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Abstract—In multi-timestep Optimal Power Flow (OPF) for-
mulations, constraints that are time-dependent such as generator
ramp limits and specifically energy storage constraints may
cause the Jacobian matrix to become singular as the problem
iterates towards the optimal solution. The particular case of
this singularity happens when the gradients of the binding
intertemporal constraints are linearly dependent. Methods such
as using a Moore-Penrose pseudoinverse or modifying the models
used in the optimization are discussed along with novel methods
developed in this paper that avoid the singular Jacobian by
exploiting the specific structure of the problem and constraints.

I. INTRODUCTION

TERATIVE techniques based on the Newton-Raphson al-

gorithm are widely used to solve Optimal Power Flow
(OPF) and Economic Dispatch optimization problems. The
Jacobian matrix of the first order optimality conditions used
in each Newton-Raphson step is updated as the problem
iterates to optimality; however, as will be shown, in some
cases the Jacobian matrix is singular at optimality due to
specific binding intertemporal constraints. Numerically, this
can cause issues not only with inverting the Jacobian at
the optimal solution, but with inverting the Jacobian as the
problem becomes close to the optimal solution.

Through the Linear Independence Constraint Qualification
(LICQ) [1], we can examine how linearly dependent bind-
ing constraints cause the Jacobian to become singular. This
constraint qualification states that if a set of constraints are
binding at the optimal solution and their gradients are linearly
dependent, the resulting Lagrange multipliers corresponding to
those constraints could have multiple optimal solutions. Solv-
ing the set of linear equations that yield the Newton-Raphson
update is thus equivalent to solving an underdetermined set of
equations.

Previous work has been done in this area as well as closely
related areas. Singular Jacobian matrices in Newton-Raphson
based load flow calculations were found to be related to
situations near voltage collapse [2], [3], and the situations
when these cases occur have been analyzed further and so-
lution techniques have been developed [4]. Previous work
to avoid the Jacobian singularities caused by intertemporal
constraints is discussed in [5]. In this paper, we focus on
the Jacobian singularities in optimal power flow, caused by
the linear dependence of intertemporal constraints. Further
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solution techniques and analysis is extended from the solutions
in [5], which only provided a solution to certain singularities,
namely those occurring whenever a storage device is integrated
into a multi-timestep OPF problem and the optimal solution
is such that the energy level is at its minimum for multiple
time steps at the beginning of the optimization horizon. Here,
we provide a solution in the case when these time steps are
within the time horizon.

The outline of this paper is as follows: Section II defines
the problem formulation and notation that is used throughout
the paper. In Section III, the source of the singularity and
the relation of this singularity to the intertemporal constraints
is explained. In Section IV, techniques such as using the
Moore-Penrose pseudoinverse and modifying the models used
in the optimization are discussed along with techniques that
are developed in this paper. Section V shows simulation results
for AC multi-timestep Optimal Power Flow on the IEEE 14
bus test case system.

II. PROBLEM FORMULATION

In this section, the notation and formulation for the
economic dispatch optimization problem, intertemporal con-
straints, and KKT conditions are described.

A. Multi-Timestep Optimal Power Flow Problem

In this paper, we are optimizing an economic dispatch
objective with AC power flow constraints, wind energy acting
as a negative load, and energy storage. The objective function
aims to minimize the cost of generation from all generators
1 =1...M over a time horizon N:

N M
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subject to the power balance and generation constraints at each
bus, as well as the constraints on storage [6], [7]:

Pk(t) — PGk(t) + PLk(t) — PWk(t) —

Pznk(t) + Pout,k(t) - 07 (2)
Qr(t) — Qar(t) + Qrr(t) =0, 3)
T
Ek(t + T) - Ek (t) + ncT—Pin,k(t) - % out,k(t)a (4)
Emin S Ek(t-"T) S Ev’r‘ﬂ,am7 (5)
0<  Pux) < PR, (6)
0 S Pout,k(t) < ;Z?za (7)
0<  Pait) < P&™, (®)



with variables

Peoy - Active power generation at bus k
Qak : Reactive power generation at bus k
Py : Available wind at bus k
Pry: Active power consumption at bus k
Qrk : Reactive power consumption at bus k
Py : Active power injected into system at bus k
Q@ : Reactive power injected into system at bus k
P Power put into storage at bus &
Pout 1 : Power withdrawn from storage at bus k
Ey Energy level of storage device at bus k

and for t = 1...N and i = 1...M. P, and Q) represent the
power injections for the active and reactive power into the lines
connected to bus &, and wind is modeled as a negative load. In
Section III, the reason why this storage model, as well as other
intertemporal constraints, can cause Jacobian singularities will
be explained.

