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ABSTRACT 

Electrical current flow within populations of neurons is a 
fundamental constituent of brain function. The resulting 
fluctuating magnetic fields may be sampled noninvasively with an 
array of magnetic field detectors positioned outside the head.  
This is magnetoencephalography (MEG).  Each source may be 
characterized by 5-6 parameters, the xyz location and the xyz 
direction.  The magnetic field measurements are nonlinear in the 
location parameters; hence the source location is identifiable only 
via search of the brain volume.  When there is one or a very few 
sources, this may be practical; solutions for the general problem 
have poor resolution and are readily defeated. 

Referee consensus is a novel cost function which enables 
identification of a source at one location at a time regardless of 
the number and location of other sources. This “independence” 
enables solution of the general problem and insures suitability to 
grid computing.  The computation scales linearly with the number 
of nonlinear parameters.  Since the method is not readily 
disrupted by noise or the presence of multiple unknown source, it 
is applicable to single trial data. 

MEG recordings were obtained from 26 volunteers while they 
performed a cognitive task The single trial recordings were 
processed on the Open Science Grid (≈300 CPU hours/sec of 
data)  On average 500+ active sources were found throughout.  
Statistical analyses demonstrated 1-2 mm resolving power and 
high confidence findings (p < 0.0001) when testing for task 
specific information in the extracted virtual recordings. 

Referee consensus is applicable to a variety of systems in addition 
to MEG, e.g. the connectivity problem, the blurred image, both 
passive and active SONAR, and seismic tomography.  
Applicability requires (1) that the measurements be linear in at 
least one of the source parameters and (2) that a sequence of 

measurements in time be obtained.   
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1. Introduction 

Electrical current flow within populations of neurons is a 
fundamental constituent of brain function. The resulting 
fluctuating magnetic fields may be sampled noninvasively with an 
array of magnetic field detectors positioned outside the head.  
This is magnetoencephalography (MEG).   

The signal at each MEG sensor is a weighted sum of the magnetic 
fields produced by sources within the brain, i.e. the relationship 
between the measurements and the amplitudes of the current 
sources is linear.  But the number and locations of the sources are 
generally unknown and the relationship between the 
measurements and the source location coordinates is nonlinear 
[1].  These issues pose fundamental poorly solved problems with 
handling and interpreting MEG signals.    

In restricted special cases the data are manipulated to reduce all 
significant contributors to the MEG to a single source.  In these 
cases, the widely accepted Equivalent Current Dipole (ECD) 
localization is applicable.  A single point source current dipole is 
assumed, requiring estimation of 5-6 parameters, 3 location 
coordinates and 2-3 current amplitude components.   The 
parameter estimation is typically accomplished using an iterative 
gradient search method for all 5-6 parameters.  The accuracy of 
this method is vulnerable both to extraneous sources and to 
instrument noise.  This forces the investigator to average the data 
synchronized to an event and thereby reduce the quantity of 
extractable information by a factor of 100 or more.   
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For the general multiple source problem, many investigators use 
methods with which thousands of point sources are estimated in a 
single operation, e.g. MNE [2], LORETA [3,4], VESTAL [5,6].  
This approach provides a solution to the localization problem by 
including source locations with sufficient density to insure that no 
source is more than a few mm from one of them.  But these 
methods produce estimates of thousands of parameters from 
hundreds of data points yielding estimates that are under fit.  
Because of this both localization accuracy and the ability to 
resolve sources which are near each other is poor.  Furthermore 
these methods are readily defeated by noise in the data, again 
forcing up front averaging with consequent loss of information. 

Referee consensus is used in a manner that is comparable to 
single source localization. But it is insensitive to the presence of 
either extraneous sources or noise.  And it is dimensionally well-
posed.  These properties enable (1) application to single trial data 
and (2) resolution of sources within a few mm of each other. 

A formal treatment of the simplest form of the method is 
presented followed by results of its application to the MEG 
problem.  A generalized version of the method as well as 
directions for future work are discussed. 

2. Methods 

2.1   Referee Consensus Optimization 
The objective of referee consensus optimization is to reliably 
determine the presence of sources whose actions are giving rise to 
measurements.  It does so by  providing a powerful statistical 
metric for deciding if a source is or is not present at a specific 
location.  It enables accurate estimation of one or a few nonlinear 
variables at a time, regardless of the number of other variables 
whose values are contributing to the measurements.   

