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Abstract—The discovery of patterns and correlations hidden in the test

data could help reduce test time and cost. In this paper, we propose a

methodology and supporting statistical regression tools that can exploit

and utilize both spatial and inter-test-item correlations in the test data
for test time and cost reduction. We first describe a statistical regression

method, called group lasso, which can identify inter-test-item correlations

from test data. After learning such correlations, some test items can be
identified for removal from the test program without compromising test

quality. An extended version of this method, weighted group lasso, allows

taking into account the distinct test time/cost of each individual test item

in the formulation as a weighted optimization problem. As a result, its
solution would favor more costly test items for removal from the test

program.

We further integrate weighted group lasso with another statistical

regression technique, virtual probe, which can learn spatial correlations

of test data across a wafer. The integrated method could then utilize both
spatial and inter-test-item correlations to maximize the number of test

items whose values can be predicted without measurement. Experimental

results of a high-volume industrial device show that utilizing both spatial

and inter-test-item correlations can help reduce test time by up to 55%.

I. INTRODUCTION

As systematic and variation-induced failures become increasingly

common, more types of tests are needed in testing, and each type of

the tests must be applied multiple times to cover different process

and design corners for product quality assurance. As a result, the

number of test items has grown significantly, resulting in excessive

test time and a huge amount of test data.

On the other hand, it is often observed that there exist meaningful

patterns in test data. By exploring the hidden patterns and correlations

in the test data, test data analytics has a wide range of applications

such as reducing test time, predicting test quality, identifying outliers

for diagnosis, discovering weak links in the manufacturing process,

and improving the robustness of the design.

Within the scope of test data analytics for test cost reduction

and test quality improvement, several methods have been proposed.

In [1], the authors proposed an adaptive approach for multi-site

testing which exploits device-to-device correlations and neighborhood

statistics. A spatial correlation model was proposed in [2], [3] for

modeling spatially distributed characteristics of variability. In [4],

[5], the authors introduced statistical and machine learning based

methods which predict the pass/fail of a set of test items for test

compaction. The alternate test framework was proposed in [6]–[11]

and was used to predict circuit performance values based on a set of

strongly correlated signature values captured from simpler test setups.

In [12], [13], adaptive schemes were developed for effective test

item ordering, with which re-ordered tests can detect failures earlier,

benefiting stop-on-fail test programs. In [14], [15], test data were

analyzed to detect outliers. An adaptive test flow was proposed

in [16] that adjusts the test process to devote more test resources

to marginal devices and less resources to passing devices with

large margins. In [17], an adaptive test scheme was proposed to

dynamically control the test flows and test contents on-tester in real-

time through continuous per-die updates of test fail rate.

It is well known that, for some test items, there exist spatial corre-

lations among dies on the same wafer. There also exist correlations

among multiple measurements taken from the same chip (i.e. inter-

test-item correlations). Identifying these two types of correlations

from the test data has several known applications.

For spatial interpolation, a scheme called virtual probe (VP), based

on recent breakthroughs in compressive sensing, is proposed in [18]–

[21]. Another method using Gaussian process models was introduced

to extrapolate a function over the Gaussian random field based on a

small set of data observations [22]. Targeting the same problem, the

two schemes use fundamentally distinct statistical algorithms. Both

of them can capture the spatial correlation across the wafer for a

test item under consideration by making measurements for only a

randomly sampled fraction of dies on a wafer.

Known applications in production testing that utilize the inter-

test-item correlations include: an early work that used a Monte

Carlo based approach to analyze the joint probability distributions

of test items for constructing a regression model of the untested

performances [23], reordering the test items to screen out faulty dies

earlier [13], and predicting passed test items to optimize the test set

accordingly [16], [17], [24].

Test data analytics can help reduce both test time and test cost. In

general, test time and test cost are highly correlated due to the high

capital cost and operating expenses of test equipment. For simplicity

and consistency, in the rest of this paper we refer to such methods

which can reduce both test time and test cost as test time reduction

(TTR) methods.

In this paper, we propose a method based on a statistical regression

technique called group lasso (GL) [25], [26] to capture the corre-

lations among test items using the test data of training chips. Not

only identifying correlated parametric test items in any given test

program, this method could also find correlations between test items

in different test phases, such as wafer probe tests and package tests.

The correlated test items can be removed from explicit testing and

their values can be predicted by the measured values of other test

items of the same chip. If the die IDs are traceable, such identified

correlations can be used to reduce test time by removing those nearly

redundant package test items.