B. General Optimization Formulation

We will use the following notation for the general form of
a nonlinear optimization problem:

minimize  f(x)
=0, ©)
<o.

subject to  g(x)

h(z)

The Lagrangian function is thus formulated as follows:
L(z) = f(z) + Ag(x) + " h(z).

To solve the first order optimality conditions via Newton-
Raphson, the inequality constraints are transformed into equal-
ity constraints by introducing non-negative slack variables z:

Y
12)

(10)

h(z)+z = 0,
z > 0.
Thus, the first order optimality conditions, or the Karush-

Kuhn-Tucker (KKT) [8] conditions are given by the following
set of equations:

(,%E(:c*,z*,)\*,u*) = 0, (13)
g9(z") 0, (14)

hz*)+2* = 0, (15)

ezt = 0, (16)

we =0, (17)

>0, (18)

where the asterisk (*) denotes that that variable is at its
optimum. In the Optimal Power Flow problem, the equality
constraints g(x) correspond to the power balance and storage
constraints (2)-(4). The inequality constraints h(z) correspond
to the upper and lower bounds on the generation and storage
variables (5)-(8).

III. SOURCES OF SINGULARITIES

In this section we will first describe in general how the
Jacobian matrix of the first order optimality conditions (13)-
(18) becomes singular and then discuss the specific case of
how intertemporal constraints cause this issue to arise.

A. General Discussion

The Linear Independence Constraint Qualification (LICQ)
states that at the optimal solution, the gradients of all the
binding constraints (including equality constraints) must be
linearly independent or there exists no unique solution for the
Lagrange multipliers [1], [9]. The KKT conditions may be
fulfilled, but no unique solution for the Lagrange multipliers
corresponding to the dependent binding constraints exists.
An inequality constraint h;(z) is called “binding” if the
corresponding slack variable z; is zero at the optimum. The
consequence is that the Jacobian matrix for the first-order
optimality conditions becomes singular.

The Jacobian matrix, formed in the Newton-Raphson al-
gorithm for solving the KKT conditions, has the following
structure:

V2. L(x,2,\p) Vg(x)T Vh(x)" 0

Vy(z) 0 0 0
Vhi(z) 0 0 T (19)
0 0 diag{z} diag{p}

The consequences of having dependent binding gradients of
the constraints, i.e., having the LICQ unsatisfied, can be seen
by analyzing the following rows of the Jacobian:

Vg(z) 0 0 0
Vh(z) 0 0 1
0 0 diag{z} diag{u}
When the gradients of the constraints are linearly dependent
and the constraints are binding, the above rows are linearly
dependent. This is due to the fact that when a constraint ¢
is binding, z; = 0 and y; # 0. Thus, if Vg(z) and Vh(z)
are dependent when binding, this entire matrix block (20) will
have dependent rows.

In addition, because of the LICQ, a row of zeros could
also be created by the possibility that p; and z; could both
become zero. These are two ways how the matrix could
become singular due to the violation of LICQ. However, as
the following section will discuss, there are multiple ways
to modify the problem structure or preemptively prevent the
Jacobian from becoming singular.

(20)

B. Singularities Caused by Storage Constraints

The specific problem and solutions that are analyzed in this
paper are with regards to the storage model described in (4)-
(7). When it is optimal to keep the energy level at its minimum
or maximum for multiple consecutive time steps, the gradients
of the binding constraints become linearly dependent. This
is evident by recognizing that there will be more binding
constraints than variables. Consider the variable vector

z=[E() Pin(t) Pour(t) E(t+T)], @D



and the following constraints on storage:

T
Et+T)= E(t)+nTPn(t) — " out (1), (22)
d
E™" < B(t) < E™® (23)
Emin S E(f—f—T) S Emam, (24)
0<  Pnt) < PR, (25)
0<  Pou(t) < PR (26)

If the optimal solution is z* = [Epin 0 0 Epipnl, ice., the
storage is empty for two consecutive time steps, the matrix of
the gradients of the binding constraints (22)-(26) is as follows:

0 ---0 -1 —Tnc% 1 0 ---0
0 ---0 -1 0 0 0 0 ---0
0 ---0 0 0 0 —-10 ---0 (27)
0 ---0 0 -1 0 0 0 -0
0 ---0 0 0o -1 0 0 ---0

which has linearly dependent rows. Thus, the LICQ is not
fulfilled, and the Jacobian matrix will be singular.

