global optimum, they are not suitable for RF receiver 
programming due to their high computational complexity. 
In what follows, we will propose a novel optimization 

framework that exploits the unique characteristics of RF receiver 
programming. It, in turn, facilitates us to find a robust solution of 
(2) with low computational cost. 

III. Proposed Approach 
As previously mentioned, there are two distinct types of 

variables in the optimization problem defined by (2): (i) the block-
level knobs  to program the circuit implementation of each block, 
and (ii) the system-level knobs  to select the appropriate receiver 
architecture. In this paper, we propose to optimize  and  by 
applying a hierarchical approach. Namely, for each possible value 
of  that defines a particular receiver architecture, we optimize  to 
find out the optimal configurations of all circuit blocks. Next, the 
system-level performance metrics are compared among different 
architectures and the optimal architecture is selected to satisfy the 
given constraints with minimal cost function. 

The aforementioned programming strategy is adopted because 
the optimal block-level implementations and their performance 
metrics are often substantially different for different receiver 
architectures. For instance, the performance requirements on noise 
and distortion are significantly different between superheterodyne 
and homodyne receivers [12]. Hence, it is not trivial to design an 
algorithm to optimize both  and  simultaneously. 

In what follows, we first describe two novel ideas, two-phase 
relaxation search and Pareto-driven search space reduction, that 
facilitate us to efficiently find the optimal  (i.e., block-level 
configurations) for a given  (i.e., receiver architecture). Next, we 
further discuss the overall programming flow with optimal 
architecture selection. 

A. Two-phase Relaxation Search 
To find the optimal block-level implementations for a given 

receiver architecture, we re-write the optimization problem in (2) 
as: 
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3
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( ) ( ) ( )( )1 1

min  

s.t.   min , ,   0

q

q q q
J J

F

S g G g G= − − ≥
,(3) 

where  is the optimization variable and  corresponds to a 
particular receiver architecture. Without loss of generality, we 
assume that there are  programmable blocks and the 
configuration of the -th block is defined by a row vector ,
where . Concatenating all these vectors 

 forms the optimization variable , i.e., 
. We further denote the set of all possible 

values of  as , where each 
corresponds to one possible configuration and  is the total 
number of configurations for the -th block. 

When solving the optimization problem in (3), we must 
repeatedly evaluate the receiver performances for different values 
of . It requires a large number of expensive numerical simulations. 
To make the computational cost affordable, a local relaxation 
approach may be adopted to choose a single circuit block for 
optimization at one time.  

Figure 2. Two different optimization algorithms are compared with 
the objective to minimize power subject to a given SNR constraint. 
(a) The traditional algorithm of local relaxation starts from the 
initial point A and is stuck at a local optimum B. (b) The proposed 
algorithm of two-phase relaxation search starts from the initial 
point A and reaches the global optimum G.

Such a simple approach, however, often gets stuck at a local 
optimum, especially when the initial starting point is not 
appropriately set. To understand the reason, we consider a simple 
example shown in Figure 2(a) where the objective is to find the 
global optimum G by minimizing power subject to an SNR 
constraint. Suppose that the SNR specification is plotted as a 
vertical line  separating the feasible and infeasible regions in 
Figure 2. When local relaxation is applied, one circuit block is 
selected for optimization at each iteration step. The optimal 
configuration of the selected circuit block (say, the m-th block) 
should be found to minimize power while simultaneously satisfying 
the SNR constraint. All configurations of the m-th block that 
violate the SNR constraint are considered as “infeasible”. Due to 
this reason, if the initial starting point is close to the constraint 
boundary  (e.g., the point A shown in Figure 2(a)), a large 
number of possible configurations of the m-th block may be 
considered to be infeasible because they violate the SNR constraint. 
In other words, starting from the initial point A in Figure 2(a) 
would prevent us from exploring many possible configurations of 
the m-th block that are infeasible in the current iteration step, but 
should be considered to be feasible if the configurations of other 
circuit blocks can be changed. The optimization, therefore, fails to 
converge to global optimum. It is one of the major limitations for 
the local relaxation algorithm. 

To address this issue, we adopt a heuristic technique to solve 

the optimization problem in (3) via two phases. During the first 
phase, local relaxation is applied to maximize the constraint 
function without considering the cost function: 
4 ( ) ( ) ( )( )( )

1 1max  min , ,q q q
J JS g G g G= − − . (4) 

Our goal is to find the configuration that is “farthest” away from 
the constraint boundaries , such as the point K in 
Figure 2(b), by maximizing the minimal distance between the 
constraint function  and the given specification .
During the second phase, we further take the optimization result 
from the first phase as the initial starting point and apply local 
relaxation to solve (3), i.e., minimize the cost function subject to 
the given constraints. In this case, since the initial starting point is 
not close to the constraint boundaries, a large number of 
configurations should be “feasible” when optimizing a particular 
circuit block by local relaxation. In other words, the proposed two-
phase approach is able to avoid a lot of local optima as compared to 
the simple local relaxation algorithm shown in Figure 2(a). 