Different test items often incur different amounts of test time and

cost. For test cost reduction, it is preferable to predict more costly test

items if such options exist. We then extend GL and reformulate the

optimization problem to allow factoring in the distinct test times/costs

of individual test items. As a result, the extended method, named

weighted group lasso (WGL), tends to find a solution where more

expensive test items are more favored than less expensive ones as

candidates for removal from the test program.

Finally, we integrate both VP and WGL techniques to enable
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utilization of both spatial and inter-test-item correlations for test

time/cost reduction. For the integrated method, we can run VP

first to identify items that can be predicted without measurement

(referred to as VP-predictable items) based on spatial correlations. It

is then followed by running WGL for which those VP-predictable

items are assigned a small weight and the other test items (i.e.

spatially unpredictable items) are assigned a large weight. With

such assignments, WGL, which identifies additional predictable items

based on inter-test-item correlations, will find predicable items mainly

from the pool of spatially unpredictable test items, thus maximizing

the union of the predicable items derived from the spatial and inter-

test-item correlations.

The proposed method offers the flexibility of exploring the trade-

off between the number of removed test items and the prediction

accuracy. We propose to use two predictability criteria, the bound of

relative prediction error and the margin from the specification limits,

to control the training process. We conducted experiments on a high

volume industrial device and identified 47% of the test items to be

candidates for sampling or elimination from the test list, out of 338

parametric test items, with a potential test time savings of 55% given

our test time assumptions.

The rest of the paper is organized as the following. Section II

gives an overview of the VP technique. Section III describes the GL

method for learning inter-test-item correlations. Section IV shows

WGL which allows assigning different weights to different test items

in the formulations, and illustrates how to use WGL for integrating

the VP method. Section V discusses the criteria for classifying test

items as predictable or not and the flow of our proposed methodology.

Section VI provides experimental results, and Section VII concludes

the paper.

II. BACKGROUND: VIRTUAL PROBE

This section describes a statistical regression method, virtual probe,

in more detail as it is integrated into our proposed methodology. The

essence of VP is to test only a subset of dies at selected locations on a

wafer, transform the measurements into spatial frequency domain, and

use a statistical algorithm to accurately recover the test values of the

remaining dies [18]–[21]. Fig. 1 shows the concept of applying VP to

a test item of an industrial product. In this example, the spatial model

constructed from 10% randomly sampled dies accurately predict the

test values of the remaining 90% dies on the same wafer.

Fig. 1: Measured values, sampled values, and VP-predicted values of

a test item from an industrial product. The different colors represent

different test values.

The mathematical background of VP is briefly introduced as the

following. Let {g(x, y); x = 1, 2, . . . , P, y = 1, 2, . . . , Q} be

a performance metric of the die at coordinate (x, y) on a size of

P × Q wafer. The spatial variations of g(x, y) can be represented

by a two-dimensional linear transform in the frequency domain. In

VP, the discrete cosine transform (DCT) is chosen for the transform.

Let {G(u, v); u = 1, 2, . . . , P, v = 1, 2, . . . , Q} be the DCT

coefficients after the transform, i.e., the coefficients of different

frequencies in the spatial pattern.

The purpose of VP is to accurately recover g(x, y) from a small

number, M , of dies at the locations {(xm, ym; m = 1, 2, . . . ,M},

where M ≪ PQ. Toward this goal, the following linear equation is

formulated:

A · η = B (1)

where

A =











A1,1,1 A1,1,2 · · · A1,P,Q

A2,1,1 A2,1,2 · · · A2,P,Q

...
...

. . .
...

AM,1,1 AM,1,2 · · · AM,P,Q











(2)

Am,u,v = αu · βv · cos
π(2xm − 1)(u− 1)

2P

· cos
π(2ym − 1)(v − 1)

2Q

(3)

η = [G(1, 1) · · · G(P,Q)]T (4)

B = [g(x1, y1) · · · g(xM , yM )]T (5)

Once η is determined by solving (1), the metric values g(x, y) can

be recovered by the inverse discrete cosine transform (IDCT).

It is, however, not trivial to solve (1). Since M ≪ PQ, i.e.,

the number of equations is significantly less than the number of

unknowns, (1) is profoundly underdetermined. The solution of η is

therefore not unique and additional constraints are required. To obtain

a unique solution of η, VP assumes η to be sparse [18]. That is, most

of the DCT coefficients are close to zero, though the locations of the

zeros are unknown. We can use maximum posterior estimation (MAP)

to statistically solve (1) by reformulating it to

minimize
η

‖η‖1

subject to A · η = B
(6)

where ‖η‖1 stands for the L1-norm of η. Equation (6) can be solved

efficiently with linear programming [18].