Each source is characterized by 1 or more parameters1.  The 
measurements must be linearly related to at least one of these.  
“Best” values for the “location,” the nonlinear parameters2, are 
identified using a “trial and error” procedure, a search.  At each 
step of the search the values of the nonlinear parameters are fixed, 
enabling the linear formulation detailed below. 

A referee consensus system may be formulated as a set of linear 

regression equations: TTT H EDB


 . The elements of B


 

are the measurements (known).  The elements of D


are the linear 
source variables (to be estimated via ordinary least squares 

regression).  The elements of E


are the errors in the estimates.  

Each element of H , the , are nonlinear functions of the jkh

                                                                 
1 For the magnetic field due to a current dipole in a uniformly 

conducting sphere [1] each source is characterized by 5 
parameters.  3 of these are nonlinear, the xyz coordinates of the 
location of the source.  The 2 linear parameters are the 2 
components of the amplitude of the current in the tangent plane.  
This physical model precludes detection of the radial 
component of an intracranial current source. 

2 One or more linear parameter may be identified by search along 
with the nonlinear ones.  This could be required if there are too 
few sensors to enable inclusion of the all the linear parameters 
as linear source variables in the regression formulation. 

parameters that characterize the sensor and the source.   

The equations are solvable only when these nonlinear parameters 

are fixed so that the are numbers.  For the referee consensus 

method, the existence and the values of the parameters of one 
source at a time are determined.  All other sources included in the 
system estimate are either at fixed dummy “referee” locations or 
at known source locations which are included to reduce the errors. 

thj

th

thk

T

jkh

The formulation of a referee consensus system must include at 

least 2 sources: (1) the target ( ) source, the one for which the 
nonlinear parameters are to be found by search and (2) at least 
one referee location. Each referee must be “correlated” to the 
target location, i.e. the dot products of the columns of 

corresponding to the referees with the columns for the target 
location must be non-zero.   

k

H

The ordinary least squares solution for 
TT H EDB


  is 

  T-1TT HHHD T B







 , i.e. the element of 

thk D


 is a  

weighted sum of the measurements,
TB


, where the weights are 

the entries in the row of 
thk  -1HH

k

T

th

TH .  Each of these rows is 

then a linear filter.  Effectiveness of the referee consensus method 

relies critically on the fact that the filter has zero gain for 

contributions to the measurements from all of the entries in D


 

except .  A proof is provided in Appendix I.  This existence of 

zeroes enables (1) high fidelity estimation of the referee template, 

the time course of the value of , , and (2) 

calculation of the referee consensus cost function: 

kd

k dd 80,,1], t[tk

(1) The system is solved which includes sources at the target 
location, A, and a referee, R.  The filter3 for R, is applied to a 
sequence of measurements, 80 points in the work reported here.  
There is no contribution to this sequence from a source at A since 
the filter for R has zero gain for a source there.  Hence we refer to 
this sequence as R!A, “R not A.” 

(2)  The system is solved which includes the same referee but a 
different target location 1 mm from A, A’.  Again the filter for R 
is applied to the sequence of measurements but this time there is a 
contribution from A since it was not included in the model.  This 
sequence is R!A’.  

(3)  R!A’-R!A is an estimate of the time course of a source at A, 

80,,1],[ ttdk .  If there is in fact a source at A, it should 

contribute to R!A’ but not to R!A.  This is tested as follows: If 
((R!A’-R!A)●R!A’)2 > ((R!A’-R!A)●R!A)2, then there is a 
source present at A from the viewpoint of this referee.  In that 
case the “referee consensus” is incremented by 1.  Note that  
differs with the inclusion of A vs A’ only in the 2 columns for the 
target location.  Since locations A and A’ are close to each other, 
these columns differ only slightly.  In the work here, 90 referee 

H

                                                                 
3 For the MEG problem, it is natural to handle these variables 2 at 

a time.  For simplicity but without loss of generality we 
describe formation of the referee template for a single variable 
at a time. 



locations with 2 columns each were included inH .  Hence and 

the resultant filters,  the rows of , were only slightly 

perturbed with the major difference in gains being in the 
neighborhood of A.  This isolates the estimation of the referee 
template from the influence of other sources since the gains 
elsewhere are nearly equal for R!A and R!A’.  Hence the 
difference operation attenuates the contribution of other sources 
as well as the contributions of instrument noise. 