IV. APPROACHES TO AVOID SINGULARITIES

There are a number of approaches to resolve the singular
Jacobian problem. The most optimal choice depends on the
desired balance between accuracy, ease of implementation,
and computational speed. In this section, various methods to
achieve this goal are compared and contrasted to solving a
linear system of equations of the form Ax = b. The formula
for Newton-Raphson with Jacobian matrix J and vector of
equations f at iteration k can be written in this form:

To follow the general and familiar form Az = b, the Jacobian
matrix J will be referred to as A as the following methods
are described.

(28)

A. Moore-Penrose Pseudoinverse

One key result from the analysis provided in this paper
shows that the Jacobian matrix is actually singular at the opti-
mal solution, and that there are multiple solutions that satisfy
the KKT conditions for optimality. That is, the Jacobian is not
singular because of a bad problem formulation, a Newton-
Raphson step that caused the matrix to be ill-conditioned,
or other numerical issues. Because of this fact, the Moore-
Penrose pseudoinverse (hereafter referred to as simply the
“pseudoinverse”) can be used to solve the underdetermined set
of equations. Because A is less than full-rank, the Jacobian
matrix A must be decomposed using the Singular Value
Decomposition (SVD):

A=UxVT, (29)

where U and V' are matrices with orthonormal columns, and
> is a diagonal matrix with singular values (square roots of
the eigenvalues of AT A) along its main diagonal; i.e., with

r nonzero singular values, X = diag(o1,...0,,0,...,0). For
a singular matrix, some of these values will be zero. The
“invertible” part of X, that is, the block matrix corresponding
to nonzero singular values, is inverted, and the pseudoinverse
AT is defined as [10]:

At =UuxtvT, (30)

where =+ = diag(o;*,...0;1,0,...,0). This AT is the same
pseudoinverse as given by the MATLAB command pinv.

The solution achieved by using this pseudoinverse is given
by:

zt = Atb, (31)

where this solution, =T, solves the underdetermined linear
least squares (minimum norm) problem, which finds the opti-
mum to:

minimize |EA]
x

subject to Az =b.

(32)

The optimal solution to this problem, that is, the minimum
norm solution, is z*. Since the system is underdetermined and
multiple solutions exist, at a solution z*, Az* = b. It can be
shown [11] that ™ = z* and thus using this pseudoinverse
to solve (28) will yield a solution to the KKT conditions; i.e.,
the solution is a local minimum fulfilling (13)-(18).

B. Storage Standby Losses

Another approach is to avoid the Jacobian becoming singu-
lar altogether. In the considered problem, this can be achieved
by introducing standby storage losses into equations (4)-(7).
There are two possible methods by which these losses could
be included:

i. Subtractive Standby Losses

A constant standby loss term e can be subtracted
from the energy balance equation to represent energy
losses from elapsed time rather than just including
charging/discharging losses. This loss could repre-
sent inertia losses from a flywheel or charge leakage
from a lithium-ion battery, for example. The new
storage formulation can be written as

Bt +T) = E(t) + T Pn(t) — = Pyus(t) — e1.
Nd (33)
Equations (5)-(7) in the model will stay the same.
This value is dependent on what storage technology
(battery, pumped hydro, flywheel, etc.) is included in
the model. This loss will prevent all of the intertem-
poral constraints related to this storage device to be
simultaneously binding. Consider the case where the
storage is at its minimum capacity at time ¢. Because
of the standby losses, at time ¢ + 7', the energy level
would dip below E,,;,, unless P;,(t), the power into
the storage, is nonzero; i.e., one of the previously
binding constraints is now non-binding. Similarly,



when the energy level E(t) is at its maximum,
E(t+T) cannot also be at its maximum in the next
time step unless P, (¢) # 0. Hence, because of the
standby losses, all of these storage constraints are
prevented from being simultaneously binding.

ii. Multiplicative Standby Losses

Depending on the storage technology, the losses can
also be modeled as a nonlinear, percentage loss:

Et+T)=enE(t) +n.TPy(t) — i out (t)-

EY

However, it is important to note that if the minimum

storage level E,,;, is zero, this model can still

result in simultaneously binding constraints. This

is because when E(t) = 0, and all other storage

constraints are binding (P, (t) = P,y (t) = 0), the

term ey F(t) will still be zero; i.e., the storage will

not need to feed in power to account for standby

losses and all of the storage constraints can become

binding. A solution to this problem is to enforce a

non-zero lower limit on the minimum energy level.

In both of the above methods for incorporating standby

losses, rare cases can occur that still result in Jacobian sin-

gularities. For example, if E(t) = Ein, Pin(t) = P,

P, (t) =0, and E(t+T) = E™; j.e., the storage is initially

empty and wants to charge at its maximum rate for the current

step. The value for the maximum charging rate must exactly

result in the storage being at F,,,, after the time interval 7.