The generated sparse solution finds the sparsest set of coefficients

in the frequency domain that accurately picture the spatial pattern

of the sampled dies. The sampled dies, however, are only a very

small portion of all the dies on a wafer. Therefore the spatial pattern

reconstructed from the sampled dies may not be sufficient if the

measurement data exhibit a more random distribution. In other words,

if the assumption of sparsity is not valid for a certain test item, finding

the sparse solution is not sufficient to recover the spatial pattern of the

test item. In [19], a test item was categorized as highly-predictable,

predictable, and unpredictable in a pre-test analysis phase based on

the number of samples required by VP for the test item to reconstruct

the spatial pattern within a certain error bound.

To improve prediction accuracy, the random sampling scheme

in VP was modified to iteratively sample the optimal location in

Bayesian virtual probe [20]. The correlations among different wafers

within the same lot were utilized to further reduce the number of

sampled dies on each wafer without compromising the prediction

accuracy in multi-wafer virtual probe [21].

III. INTER-TEST-ITEM CORRELATIONS

There exist correlations among the measurement data for different

test items taken from the same chip. One goal of our methodology

is to learn such inter-test-item correlations from the test data of a

set of training chips. Specifically, the objective is to identify the test
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items whose values can be predicted as a linear combination of the

measured values of other test items of the same chip.

In this paper, we focus on parametric test item only, for which

the test value of the chip-under-test is a real number. In the first

subsection, we define the inter-test-item correlation and how to model

it. In the second subsection, we discuss the use of the correlation for

identifying predictable test items whose values can be predicted by

the values of other test items of the same chip. Finally, we show the

statistical regression method that can efficiently find such predictable

test items.

A. Inter-Test-Item Correlation Model

A first-order linear correlation may exist among test items. If

such a correlation exists, we can predict the values of some test

items, without actual measurement, using linear combinations of the

measured values of other test items. If no such correlation exists,

all test items must be physically measured. We use the following

equation to define the inter-test-item correlation for one test item:

f̂k =

n
∑

i=1

αkifi + Ck (7)

where f̂k, a vector, denotes the predicted values of the target (the kth

test item) for a set of chips, fi, a vector too, denotes the measured

values of the ith test item of the same set of chips, n is the number

of test items, and Ck is an offset constant. An element in fi and

f̂k represents the predicted or measured value of a chip and the

dimension of these vectors is the number of chips in the set. We

assume that the statistical characteristics, such as the correlation, are

stationary (i.e., not varying) over all chips.

The vector of measured values of the kth test item, fk, is also

included in the right hand side of (7). If f̂k is predictable based on

the measured values of other test items, there exists an appropriate

value for every αki, i 6= k, to form the model in (7) where αkk is

equal to zero. On the other hand, if f̂k is unpredictable, one trivial

solution is that all α’s except αkk are zero and αkk is equal to one.

If n test items are considered at the same time, the correlations are

represented by a set of linear equations, i.e., n equations of (7) for

k = 1, 2, · · · , n. Without loss of generality, we normalize each test

item to be zero mean and unit variance. As a result, the correlation

model can be represented as:



















































F̂1 =

n
∑

i=1

α1iFi

F̂2 =

n
∑

i=1

α2iFi

...

F̂n =

n
∑

i=1

αniFi

(8)

where F̂i and Fi denote the normalized predicted values and the

normalized measured values for the ith test items, respectively. Note

that we no longer need C for this normalized version. Assuming that

we derive this correlation based on d chips, these n vector equations

correspond to a total of nd scalar equations.

The inter-test-item correlation model can therefore be encoded by

a matrix formed by all α’s in (8) as shown below.










α11 α12 · · · α1n

α21 α22 · · · α2n

...
...

. . .
...

αn1 αn2 · · · αnn











(9)

This model uses n2 variables (αij for i, j = 1, 2, · · · , n) to represent

the correlations. Note that (9), representing the correlations derived

from (8), is different from the traditional correlation matrix defined

in statistics for the test items in which the (i, j) element represents

corr(Fi,Fj). Given the measured test data of n test items of d chips,

we can use several regression and learning methods to derive the

matrix in (9). We will introduce an efficient way of solving this

problem in the following subsections. An exemplar solution is the

identity matrix where each test item is correlated to itself only.

B. Candidate Test Items for Removal From Test Program

Based on (7), a zero coefficient indicates that measurement of the

corresponding test item is not needed for deriving the target item’s

value. For example, if αk1 = 0 and k = 1 in (7), we can predict the

first test item (f̂1) without relying on the actual measurement of the

same item (f1). Considering all prediction equations simultaneously,

if all coefficients corresponding to a test item are all zero, we can

eliminate the test item from the test program for actual measurement.