Algorithm 1: Constraint Function Maximization (Phase 1) 
1. Start from the optimization formulation in (3) with a given 

corresponding to a particular receiver architecture. 
2. Let denote the initial value of block-level knobs. 
3. Simulate the receiver with  to obtain the value of the 

constraint function .
4. Set  and .
5. For
6. Set  to different values , where ,

and simulate the receiver at each of these cases to obtain the 
values of the constraint function . The 
configurations of all other blocks are defined by 

 and they should be unchanged for these 
simulations. 

7. Find the optimal value of  (say, ) corresponding to 
the largest value of the constraint function (say, ) in the 
set .

8. If , set  and 
.

9. End For 
10. If , set  and go back to step 5. 

Otherwise, stop iteration and  is the optimal 
configuration with the largest value of the constraint function 
for the given receiver architecture. 

Algorithm 2: Cost Function Minimization (Phase 2) 
1. Start from the optimization formulation (2) and the optimal 

value  solved by Algorithm 1. 
2. Calculate the cost function  with the configuration 

.
3. Set .
4. For
5. Set  to different values , where ,

and simulate the receiver at each of these cases to obtain the 
values of the cost function  and the 
values of the constraint function . The 
configurations of all other blocks are defined by 

 and they should be unchanged for these 
simulations. 
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6. Calculate the following evaluation function values 
:

5 ( )
( ) ( )

( ) <
≥=

0
0

i
m

i
m

i
mi

m SifINF
SifFE . (5) 

7. Find the optimal value of  (say, ) corresponding to 
the smallest evaluation function value (say, ) in the set 

.
8. If , set  and 

.
9. End For 
10. If , set  and go back to step 4. 

Otherwise, stop iteration and  is the optimal 
configuration for the given receiver architecture. 

Algorithm 1 and Algorithm 2 describe the detailed 
implementations of the aforementioned two phases. Several 
important clarifications should be made for these two algorithms. 
First, the aforementioned technique of two-phase relaxation search 
was initially developed for gate sizing of digital circuits where the 
total power should be minimized subject to a given delay constraint 
[10]. As demonstrated in the literature, it is able to avoid a large 
number of local optima for gate sizing. In this paper, we adopt the 
two-phase approach for RF receiver programming, since both gate 
sizing and RF receiver programming are discrete and they share a 
similar optimization formulation (i.e., minimizing a cost function 
subject to a given constraint). 

Second, it is important to note that the computational cost of 
Algorithm 1 and Algorithm 2 is often dominated by the simulation 
time for performance evaluation, because accurately estimating 
system-level performances requires us to simulate the RF receiver 
over a long time period. As will be demonstrated by our numerical 
examples in Section IV, evaluating the system performances for a 
receiver with a given configuration takes more than 10 minutes, 
even if behavioral modeling is applied to speed up the simulation. 
Since the aforementioned performance evaluation must be repeated 
within the optimization loop of Algorithm 1 and Algorithm 2, it is 
extremely important to minimize the total number of required 
performance evaluations so that our proposed algorithm of two-
phase relaxation search is computationally efficient for practical 
applications. For this reason, we will further develop a novel 
approach for search space reduction in order to minimize the 
computational cost of RF receiver programming. 

B. Pareto-driven Search Space Reduction 
Our key idea of search space reduction is to remove the 

configurations that cannot be the optimum of (3) or (4), before 
running Algorithm 1 or Algorithm 2. It, in turn, reduces the search 
space and, hence, the computational cost of receiver programming. 
Such a goal is facilitated by the concept of Pareto optimal front 
(POF) that was previously developed for analog system-level 
optimization in the literature [11]. 

Let  denote the performance 
metrics of interest for the -th circuit block (e.g., gain, NF, IIP3 
and power for an LNA). POF captures the “best” trade-off among 
these performance metrics. If a point  is on POF (i.e., referred 
to as a Pareto point), it cannot be dominated by any other point 
(say, ) in the performance space: 
6 ( ) ( )j

m
i

m ≠  and ( ) ( )j
km

i
km pp ,, ≤ ( )1,2, , mk D= . (6) 

In (6), we assume that the value of a performance metric (say, 

) dominates another value (say, ), if  is greater than 

. In general, a linear transformation can be appropriately 
applied to any given performance metric to make this assumption 
valid. For instance, a small NF is often preferred for LNA design. 
In this case, we can define , instead of NF, as the 
performance of interest. Figure 3 shows a simple example of POF 
with three performance metrics: ,  and .