In this case, standby losses do not help, and the constraints

(4) - (7) can all be binding. However, cases such as this are
rare and presumably will not be frequently encountered.

C. Constraint/Variable Removal as Intertemporal Constraints
Approach Binding

The third approach discussed in this paper to avoid singular
Jacobian matrices is to remove the rows that correspond to
linearly dependent constraints and solve the resulting linearly
independent system of equations. A priori, it is not known
which, if any, of the intertemporal equations will be binding.
By analyzing the structure of the Jacobian, however, we can
deduce that once these constraints become binding, they will
stay binding.

Analyzing the structure of (28), we see that the Newton-
Raphson step has the following form:

V2.L Vg(x)' Vh(z)T 0 Az Vi L
Vg(z) 0 0 0 AX| _ 9(z)
Vh(x) 0 0 I Ap|~ | h(z)+2
0 0 diag{z} diag{u} || Az diag{p} - =
For a particular slack variable z;, we see that:
Zi - Api + i - Az = i - 2. (35)

Assuming p; at the current step is nonzero, if z; = 0, then in
order for this equation to hold, Az; must be zero. Thus, z; will
not change during future iterations. This fact will be used to
identify the storage constraints which already become binding

at their optimum during the Newton-Raphson iterations. We
then use this to remove constraints to ensure that the Jacobian
matrix will not become singular as we continue the iterations.

To see the implications of a binding constraint in this
context, we can examine the KKT conditions relating to the
storage constraints. In the case of the storage being empty,
for example, we can examine the transformed inequality
constraints,

—E(t)+E™" +2 = 0, (36)
—Pi (t) +2, = 0 (37)
~Pou(t)+2, = 0, (38)

and see that if any of the slack variables are zero, it implies that
that variable is at its minimum. To ensure that these constraints
are satisfied when the slack variables become zero, a check
must also be done to determine if the variables P;,(t), and
P,u+(t) are at their minimum, and E(¢t + T) and E(¢) are
both at their minimum or both at their maximum as well.
Numerically, these variables may not actually reach exactly
zero, so the comparison for implementation purposes is done
with a small number e that is close to zero. For the rare case
when both p;(t) and z;(t) become zero at the same time,
the Jacobian will become singular because a row of zeros is
created. To avoid this case, certain measures can be taken such
as running the optimization from a different starting point or
using a smaller damping value on the Newton-Raphson step.
Overall, the steps to indicate whether or not to remove the
rows corresponding to the storage device constraints and actu-
ally remove corresponding rows and columns are as follows:
1) Determine if (|E(t) — Enin| or |E(t) — Emaz)), (E(t+
T) — Epin| or |[E(t + T) — Enazl), |Pin(t)], and
|Pout(t)| < €.

2) Determine if the slack variables z(t) corresponding to
the above variables are all less than e.

3) If 1) and 2) are true, remove the following elements of
the Jacobian:

a) The rows and columns in the V2 £ block that cor-
respond to the partial derivatives of E(t), P, (t),
and P,,+(t).

b) The rows and columns corresponding to the gradi-
ents of the binding storage constraints at time ¢.

¢) The rows and columns in diag{u} - z that include
wu(t) and z(t) for the corresponding inequality
constraints.

4) Replace instances of variables F(t), P;,,(t), and Py (t)
where they appear in the rest of the Jacobian matrix with
their optimal values.

5) Adjust the KKT conditions in the right-hand side vector
of the update to no longer include constraints (4)-
(7), partial derivatives of the Lagrangian with respect
to the storage variables, or complementary slackness
conditions diag{u(t)} - z(¢).

6) Repeat for each time instance considered in the op-
timization; i.e., for the entire problem time horizon



t=0,..,N—1.

7) Perform the Newton-Raphson step with the reduced
Jacobian and right-hand side vector.

D. Discussion of Methods

Depending on the application and purpose, some of these
methods may be more appropriate than others. For example,
using a Moore-Penrose pseudoinverse may be more compu-
tationally complex and require more computation time than
other methods. It also requires that either the rank or condition
number of the Jacobian is checked each iteration to determine
if the Jacobian is close to singular. Integrating storage standby
losses may not only fix the singularity of the Jacobian, but may
also provide a more realistic model of a storage device.

However, this does require a modification of the model,
and if the standby losses are too small, the matrix may
still be close to singular and numerically unstable. Also, in
some rare cases, even with standby losses, all of the storage
inequalities can still be binding, as discussed above. The
technique of removing the binding constraints/variables has
the benefit of reducing the size of the Jacobian matrix and
hence potentially reducing the number of computations per
Newton step; however, this method also has the downside
of deciding the tolerance parameter €. If the constraints are
removed prematurely and they actually are not binding at the
optimal solution, the KKT conditions may not be satisfied,
and if they are removed too late, the Jacobian may already be
close to singular, resulting in numerical issues.

