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Abstract—In multi-timestep Optimal Power Flow (OPF) for-
mulations, constraints that are time-dependent such as generator
ramp limits and specifically energy storage constraints may
cause the Jacobian matrix to become singular as the problem
iterates towards the optimal solution. The particular case of
this singularity happens when the gradients of the binding
intertemporal constraints are linearly dependent. Methods such
as using a Moore-Penrose pseudoinverse or modifying the models
used in the optimization are discussed along with novel methods
developed in this paper that avoid the singular Jacobian by
exploiting the specific structure of the problem and constraints.

I. INTRODUCTION

ITERATIVE techniques based on the Newton-Raphson al-

gorithm are widely used to solve Optimal Power Flow

(OPF) and Economic Dispatch optimization problems. The

Jacobian matrix of the first order optimality conditions used

in each Newton-Raphson step is updated as the problem

iterates to optimality; however, as will be shown, in some

cases the Jacobian matrix is singular at optimality due to

specific binding intertemporal constraints. Numerically, this

can cause issues not only with inverting the Jacobian at

the optimal solution, but with inverting the Jacobian as the

problem becomes close to the optimal solution.

Through the Linear Independence Constraint Qualification

(LICQ) [1], we can examine how linearly dependent bind-

ing constraints cause the Jacobian to become singular. This

constraint qualification states that if a set of constraints are

binding at the optimal solution and their gradients are linearly

dependent, the resulting Lagrange multipliers corresponding to

those constraints could have multiple optimal solutions. Solv-

ing the set of linear equations that yield the Newton-Raphson

update is thus equivalent to solving an underdetermined set of

equations.

Previous work has been done in this area as well as closely

related areas. Singular Jacobian matrices in Newton-Raphson

based load flow calculations were found to be related to

situations near voltage collapse [2], [3], and the situations

when these cases occur have been analyzed further and so-

lution techniques have been developed [4]. Previous work

to avoid the Jacobian singularities caused by intertemporal

constraints is discussed in [5]. In this paper, we focus on

the Jacobian singularities in optimal power flow, caused by

the linear dependence of intertemporal constraints. Further
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solution techniques and analysis is extended from the solutions

in [5], which only provided a solution to certain singularities,

namely those occurring whenever a storage device is integrated

into a multi-timestep OPF problem and the optimal solution

is such that the energy level is at its minimum for multiple

time steps at the beginning of the optimization horizon. Here,

we provide a solution in the case when these time steps are

within the time horizon.

The outline of this paper is as follows: Section II defines

the problem formulation and notation that is used throughout

the paper. In Section III, the source of the singularity and

the relation of this singularity to the intertemporal constraints

is explained. In Section IV, techniques such as using the

Moore-Penrose pseudoinverse and modifying the models used

in the optimization are discussed along with techniques that

are developed in this paper. Section V shows simulation results

for AC multi-timestep Optimal Power Flow on the IEEE 14

bus test case system.

II. PROBLEM FORMULATION

In this section, the notation and formulation for the

economic dispatch optimization problem, intertemporal con-

straints, and KKT conditions are described.

A. Multi-Timestep Optimal Power Flow Problem

In this paper, we are optimizing an economic dispatch

objective with AC power flow constraints, wind energy acting

as a negative load, and energy storage. The objective function

aims to minimize the cost of generation from all generators

i = 1...M over a time horizon N :

f =

N
∑

t=1

(

M
∑

i=1

aiP
2
Gi
(t) + biPGi

(t) + ci

)

, (1)

subject to the power balance and generation constraints at each

bus, as well as the constraints on storage [6], [7]:

Pk(t)− PGk(t) + PLk(t)− PWk(t)−

Pin,k(t) + Pout,k(t) = 0, (2)

Qk(t)−QGk(t) +QLk(t) = 0, (3)

Ek(t+ T ) = Ek(t) + ηcTPin,k(t)−
T

ηd
Pout,k(t), (4)

Emin ≤ Ek(t+ T ) ≤ Emax, (5)

0 ≤ Pin,k(t) ≤ Pmax
in , (6)