In our application of RF receiver programming, each possible 
configuration,  where , is associated with a 
particular performance value  for the -th block. To achieve 
the optimal performance for an RF receiver, we only need to 
consider the configurations on POF as “valid” programming 
options. Taking the RF LNA of the superheterodyne receiver 
shown in Figure 1 as an example, if the constraint function is set to 
SNR and we want to maximize it during the first phase, the RF 
LNA should be configured to have large gain, low NF and large 
IIP3. If a configuration option of the RF LNA is not on the POF 
with respect to gain, NF and IIP3, it is unlikely to reach the 
maximal SNR and can be simply ignored during the programming 
process. 

Figure 3. A 3-D POF is plotted for three performance metrics ,
 and  and is projected to the 2-D plane defined by  and 
.

The aforementioned idea of Pareto-driven search space 
reduction is particularly useful when Algorithm 1 is applied to 
maximize the constraint function without considering the cost 
function during the first phase. Since the cost function  is 
ignored in Algorithm 1, the block-level performance metrics which 
only affect  can also be ignored. Therefore, the total 
number of block-level performance metrics and, hence, the 
dimensionality of the block-level performance space could be 
reduced for each circuit block. Considering the simple example 
shown in Figure 2(b) where the cost function is set to power and 
the constraint function is set to SNR, the block-level power 
consumption could be ignored when maximizing SNR during the 
first phase. Namely, the dimensionality of the block-level 
performance space is reduced by one. In this case, when we project 
the block-level performance points to a lower-dimensional space, a 
large number of configuration options may not be on POF and, 
therefore, can be simply ignored. To intuitively illustrate the 
reason, Figure 3 shows a simple 3-D POF example. If one of the 
performance metrics (i.e., ) is ignored and the 3-D 
performance points are projected onto the 2-D space defined by 

 and , many of these performance points are not on POF. 
Hence, the corresponding configuration options can be ignored. 

Algorithm 3 summarizes the simplified flow of our proposed 
Pareto-driven search space reduction. It starts from a set of 
performance values  corresponding to 
different configuration options of the -th circuit block. Based on 

pm,1

pm,2

pm,2

pm,1

pm,3

0

0
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the definition of POF, a Pareto point  can be identified by 
choosing the performance point that has the greatest value for one 
of the performance metrics (say, ). Then all points in  that 
are dominated by  are removed. Next, the point  which has 
the second greatest value for the performance metric  in  is 
found and it is taken as the second Pareto point because it is not 
dominated by  or any other point remaining in . The 
aforementioned selection process is repeated until all Pareto points 
are found. Finally, the configuration options of the m-th circuit 
block corresponding to all selected Pareto points are identified and 
these configurations will be considered as valid options for RF 
receiver programming. 

Algorithm 3: Pareto-driven Search Space Reduction 
1. Start from a set  containing all 

performance values corresponding to  configuration options 
of the -th circuit block. 

2. Initialize the set  = {}. 
3. Find the Pareto point  from  that has the greatest value 

for the first performance metric .
4. Remove all points in  that are dominated by .
5. Remove  from the set , and add  to the set .
6. If the set  is not empty, go to Step 3. Otherwise, stop 

iteration and the set  contains all Pareto points. 
7. Determine the configuration options corresponding to the 

performance values belonging to the set .

C. Multi-Architecture Receiver Programming 
The previous sub-sections describe several efficient algorithms 

to find the optimal value of the block-level programmable knobs 
for a given receiver architecture defined by the system-level knobs 

. Suppose that the receiver system can be possibly implemented 
with  different architectures: . For each 
architecture, the optimization problem in (3) is solved to determine 
the optimal block-level configurations. Next, all architectures are 
compared according to their system-level performance values, and 
the optimal architecture is selected to achieve the minimal cost 
while simultaneously satisfying the given constraints. 

Algorithm 4: Reconfigurable RF Receiver Programming 
1. Start from the optimization formulation (2) where 

.
2. For each  where 
3. Apply Algorithm 1~Algorithm 3 to find the optimal block-

level configurations for the given receiver architecture 
defined by . Calculate the corresponding cost and 
constraint functions. 

4. End For 
5. Determine the optimal receiver architecture that can achieve the 

minimal cost subject to the given constraints. 

Algorithm 4 summarizes the overall flow for RF receiver 
programming. By taking advantage of the efficient techniques 
described in this section, the proposed receiver programming only 
requires very few (e.g., less than 50) simulations to reach 
convergence, as will be demonstrated by our numerical examples in 
Section IV. 