H

  T-1T HHH

The process detailed in (1)-(3) was repeated in this work twice (2 
components) for each of 90 referees.  All 180 referee templates 
were combined using eigenvector analysis to generate a high 
fidelity estimate.  The referee consensus is simply a count.  The 
probability of getting a particular count is interpretable as one 
would interpret the flip of a fair coin.  The expected value for K 
flips is K/2, e.g. the chance of getting 114 or more heads (1’s) out 
of 180 is less than 1:100.  This is the threshold for acceptance of 
the existence of a source at a particular location.  The threshold 
had to be exceeded for 6 different A’ locations chosen 1 mm from 
A along the x, y, and z axes in both direction.  Hence the 
probability of accepting a source by chance was reduced to 
1:1012. In addition to its use as a measure of confidence, the 
referee consensus may be used as a cost function to guide a 
gradient search as was done here. 

2.2   Experimental Methodology 
Under University of Pittsburgh IRB approval (PRO09040294), 26 
participants included 16 with history of concussion were enrolled 
in this study.  Written informed consent was obtained after which 
all volunteers sat for MEG recordings while performing the task.  
Either MRI (23) or CT (3) was used for anatomic localization.  

MEG recordings were acquired in the UPMC Brain Mapping 
Center with a 306-channel sensor array (Neuromag VectorView, 
Elekta Inc., Stockholm, Sweden) in a magnetically shielded room 
(Imedco, Hagendorf, Switzerland).  Data sampling rate was 1000 
Hz with front end high and low pass filter settings: 0.1-330 Hz.  
Line noise was removed from the raw MEG at 60, …, 300 Hz [7].  

With continuous MEG recording, each volunteer performed a 
visual choice task controlled by EPrime 2.0 (Psychology Software 
Tools; Pittsburgh, PA).  Each trial consisted of one of 8 sentences 
followed by 3 consecutive test figures to which a rapid response 
was given. Each sentence consisted of 5 words: “The blue/green 

circle/square is above/below.”  

All presentations were placed on a white background.  8 blocks of 
40 trials were presented.  It was assumed that within each block of 
40 trials (~4 min) the head was fixed.  The task with all attendant 
events is schematized in Figure 1.  The transition from each 
stimulus to the next was self-paced, i.e. triggered by a button 
press (Brain Logics Fiber Optic Button Response System, 
Psychology Software Tools, Pittsburgh, PA).  With each button 
press, the preceding stimulus, word or test figure, disappeared for 
2 screen refresh cycles (~33 msec) before presentation of the next 
stimulus.  Following the button press indicating the 
match/mismatch choice for the 3rd test figure, the screen was 
blank (white) for 1.0 sec with the fixation point appearing 
halfway through this interval. 

2.3   Referee Consensus Data Processing 
For each trial, 6 560 msec data segments were selected for 
extraction of virtual recordings using referee consensus 
processing.  The search for active MEG sources was conducted 
for 80 msec time segments, one at a time, each overlapping the 
previous segment by 40 msec.  The brain volume absent a sphere 
with 15 mm radius at the center of the head4 was divided into ≈ 
3000 ½ cm3 cubes.  Each instance of the search routine, mvrXS, 
searched the data from 40 target figures for one of these ½ cm3 
volumes.   Each such job required about 1 hr of computing time.  
Processing the data for each volunteer required: 3000 (½ cc3  
volumes) x 8 (trials blocks) x  3 (target figures) ≈ 72,000 jobs.   
The calculations were hosted by the Open Science Grid (OSG).  
The overall usage over an 8 week period was 3.2 million hours of 
clock time. 

mvrXS was written in Fortran 77 and compiled with gfortran.  
The dot product routines were optimized.  The eigenvector 
decompositions and matrix inversions using Cholesky 
factorization were handled at 64 bit precision using LaPack [8].  
All job control, results aggregation and transport, and 
housekeeping functions were handled by tcsh scripts. 

Each instance of the executable required ≈ 300 Mbytes of core 
memory at run time.  In addition each instance required network 
transport of 10-15 Mbytes of file data including the mvrXS static 
image, the MEG data segments, data specific tables, and results 
files.  For each group of 3000 jobs, the MEG data segments were 
the same but accounted for ≈ 2/3 of the data transport demand. 
Since our jobs typically ran on only 5-20 facilities at a time, we 
were able to reduce this by using the http transportation layer 
provided by Condor which includes local file caching.   