0 ≤ Pout,k(t) ≤ Pmax
out , (7)

0 ≤ PGi(t) ≤ Pmax
Gi , (8)
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with variables

PGk : Active power generation at bus k

QGk : Reactive power generation at bus k

PWk : Available wind at bus k

PLk : Active power consumption at bus k

QLk : Reactive power consumption at bus k

Pk : Active power injected into system at bus k

Qk : Reactive power injected into system at bus k

Pin,k : Power put into storage at bus k

Pout,k : Power withdrawn from storage at bus k

Ek : Energy level of storage device at bus k

and for t = 1...N and i = 1...M . Pk and Qk represent the

power injections for the active and reactive power into the lines

connected to bus k, and wind is modeled as a negative load. In

Section III, the reason why this storage model, as well as other

intertemporal constraints, can cause Jacobian singularities will

be explained.

B. General Optimization Formulation

We will use the following notation for the general form of

a nonlinear optimization problem:

minimize
x

f(x)

subject to g(x) = 0,

h(x) ≤ 0.

(9)

The Lagrangian function is thus formulated as follows:

L(x) = f(x) + λT g(x) + µTh(x). (10)

To solve the first order optimality conditions via Newton-

Raphson, the inequality constraints are transformed into equal-

ity constraints by introducing non-negative slack variables z:

h(x) + z = 0, (11)

z ≥ 0. (12)

Thus, the first order optimality conditions, or the Karush-

Kuhn-Tucker (KKT) [8] conditions are given by the following

set of equations:

∂

∂x
L(x∗, z∗, λ∗, µ∗) = 0, (13)

g(x∗) = 0, (14)

h(x∗) + z∗ = 0, (15)

µ∗z∗ = 0, (16)

µ∗ ≥ 0, (17)

z∗ ≥ 0, (18)

where the asterisk (*) denotes that that variable is at its

optimum. In the Optimal Power Flow problem, the equality

constraints g(x) correspond to the power balance and storage

constraints (2)-(4). The inequality constraints h(x) correspond

to the upper and lower bounds on the generation and storage

variables (5)-(8).

III. SOURCES OF SINGULARITIES

In this section we will first describe in general how the

Jacobian matrix of the first order optimality conditions (13)-

(18) becomes singular and then discuss the specific case of

how intertemporal constraints cause this issue to arise.

A. General Discussion

The Linear Independence Constraint Qualification (LICQ)

states that at the optimal solution, the gradients of all the

binding constraints (including equality constraints) must be

linearly independent or there exists no unique solution for the

Lagrange multipliers [1], [9]. The KKT conditions may be

fulfilled, but no unique solution for the Lagrange multipliers

corresponding to the dependent binding constraints exists.

An inequality constraint hi(x) is called “binding” if the

corresponding slack variable zi is zero at the optimum. The

consequence is that the Jacobian matrix for the first-order

optimality conditions becomes singular.

The Jacobian matrix, formed in the Newton-Raphson al-

gorithm for solving the KKT conditions, has the following

structure:









∇2
xxL(x, z, λ, µ) ∇g(x)T ∇h(x)T 0

∇g(x) 0 0 0
∇h(x) 0 0 I

0 0 diag{z} diag{µ}









(19)

The consequences of having dependent binding gradients of

the constraints, i.e., having the LICQ unsatisfied, can be seen

by analyzing the following rows of the Jacobian:





∇g(x) 0 0 0
∇h(x) 0 0 I

0 0 diag{z} diag{µ}



 (20)

When the gradients of the constraints are linearly dependent

and the constraints are binding, the above rows are linearly

dependent. This is due to the fact that when a constraint i

is binding, zi = 0 and µi 6= 0. Thus, if ∇g(x) and ∇h(x)
are dependent when binding, this entire matrix block (20) will

have dependent rows.

In addition, because of the LICQ, a row of zeros could

also be created by the possibility that µi and zi could both

become zero. These are two ways how the matrix could

become singular due to the violation of LICQ. However, as

the following section will discuss, there are multiple ways

to modify the problem structure or preemptively prevent the

Jacobian from becoming singular.