V. SIMULATION RESULTS

In this section, results are shown for AC OPF simulations
on the IEEE 14 bus system [12]. Wind generators, modeled
as negative loads, have been added at buses 5 and 14, and a
storage device has been added at bus 5 as seen in Figure 1.
The objective is to minimize the quadratic cost of generation
from the generators at buses 1, 2, and 3. Simulations were
done over a period of 24 hours, with a 5-minute discretization
and prediction horizons N = 5 and N = 10. The receding
horizon concept is used, where the optimization is performed
over the time horizon N, variables are updated, and the time
window is shifted and the process is repeated.

The formulation of the KKT conditions in Section II was
modified to incorporate the Unlimited Point Algorithm [13],
which is a technique to ensure the non-negativeness of u
and z by raising these variables to an even power. In our
simulations, we have squared p and z where they appear in
the KKT conditions, keeping the complementary slackness
condition diag{u} - z = 0 the same, because it is equivalent
to diag{u*} - 22 = 0. The modified Jacobian is shown below:

Vg(z) 0 0 0
Vh(z) 0 0 2diag{z}
0 0

diag{z}  diag{u}
(39)

This does not change the singularity problem, as the dependent
binding constraints still result in these rows being linearly

dependent. Other methods to account for the positivity of
v and z, such as using an interior point or barrier method,
result in the same issues. Thus the given methods to fix the
singularities were explained for the general KKT conditions in
(13)-(18), but it is important to note that these singularities still
exist even when using the Unlimited Point or Interior Point
method. In the following simulations, we use the method of
removing the rows of the Jacobian which cause the singularity
issue.

Fig. 1.

Modified IEEE 14-bus System

Data for the wind and load curves were taken from the
Bonneville Power Administration [14]. One simulation output
for the energy level of the storage device over a 24-hour
period with N = 5 is seen in Figure 2. The storage device
has a minimum required capacity of 0.2p.u. and a maximum
capacity of 1.2p.u. The storage level for this horizon length
never reaches its maximum; however, with longer horizons, the
storage is utilized more and does reach its maximum value,
as seen in Figure 3. The storage is utilized to balance out
the intermittency of the wind generators in attempts to keep
controllable generators at a more constant level without having
to ramp up and down.
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Fig. 2. Storage Energy Level for N =5

For the cases of horizons N = 5 and N = 10, instances
where the constraints (4)-(7) were found to be simultaneously
binding for at least one time instance within the horizon and
constraints have been removed are identified with a ‘1’ in
Figures 4 and 5. This occurs whenever the storage level is
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at its maximum or minimum value for multiple consecutive
time steps. A binding constraint is indicated by using the
tolerance parameter ¢ = 1077, It is important to note that
one cannot simply look at Figures 2 and 3 to know when
constraints have been removed because these figures only show
the actual energy level in the storage, not the optimal output of
the prediction horizon considered in the original optimization
problem. At 161 out of 288 points in the simulation, one set
of storage constraints in the N = 5 horizon was found to
be binding. For N = 10, 129 time points in the simulation
had the case with dependent rows. Thus, it is a very common
occurrence in the considered problem setup.
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VI. CONCLUSION

This paper addresses the case of a singular Jacobian matrix
due to linearly dependent binding intertemporal constraints
in optimal power flow formulations and demonstrates that
the Jacobian matrix is actually rank-deficient at the optimal
solution. The specific case of the integration of storage devices
into an OPF problem was studied. It was shown that singular
Jacobian matrices can be avoided with a variety of techniques,
such as introducing standby losses that prevent all of the
relevant constraints from being simultaneously binding.

Alternatively, methods are discussed that do not require
modifying the structure of the storage model. One technique

is by using a Moore-Penrose pseudoinverse. Another tech-
nique considers analyzing the slack variables related to the
intertemporal constraints. When the relevant constraints are
simultaneously binding, as indicated by the slack variable
being zero, the rows and columns corresponding to these
constraints and related variables can be removed from the
Jacobian. This technique has the benefit of reducing the size
of the Jacobian so that the computation time for each iteration
could potentially decrease. Identifying the cause of Jacobian
singularities and knowing how to continue to solve the opti-
mization problem once the Jacobian has become singular are
two very important issues to be aware of when solving OPF
problems. As seen from the simulation results, this can be a
frequently encountered problem, especially when using certain
energy storage models.
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