The calculation of the referee consensus requires the 4 steps listed 
below.  In order to measure the gradient of the referee consensus, 
these were carried out 6 times, once for each point adjacent to the 
target location 1 mm along the x, y, and z axes.  Note that for the 
MEG problem, there are 2 linear variables for each source 
location.  

Figure 1.  A sample trial is shown.  The bar at the bottom is 4
sec long. The black arrows indicate stimuli.  The magenta arrows 
indicate responses to the preceding stimulus. The 2nd-5th word 
stimuli were triggered by a button press with the index finger.  If 
the test figure matched the sentence, the response was a button 
press with the index finger.  If not, the response was a button 
press with the middle finger. 

1. Compute 180 referee templates, 2 for each of 90 referee 
locations. 

                                                                 
4 Due to geometric and other physical constraints, magnetic fields 

produced near the center of the head are undetectable.  Efforts 
to measure them result in numeric instability in the 
computational algorithms. 



2. Compute the first eigenvector of the 180 templates.  This is 
the referee consensus template. 

3. Compute 180 referee metrics, 2 for each of the 90 referee 
locations. 

4. Sum the referee metrics to obtain the referee consensus. 
If there is, in fact, an MEG source present at a location, the two 
members of the corresponding pair are likely correlated with each 
other.  We can estimate the chance of getting 114 or more out of 
180 in the worst case, i.e. when they are perfectly correlated, by 
reducing the referee consensus by ½:  I.e. the chance of getting 57 
or more heads out of 90 flips of a fair coin is 0.007; the chance of 
doing so 6 times in a row is 0.0076 ≈ 10-12.  In addition the 
fairness of the “coin flips” is potentially compromised by 
correlations of the referees’ transfer functions.  Analysis of this 
potential bias is beyond the scope of this paper. 

To identify the starting point for the search of each ½ cm3 
volume, referee consensus was applied once to 34 points scattered 
evenly through the cubic volume.   A maximum of 6 steps guided 
by the gradient calculation was then allowed before terminating 
the search.  Other  efficiencies included applying laboriously 
generated tables piecemeal across time segments rather than 
storing their results or repeating them.  Together these reduced the 
computational load by a factor of 40 compared to an exhaustive 
grid search. 

3.   Results 

For each 80 msec time segment for each single trial, ≈500 active 
sources were found.  For each identified source, the xyz 
coordinates, the value of the referee consensus, the 80 point time 
series referee template, and the two components of the amplitude 
were recorded.  Figure 2 shows a typical distribution of values 
that were obtained for the referee consensus.   

The correlation was computed between all source pairs that 
occurred simultaneously as a function of the distance between the 
members of the pair.  Typical results from 3 subjects are shown in 
Figure 3.  The figure demonstrates that the method resolves 
sources as near as 2 mm apart. 

In order to test for task specific information in the virtual 
recordings, a two stage process was used.  The first stage enabled 
identification of a  restricted volume within which identified 
virtual recordings were used for further analysis.  This was 
needed to narrow the statistical testing to virtual recordings from 
a brain region that was likely involved in the task.  Otherwise a 
global search would have been required which would have caused 
an intractable multiple comparison problem.  

Stage I: A novel discriminant pattern source localization (DPSL) 
method [9] was applied to the MEG recordings. DPSL consists of 
two steps. (1) A classification algorithm is applied to find a 
spatial filter to distinguish different brain states. (2) The gain of 
the spatial filter is calculated for each voxel to reveal the locations 
of the task-related sources, i.e. the location(s) within the brain 
whose differential activation under the two conditions is most 
significant.   

Figure 3.  The correlation between all pairs of coincident source 
templates is shown as a function of distance between the sources 
from 1 mm to 10 cm.  The absolute value of the correlation was 
used in each case.  The variance in the measure across all pairs 
was ≈ 0.02.  These results demonstrate resolving power of 2 
mm. The results shown (3 subjects) were typical. 