B. Singularities Caused by Storage Constraints

The specific problem and solutions that are analyzed in this

paper are with regards to the storage model described in (4)-

(7). When it is optimal to keep the energy level at its minimum

or maximum for multiple consecutive time steps, the gradients

of the binding constraints become linearly dependent. This

is evident by recognizing that there will be more binding

constraints than variables. Consider the variable vector

x = [E(t) Pin(t) Pout(t) E(t+ T )], (21)



and the following constraints on storage:

E(t+ T ) = E(t) + ηcTPin(t)−
T

ηd
Pout(t), (22)

Emin ≤ E(t) ≤ Emax, (23)

Emin ≤ E(t+ T ) ≤ Emax, (24)

0 ≤ Pin(t) ≤ Pmax
in , (25)

0 ≤ Pout(t) ≤ Pmax
out . (26)

If the optimal solution is x∗ = [Emin 0 0 Emin], i.e., the

storage is empty for two consecutive time steps, the matrix of

the gradients of the binding constraints (22)-(26) is as follows:













0 · · · 0 −1 −Tηc
T
ηd

1 0 · · · 0

0 · · · 0 −1 0 0 0 0 · · · 0
0 · · · 0 0 0 0 − 1 0 · · · 0
0 · · · 0 0 −1 0 0 0 · · · 0
0 · · · 0 0 0 −1 0 0 · · · 0













(27)

which has linearly dependent rows. Thus, the LICQ is not

fulfilled, and the Jacobian matrix will be singular.

IV. APPROACHES TO AVOID SINGULARITIES

There are a number of approaches to resolve the singular

Jacobian problem. The most optimal choice depends on the

desired balance between accuracy, ease of implementation,

and computational speed. In this section, various methods to

achieve this goal are compared and contrasted to solving a

linear system of equations of the form Ax = b. The formula

for Newton-Raphson with Jacobian matrix J and vector of

equations f at iteration k can be written in this form:

J(xk) ·∆xk = −f(xk). (28)

To follow the general and familiar form Ax = b, the Jacobian

matrix J will be referred to as A as the following methods

are described.

A. Moore-Penrose Pseudoinverse

One key result from the analysis provided in this paper

shows that the Jacobian matrix is actually singular at the opti-

mal solution, and that there are multiple solutions that satisfy

the KKT conditions for optimality. That is, the Jacobian is not

singular because of a bad problem formulation, a Newton-

Raphson step that caused the matrix to be ill-conditioned,

or other numerical issues. Because of this fact, the Moore-

Penrose pseudoinverse (hereafter referred to as simply the

“pseudoinverse”) can be used to solve the underdetermined set

of equations. Because A is less than full-rank, the Jacobian

matrix A must be decomposed using the Singular Value

Decomposition (SVD):

A = UΣV T , (29)

where U and V are matrices with orthonormal columns, and

Σ is a diagonal matrix with singular values (square roots of

the eigenvalues of ATA) along its main diagonal; i.e., with

r nonzero singular values, Σ = diag(σ1, ...σr, 0, ..., 0). For

a singular matrix, some of these values will be zero. The

“invertible” part of Σ, that is, the block matrix corresponding

to nonzero singular values, is inverted, and the pseudoinverse

A+ is defined as [10]:

A+ = UΣ+V T , (30)

where Σ+ = diag(σ−1

1 , ...σ−1
r , 0, ..., 0). This A+ is the same

pseudoinverse as given by the MATLAB command pinv.

The solution achieved by using this pseudoinverse is given

by:

x+ = A+b, (31)

where this solution, x+, solves the underdetermined linear

least squares (minimum norm) problem, which finds the opti-

mum to:

minimize
x

‖x‖
2

subject to Ax = b.
(32)

The optimal solution to this problem, that is, the minimum

norm solution, is x∗. Since the system is underdetermined and

multiple solutions exist, at a solution x∗, Ax∗ = b. It can be

shown [11] that x+ = x∗ and thus using this pseudoinverse

to solve (28) will yield a solution to the KKT conditions; i.e.,

the solution is a local minimum fulfilling (13)-(18).