IV. Numerical Experiments 
In this section, a reconfigurable RF receiver (including 

baseband signal processing) shown in Figure 1 is used as an 

example to demonstrate the efficiency of the proposed 
programming algorithm. This RF receiver is designed for the IEEE 
802.11a WLAN standard where the channel bandwidth is 20MHz. 
In this example, the goal of RF receiver programming is to 
minimize power subject to a given SNR specification. At system 
level, the receiver can be programmed to two different 
architectures: superheterodyne (SH) and homodyne (HD). At block 
level, three circuit blocks are designed to be reconfigurable: RF 
LNA, IF LNA and IF BPF. Both the RF LNA and the IF LNA can 
be programmed to 11 configurations respectively, where the LNA 
performance metrics (i.e., gain, NF, IIP3 and power) are different 
for different configurations. The IF BPF can be programmed to 9 
configurations with different bandwidth and unloaded quality factor. 
In total, there are 1100 different configurations for the 
aforementioned RF receiver. Each circuit block of the receiver is 
represented as a macromodel to facilitate efficient system-level 
simulation of the RF receiver in MATLAB SIMULINK. 

A.  Programming Results 

Table 1. Programming results for the reconfigurable RF receiver 
with different SNR specifications 

SNR Spec 
(dB) Algorithm SNR 

(dB) 
Power 
(mW) 

Selected 
Arch 

6

Exhaustive 7.36 1.32 HD 
Relaxation 7.36 1.32 HD 
Annealing 7.36 1.32 HD 
Proposed 7.36 1.32 HD 

8

Exhaustive 8.61 1.44 SH 
Relaxation 8.61 1.44 SH 
Annealing 8.61 1.44 SH 
Proposed 8.61 1.44 SH 

9

Exhaustive 9.53 2.04 SH 
Relaxation 9.66 2.60 HD 
Annealing 9.53 2.04 SH 
Proposed 9.53 2.04 SH 

10 

Exhaustive 10.51 3.32 SH 
Relaxation Infeasible Infeasible Infeasible 
Annealing 10.51 3.32 SH 
Proposed 10.51 3.32 SH 

For testing and comparison purposes, four different 
programming algorithms are implemented: (i) exhaustive search 
(Exhaustive), (ii) local relaxation (Relaxation), (iii) simulated 
annealing (Annealing), and (iv) two-phase relaxation (Proposed). 
The exhaustive search method guarantees to find the globally 
optimal configuration by exploring all possible options. Hence, it is 
used to generate the “golden” results to evaluate the “robustness” 
of other programming methods. 

Table 1 summarizes the programming results for different 
algorithms with different SNR specifications. Studying Table 1 
reveals an important observation that the traditional algorithm of 
local relaxation fails to find the globally optimal configuration, 
when the SNR specification is 9 dB or 10 dB. On the other hand, 
the proposed algorithm of two-phase relaxation converges to the 
global optima in all test cases, thereby demonstrating its superior 
performance over the simple relaxation method. The simulated 
annealing algorithm is also able to find the global optima in this 
example; however, its computational cost is substantially more 
expensive than our proposed approach, as will be demonstrated in 
the next sub-section. 
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B. Computational Cost 
During the programming process, system-level performances, 

such as SNR, must be repeatedly evaluated for different receiver 
configurations. For the RF receiver shown in Figure 1, a single 
SIMULINK simulation takes more than 10 minutes to evaluate its 
SNR for a given receiver configuration. Hence, the computational 
cost of receiver programming is completely dominated by the 
simulation time, and we can use the number of required simulations 
as a metric to compare the complexity of different programming 
algorithms, as shown in Table 2. 

Table 2. The number of required simulations for different 
programming algorithms with different SNR specifications 

SNR Spec 
(dB) Exhaustive Relaxation Annealing Proposed 

6 1100 32 170 35 
8 1100 32 179 34 
9 1100 36 331 34 
10 1100 36 259 40 

Note that both exhaustive search and simulated annealing 
require a large number of simulations before reaching convergence. 
Our proposed algorithm of two-phase relaxation with Pareto-based 
search space reduction and the traditional algorithm of local 
relaxation can greatly reduce the computational cost by more than 
5×. On the other hand, the proposed algorithm is more “robust” 
than local relaxation, as shown in Table 1. These observations 
demonstrate that our proposed method is superior over all other 
traditional approaches tested in this example. 

In our experiments, we further observe that if the proposed 
heuristic method of Pareto-based search space reduction is not 
applied, more than 80 simulations are required to find the optimal 
configuration by using two-phase relaxation search. In other words, 
the proposed search space reduction successfully reduces the 
computational cost by more than 2× in this example. 

V. Conclusions 
In this paper, we develop an efficient methodology for 

programming reconfigurable RF receivers to achieve minimal cost 
function value subject to a set of given constraints. It is 
mathematically formulated as a nonlinear, discrete optimization 
problem. Two novel techniques, two-phase relaxation search and 
Pareto-based search space reduction, are proposed to program the 
RF receiver both robustly (i.e., close to global optimum) and 
efficiently (i.e., with low computational cost). Our numerical 
experiments demonstrate that the proposed approach is superior 
over other traditional algorithms based on either local relaxation (in 
terms of robustness) or simulated annealing (in terms of 
complexity). 
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