  Classification accuracy was tested separately for 7 task relevant 
binary conditions, 8 frequency band estimates, and 24 time 
segments, i.e. 1344 tests.  The data acquired during the test figure 
presentations was used. The task relevant binary conditions were 
as follows: The test figure was (1) blue/green, (2) square/circle, 
(3) above/below the fixation point, (4) a match/mismatch to the 
sentence, (5) a match to the sentence preceded by a figure which 
was a match/mismatch, or (6) a mismatch preceded by a 
match/mismatch.  The frequency band estimates were obtained 
with wavelet filters for 0-15 hz, 15-30, 30-45, 45-60, 60-75, 75-
90, 90-105, and 105-120 hz.  Adjacent 32 msec time segments 
were used beginning 200 msec prior to stimulus onset. Figure 2.  The distribution of values of the referee consensus 

metric is nearly symmetric and  improves with both template 
length (40:red  80:black), reduced low pass filtering (150 
Hz:mauve  330 Hz: red), and with removal of line noise (blue) 
from the MEG prior to processing . The vertical bar at 114 out of 
180 for each of 6 tests has a nominal p < 10-12 (see text).   

For the subject whose results are shown in Figure 4, DPSL 
achieved significant classification accuracy in the 0-15 hz band 
for 2 conditions: (1) above/below (248 msec post stimulus) and 
(2) match preceded by match/mismatch (152 msec post stimulus) 
(Figure 4).  The gains for the 2 corresponding spatial filters were 
computed for voxels on a 24 mm cubic grid covering the brain.  
The single grid location with maximum gain for each 
classification was then used in stage II. 
Stage II:  Referee consensus optimization was used to extract 
virtual recordings.  The coordinates of each recording was stored 
along with the consensus template, the total power and the 
average amplitude of the recording.  Analysis of variance was 



used with a single binary factor, 3 covariates, and 26 dependent 
variables.  Separate tests were computed for the 2 task relevant 
binary conditions and 12 time segments, i.e. 24 tests.  The binary 
conditions were those identified in Phase I.  For each only virtual 
recordings were included that fell within 11 mm of the selected 
grid location.  80 msec time segments were used beginning 40 
msec prior to stimulus onset with each overlapping the previous 
by 40 msec.   

The covariates were (1) which block of 40 trials was being 
presented, i.e. 1 to 8, (2) the time of the onset of the test figure 
within the trial block, and (3) the square of the time of the test 
figure onset.  The 26 dependent variables were the total power 
and average amplitude of the recording and 24 frequency 
estimates of the template obtained with a Fourier transform.  
These latter were 12.5 hz wide running from 12.5 hz to 300 hz. 

For a match preceded by match/mismatch joint use of all the 
dependent variables achieved significance for several lags at  
p < 0.0001 (Figure 4).  There was no significant finding for any 
individual dependent variables on any of the tests. 

 
Figure 5.  Tonic activation of the retina during visual 
stimulation. Results are from 120 40 msec single trial epochs 
processed with referee consensus optimization.  Recordings were 
obtained 30-69 msec after test figure presentation.  Activation of 
the cerebellum is also seen.  Only the infra tentorial portion of 
the brain is shown.  Gray matter is not seen.  A 3D animation 
sequence may be found online at http://youtu.be/NStnmfCeZlQ .

4.   Discussion 

The referee consensus method is computationally expensive.  But 
that expenditure produces intracranial current measurements from 
single trial data that retain task specific information (Figure 4) 
and that distinguishes sources 1-2 millimeters apart (Figure 3). 

The referee consensus method utilizes linear filters as do all 
“source space” methods in current use for the MEG problem.  
And it uses a search as does equivalent current dipole source 
localization [1]. But in other ways it is quite different: (1) Rather 
than using a single filter with unit gain for a target location, 
1000+ pairs of filters are used for dummy (referee) locations, each 
with zero gain at or very near the target location. (2) To decide if 
there is a source at a target location, a probabilistic measure of 
goodness of fit is constructed from the output of 1000+ filter pairs 
for that target rather than using a measurement error metric [1] or 
a post-hoc test on the outputs of the filters for all of the targets 
[4,6,10].  (3) The time course of the activity at the target location 
results from a joint estimation procedure applied to the output of 
all 1000+ filter pairs rather than from the output of a single filter.   