B. Storage Standby Losses

Another approach is to avoid the Jacobian becoming singu-

lar altogether. In the considered problem, this can be achieved

by introducing standby storage losses into equations (4)-(7).

There are two possible methods by which these losses could

be included:

i. Subtractive Standby Losses

A constant standby loss term ǫ can be subtracted

from the energy balance equation to represent energy

losses from elapsed time rather than just including

charging/discharging losses. This loss could repre-

sent inertia losses from a flywheel or charge leakage

from a lithium-ion battery, for example. The new

storage formulation can be written as

E(t+ T ) = E(t) + ηcTPin(t)−
T

ηd
Pout(t)− ǫL.

(33)

Equations (5)-(7) in the model will stay the same.

This value is dependent on what storage technology

(battery, pumped hydro, flywheel, etc.) is included in

the model. This loss will prevent all of the intertem-

poral constraints related to this storage device to be

simultaneously binding. Consider the case where the

storage is at its minimum capacity at time t. Because

of the standby losses, at time t+T , the energy level

would dip below Emin unless Pin(t), the power into

the storage, is nonzero; i.e., one of the previously

binding constraints is now non-binding. Similarly,



when the energy level E(t) is at its maximum,

E(t+ T ) cannot also be at its maximum in the next

time step unless Pin(t) 6= 0. Hence, because of the

standby losses, all of these storage constraints are

prevented from being simultaneously binding.

ii. Multiplicative Standby Losses

Depending on the storage technology, the losses can

also be modeled as a nonlinear, percentage loss:

E(t+ T ) = ǫNE(t) + ηcTPin(t)−
T

ηd
Pout(t).

(34)

However, it is important to note that if the minimum

storage level Emin is zero, this model can still

result in simultaneously binding constraints. This

is because when E(t) = 0, and all other storage

constraints are binding (Pin(t) = Pout(t) = 0), the

term ǫNE(t) will still be zero; i.e., the storage will

not need to feed in power to account for standby

losses and all of the storage constraints can become

binding. A solution to this problem is to enforce a

non-zero lower limit on the minimum energy level.

In both of the above methods for incorporating standby

losses, rare cases can occur that still result in Jacobian sin-

gularities. For example, if E(t) = Emin, Pin(t) = Pmax
in ,

Pout(t) = 0, and E(t+T ) = Emax; i.e., the storage is initially

empty and wants to charge at its maximum rate for the current

step. The value for the maximum charging rate must exactly

result in the storage being at Emax after the time interval T .

In this case, standby losses do not help, and the constraints

(4) - (7) can all be binding. However, cases such as this are

rare and presumably will not be frequently encountered.

C. Constraint/Variable Removal as Intertemporal Constraints

Approach Binding

The third approach discussed in this paper to avoid singular

Jacobian matrices is to remove the rows that correspond to

linearly dependent constraints and solve the resulting linearly

independent system of equations. A priori, it is not known

which, if any, of the intertemporal equations will be binding.

By analyzing the structure of the Jacobian, however, we can

deduce that once these constraints become binding, they will

stay binding.

Analyzing the structure of (28), we see that the Newton-

Raphson step has the following form:







∇2

xxL ∇g(x)T ∇h(x)T 0
∇g(x) 0 0 0
∇h(x) 0 0 I
0 0 diag{z} diag{µ}













∆x
∆λ
∆µ
∆z







=







∇xL
g(x)

h(x) + z
diag{µ} · z







For a particular slack variable zi, we see that:

zi ·∆µi + µi ·∆zi = µi · zi. (35)

Assuming µi at the current step is nonzero, if zi = 0, then in

order for this equation to hold, ∆zi must be zero. Thus, zi will

not change during future iterations. This fact will be used to

identify the storage constraints which already become binding

at their optimum during the Newton-Raphson iterations. We

then use this to remove constraints to ensure that the Jacobian

matrix will not become singular as we continue the iterations.