Figure 4.  Task relevant information was found in single trial 
data with two methods  in sequence.  When the test figure 
matches the sentence the brain is differentially activated 
depending on whether the preceding test figure was a match or a 
mismatch.  The middle panel was obtained from MEG recordings 
using discriminant pattern source localization (DPSL). The lower
panel was obtained using MANCOVA from virtual recordings 
within 11 mm of a location guided by DPSL  .  The red arrows 
indicates the most significant DPSL result.  The MR slices (upper 
panel) are 6 mm apart. The referee consensus results shown in 
blue are for the  larger sphere (11 mm radius) centered at the grid 
location shown in the middle cut.  The results shown in red are 
for the smaller sphere (5 mm radius).  The 8 additional grid 
locations in the slices above and below (5 mm radii) were also 
tested. 

Referee selection is a critical element in this method.  Figure 6 
shows the transfer function of a difference filter, R!A’-R!A for 
one referee. The figure shows why this approach works and that it 
does not produce ideal filters, i.e. filters with gain 1.0 at the target 
and 0.0 everywhere else.  It seems likely that incremental but 
significant improvement could be gained by detailed analysis of 
referee selection.  Note that the results of any such analysis will 
differ for different problems, i.e. different nonlinear functions 
used to compute the elements of H.  Since the referee filter design 
requires at least one zero in each filters’ transfer functions, it is 

http://youtu.be/NStnmfCeZlQ


natural to consider beam space filter design [11] as an additional 
approach to improvement. 

The formulation presented here is for the “instantaneous” method.  
The presumption is that there is no delay between the action of a 
source and the resultant effect at the sensor.  There are numerous 
systems for which this is not the case, i.e. when there is a 
significant time lag between the action of a source and the 
resultant measurement.  For instance seismic tomography is a 
problem that deals with time lags of minutes or more since a 
shock  to the earth may be detected and localized using an array 
of accelerometers 1000’s of miles away.   

The general referee consensus model which is used to handle 
lagged relationships between sources and measurements is the set 
of equations which describe the causal relationship between the 
sequence of actions in time of many discrete sources and the 
resultant sequence in time of the measurements.  Each source is 
defined by 2 or more variables, 1 of which is called the 
amplitude5.  The key departure from the instantaneous version is 
that here the measurement and error vectors are sequences of 
measurements and errors over time and here the time course of 
each source amplitude is handled as a weighted sum of basis 
functions. 

The connectivity or functional connectome is such a problem 
since it deals with time lags of 1-100’s of msec.  For that we 
consider the virtual recordings extracted from MEG 
measurements at specific locations to be  due to (1) axial currents 
in nearby axon bundles due to passage of volleys of actions 
potentials and (2) population post synaptic currents in nearby gray 
matter due to the arrival of volleys of action potentials.  We plan 
to use High Definition Fiber Tractography [12] to identify fiber 
tracts and neural populations likely coupled to them.  The virtual 
recordings from sources found near these structures will be used 
as the measurements to determine the coupling strength of the 
neural populations to the fiber tract and the propagation 
times/velocities of the action potential volleys  

All variables, parameters, and matrices in the formalism presented 
here are over the real numbers only.  The key properties of these 
mathematical objects on which the formalism relies are (1) the 
existence of an inverse for any non-zero number and any non-
singular matrix and (2) distributivity of multiplication over 
addition.  These properties hold for the complex numbers, the 
quaternions, and the octonions, hence referee consensus 
optimization will likely work over these number systems.  
Thorough analysis of this assertion remains to be done.  

 
Figure 6.  Upper panel: Transfer functions are shown for the 
filter at a referee location, R!A, (blue) and a difference filter, 
R!A’-R!A (red).  Both were computed at points on a 1 mm grid 
in the axial plane 19  mm superior to the center of the head.  The 
corresponding MR slice is shown with referee (blue dot) and 
target (red dot) locations.  Middle panel: These histograms are 
for the same transfer functions.  The difference filter produces a 
preponderance of low gains and shows a simple relationship to 
the distance from the center of the head (upper right panel). 
Lower panel: The transfer function of the same difference filter is 
shown for the neighborhood of the target location, A (arrow). 
Note that the peak spans 2 points on the y-axis, A and A’. 
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5 In the more general formulation, more than 1 amplitude variable 

may be used for each source.  2 or 3 are used in the MEG 
problem. 



6.   References  

 [1] Sarvas J.  1987.  Basic mathematical and electromagnetic concepts 
of the biomagnetic inverse problem. Phys Med Biol 32(1): 11-22. 

7.   Appendix I 
[2] Hämäläinen MS, Ilmoniemi R., 1984.  Interpreting measured 
magnetic fields of the brain: Estimates of current distributions.  
Techical Report TKK-F-A559. 

Zeroes of the inverse solution for the instantaneous referee 
consensus system:  Suppose we have measurements, 

Jj bbbB 


1 , which contain a contribution from 

source d , i.e.: 

[3] Pascual-Marqui RD; Michel CM; Lehmann D. October 1994. 
Low-Resolution electromagnetic tomography – A new method for 
localizing electrical activity in the brain. Intl J Psychophys 18(1):49-
65. 



[4] Pascual-Marqui RD. 2002. Standardized low resolution brain 
electromagnetic tomography (sLORETA): technical details.  Methods 
& Findings in Experimental & Clinical Pharmacology 2002, 24D:5-
12.  URL last visited Dec 2010: 
http://www.uzh.ch/keyinst/NewLORETA/sLORETA/sLORETA.htm  

[5] Huang MX, Dale AM, Song T, Halgren E, Harrington DL, 
Podgorny I, Canive JM, Lewis S, Lee RR. 2006. Vector-based 
spatial–temporal minimum L1-norm solution for MEG NeuroImage 
31 1025 – 1037. 

[6] Huang MX, Theilmann RJ, Robb A, Angeles A, Nichols S, Drake 
A, D’Andrea J, Levy M, Holland M, Song T, Ge S, Hwang E, Yoo K, 
Cui L, Baker DG, Trauner D, Coimbra R,  Lee RR. August 2009. 
Integrated Imaging Approach with MEG and DTI to Detect Mild 
Traumatic Brain Injury in Military and Civilian Patients J 
Neurotrauma 26:1213–1226. 

[7] Krieger D, S Onodipe, PJ Charles, RJ Sclabassi. Real time signal 
processing in the clinical setting. Annals of Biomedical Engineering 
Vol 26: 462-472, 1998. 

[8] Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra 
J, Du Croz J, Greenbaum A, Hammarling S, McKenney A, Sorensen 
D. 22 Aug 1999. LAPACK Users’ Guide Release 3.0. 
http://www.netlib.org/lapack/lug/  (Last visited Dec2010). 

[9] Zhang J, G Sudre, X Li, W Wang, D Weber, A Bagic. Task-
related MEG source localization via discriminant analysis. 
Proceedings 33rd Intl. Conf. IEEE EMBS: 2351-2354, 2011. 

[10] Douglas Cheyne, Leyla Bakhtazad, and William Gaetz 2006. 
Spatiotemporal Mapping of Cortical Activity Accompanying 
Voluntary Movements Using an Event-Related Beamforming 
Approach. Human Brain Mapping 27:213–229. 

[11] Robinson SE, Vrba J 1999. Functional neuroimaging by 
synthetic  aperture magnetometry. In: Yoshimine T, Kotani M, 
Kuriki S, Karibe H, Nakasato N, editors. Recent Advances in 
Biomagnetism: Proceedings From the 11th International 
Conference on Biomagnetism. Sendai: Tokoku University Press. 
p 302–305. 

 [12] Verstynen T, Jarbo K, Pathak S, Schneider W. 2011 In vivo 
mapping of microstructural somatotopies in the human corticospinal 
pathways. J Neurophys 105(1): 336-346. 

 

 

 

 

 

k TB








J

j

b

b

b1

J

j











kkJ,

kkj,

kk1,

dh

dh

dh




1

s'.  The  are due to 

the contributions of all other source, known and unknown.  The 

inverse solution is   TTT B TΞBTD




HH

1-


 H . 

We expand TD


and substitute for TB


 in the inverse solution: 

Ξ


















K

k

d

d

d




1



























J

j







kkJ,

kkj,

kk1,

dh

dh

dh




1

Ξ   . 





















kkJ,

kkj,

kk1,

dh

dh

dh

























J

j










1

Ξ

Since is the column of   and 





















kkJ,

kkj,

kk1,

dh

dh

dh




thk H

  HΞH TT 




 HHH

1-
I , the identity, 

 Ξ , and  . 





















kkJ,

kkj,

kk1,

dh

dh

dh

























0

0




kd


























































J

j

Kd

d


















11

0

0

Ξdd kk

In other words, the only source for which the inverse solution 

includes a contribution from the measurements due to is .  

All others have a contribution from the measurements due 

to of . 
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