To see the implications of a binding constraint in this

context, we can examine the KKT conditions relating to the

storage constraints. In the case of the storage being empty,

for example, we can examine the transformed inequality

constraints,

−E(t) + Emin + zl = 0, (36)

−Pin(t) + zo = 0, (37)

−Pout(t) + zp = 0, (38)

and see that if any of the slack variables are zero, it implies that

that variable is at its minimum. To ensure that these constraints

are satisfied when the slack variables become zero, a check

must also be done to determine if the variables Pin(t), and

Pout(t) are at their minimum, and E(t + T ) and E(t) are

both at their minimum or both at their maximum as well.

Numerically, these variables may not actually reach exactly

zero, so the comparison for implementation purposes is done

with a small number ǫ that is close to zero. For the rare case

when both µi(t) and zi(t) become zero at the same time,

the Jacobian will become singular because a row of zeros is

created. To avoid this case, certain measures can be taken such

as running the optimization from a different starting point or

using a smaller damping value on the Newton-Raphson step.

Overall, the steps to indicate whether or not to remove the

rows corresponding to the storage device constraints and actu-

ally remove corresponding rows and columns are as follows:

1) Determine if (|E(t)−Emin| or |E(t)−Emax|), (|E(t+
T ) − Emin| or |E(t + T ) − Emax|), |Pin(t)|, and

|Pout(t)| < ǫ.

2) Determine if the slack variables z(t) corresponding to

the above variables are all less than ǫ.

3) If 1) and 2) are true, remove the following elements of

the Jacobian:

a) The rows and columns in the ∇2
xxL block that cor-

respond to the partial derivatives of E(t), Pin(t),
and Pout(t).

b) The rows and columns corresponding to the gradi-

ents of the binding storage constraints at time t.

c) The rows and columns in diag{µ} · z that include

µ(t) and z(t) for the corresponding inequality

constraints.

4) Replace instances of variables E(t), Pin(t), and Pout(t)
where they appear in the rest of the Jacobian matrix with

their optimal values.

5) Adjust the KKT conditions in the right-hand side vector

of the update to no longer include constraints (4)-

(7), partial derivatives of the Lagrangian with respect

to the storage variables, or complementary slackness

conditions diag{µ(t)} · z(t).

6) Repeat for each time instance considered in the op-

timization; i.e., for the entire problem time horizon



t = 0, ..., N − 1.

7) Perform the Newton-Raphson step with the reduced

Jacobian and right-hand side vector.

D. Discussion of Methods

Depending on the application and purpose, some of these

methods may be more appropriate than others. For example,

using a Moore-Penrose pseudoinverse may be more compu-

tationally complex and require more computation time than

other methods. It also requires that either the rank or condition

number of the Jacobian is checked each iteration to determine

if the Jacobian is close to singular. Integrating storage standby

losses may not only fix the singularity of the Jacobian, but may

also provide a more realistic model of a storage device.

However, this does require a modification of the model,

and if the standby losses are too small, the matrix may

still be close to singular and numerically unstable. Also, in

some rare cases, even with standby losses, all of the storage

inequalities can still be binding, as discussed above. The

technique of removing the binding constraints/variables has

the benefit of reducing the size of the Jacobian matrix and

hence potentially reducing the number of computations per

Newton step; however, this method also has the downside

of deciding the tolerance parameter ǫ. If the constraints are

removed prematurely and they actually are not binding at the

optimal solution, the KKT conditions may not be satisfied,

and if they are removed too late, the Jacobian may already be

close to singular, resulting in numerical issues.

V. SIMULATION RESULTS

In this section, results are shown for AC OPF simulations

on the IEEE 14 bus system [12]. Wind generators, modeled

as negative loads, have been added at buses 5 and 14, and a

storage device has been added at bus 5 as seen in Figure 1.

The objective is to minimize the quadratic cost of generation

from the generators at buses 1, 2, and 3. Simulations were

done over a period of 24 hours, with a 5-minute discretization

and prediction horizons N = 5 and N = 10. The receding

horizon concept is used, where the optimization is performed

over the time horizon N , variables are updated, and the time

window is shifted and the process is repeated.

The formulation of the KKT conditions in Section II was

modified to incorporate the Unlimited Point Algorithm [13],

which is a technique to ensure the non-negativeness of µ

and z by raising these variables to an even power. In our

simulations, we have squared µ and z where they appear in

the KKT conditions, keeping the complementary slackness

condition diag{µ} · z = 0 the same, because it is equivalent

to diag{µ2} · z2 = 0. The modified Jacobian is shown below:









∇2
xxL(x, z, λ, µ) ∇g(x)T 2∇h(x)T · diag{µ} 0

∇g(x) 0 0 0
∇h(x) 0 0 2diag{z}
0 0 diag{z} diag{µ}









(39)

This does not change the singularity problem, as the dependent

binding constraints still result in these rows being linearly

dependent. Other methods to account for the positivity of

µ and z, such as using an interior point or barrier method,

result in the same issues. Thus the given methods to fix the

singularities were explained for the general KKT conditions in

(13)-(18), but it is important to note that these singularities still

exist even when using the Unlimited Point or Interior Point

method. In the following simulations, we use the method of

removing the rows of the Jacobian which cause the singularity

issue.

Fig. 1. Modified IEEE 14-bus System

Data for the wind and load curves were taken from the

Bonneville Power Administration [14]. One simulation output

for the energy level of the storage device over a 24-hour

period with N = 5 is seen in Figure 2. The storage device

has a minimum required capacity of 0.2p.u. and a maximum

capacity of 1.2p.u. The storage level for this horizon length

never reaches its maximum; however, with longer horizons, the

storage is utilized more and does reach its maximum value,

as seen in Figure 3. The storage is utilized to balance out

the intermittency of the wind generators in attempts to keep

controllable generators at a more constant level without having

to ramp up and down.
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Fig. 2. Storage Energy Level for N = 5

For the cases of horizons N = 5 and N = 10, instances

where the constraints (4)-(7) were found to be simultaneously

binding for at least one time instance within the horizon and

constraints have been removed are identified with a ‘1’ in

Figures 4 and 5. This occurs whenever the storage level is
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Fig. 3. Storage Energy Level for N = 10

at its maximum or minimum value for multiple consecutive

time steps. A binding constraint is indicated by using the

tolerance parameter ǫ = 10−9. It is important to note that

one cannot simply look at Figures 2 and 3 to know when

constraints have been removed because these figures only show

the actual energy level in the storage, not the optimal output of

the prediction horizon considered in the original optimization

problem. At 161 out of 288 points in the simulation, one set

of storage constraints in the N = 5 horizon was found to

be binding. For N = 10, 129 time points in the simulation

had the case with dependent rows. Thus, it is a very common

occurrence in the considered problem setup.
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VI. CONCLUSION

This paper addresses the case of a singular Jacobian matrix

due to linearly dependent binding intertemporal constraints

in optimal power flow formulations and demonstrates that

the Jacobian matrix is actually rank-deficient at the optimal

solution. The specific case of the integration of storage devices

into an OPF problem was studied. It was shown that singular

Jacobian matrices can be avoided with a variety of techniques,

such as introducing standby losses that prevent all of the

relevant constraints from being simultaneously binding.

Alternatively, methods are discussed that do not require

modifying the structure of the storage model. One technique

is by using a Moore-Penrose pseudoinverse. Another tech-

nique considers analyzing the slack variables related to the

intertemporal constraints. When the relevant constraints are

simultaneously binding, as indicated by the slack variable

being zero, the rows and columns corresponding to these

constraints and related variables can be removed from the

Jacobian. This technique has the benefit of reducing the size

of the Jacobian so that the computation time for each iteration

could potentially decrease. Identifying the cause of Jacobian

singularities and knowing how to continue to solve the opti-

mization problem once the Jacobian has become singular are

two very important issues to be aware of when solving OPF

problems. As seen from the simulation results, this can be a

frequently encountered problem, especially when using certain

energy storage models.
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