For example, referring to (8), if the following condition is true,

∀i ∋ N ∧ 1 ≤ i ≤ n, αi1 = 0 (10)

we can conclude that every test item, including the first test item

itself, can be derived without relying on actual measurement of the

first test item (f1 or F1). Test item one is then a candidate for removal

from the test program. In the following, we refer to such a test item

as a candidate test item. The general condition for a candidate test

item is:

∀i ∋ N ∧ 1 ≤ i ≤ n, αik = 0 ⇒ item k is a candidate. (11)

In the correlation matrix (9), a column of zeros indicates that

the corresponding test item is a candidate. Consider the following

example:












1 0 0 0 0
0.2 0 0.5 0 0.1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1













(12)

The second test item is a candidate because the second column is all

zeros. Besides, no other candidate test item exists and we need to

explicitly test each of them.

C. The Group Lasso Regression Problem

According to the model definition described in the previous sub-

section, we can formulate the problem of finding the correlation

matrix (9) as a minimization problem which attempts to minimize

the difference between predicted values and measured values. The

minimization problem for finding a correlation model is formulated

as:

argmin
α

n
∑

i=1

∥

∥

∥
Fi − F̂i

∥

∥

∥

2

2

(13)

which is equivalent to

argmin
α

n
∑

i=1

∥

∥

∥

∥

∥

Fi −
n
∑

j=1

αijFj

∥

∥

∥

∥

∥

2

2

(14)
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where ‖ · ‖2 denotes the L2 norm.

For many regression applications, it is often desirable to find

a sparse solution of (14) that has as many zero coefficients as

possible. The lasso (least absolute shrinkage and selection operator)

method [25] was designed to find sparse solutions by adding an L1

norm penalty to (13), resulting in a revised minimization problem as

follows:

argmin
α

n
∑

i=1

∥

∥

∥Fi − F̂i

∥

∥

∥

2

2

+ λ∗

n
∑

i=1

n
∑

j=1

|αij | (15)

where λ∗ is a penalty parameter to control the trade-off between

prediction error and the sum of all absolute values of alphas. In

lasso, increasing λ∗ forces more coefficients in correlation matrix

to approach zero.

However, minimizing the number of nonzero coefficients in the

correlation matrix does not address our goal of maximizing the

number of candidates, i.e., maximizing the number of test items

meeting Condition (11). We therefore introduce group lasso (GL) [26]

which attempts to find a sparse solution which maximizes the number

of columns with all near-zero entries in the solution matrix. The main

idea of GL is to group coefficients corresponding to the same test

item together and revise the minimization problem as follows:

argmin
α

n
∑

i=1

∥

∥

∥
Fi − F̂i

∥

∥

∥

2

2

subject to λ ≥

n
∑

g=1

√

√

√

√

n
∑

i=1

α2

ig

(16)

The term
√

∑n

i=1
α2

ig combines all coefficients in the gth column of

the correlation model (9) together to form a group. As λ decreases,

GL attempts to find a solution with nonzero groups instead of just

nonzero coefficients.

D. The SOCP Problem

Because of the quadratic terms in the optimization problem (16),

we reformulate it as a second-order cone programming (SOCP)

problem that can be solved efficiently by interior point methods [27].

The reformulated problem becomes:

minimize
α,u

T

subject to

T ≥

√

‖u1‖
2

2
+ · · ·+ ‖un‖

2

2

gi ≥
√

α2

1i + α2

2i + · · ·+ α2

ni , 1 ≤ i ≤ n

ui = Fi − F̂i , 1 ≤ i ≤ n

λ = g1 + g2 + · · ·+ gn

(17)

where ui denotes the difference between predicted and measured

values. All Fi, F̂i, and ui are vectors with d dimensions. In general,

a smaller λ would more likely result in a sparser solution, i.e., more

near-all-zero columns in the correlation matrix (equivalent to having

more candidate test items).

IV. FURTHER OPTIMIZATION FOR TEST TIME REDUCTION

In the previous two sections, we described two TTR methods,

VP and GL, which target spatial and inter-test-item correlations,

respectively. However, neither method can address the following

issues:

1) Taking into account the distinct time of each individual test

item for overall test time reduction. Different test items incur

different test times. In finding predictable test items by TTR

methods, it is preferred that the more costly test items are

predicted because they contribute more to the total test time.

Reflecting different test times of test items requires a scheme to

assign different significance to differentiate test items. In GL, the

measurements of all test items are included in the minimization

equation (16), and the relative significance does influence the

solution. Hence GL could in some way address the different

test times of test items in (16). This problem also includes how

to map the practical test times to reasonable parameters so the

generated result is most improved in terms of TTR.

2) Considering both spatial and inter-test-item correlations in test

data for overall test time reduction. As spatial patterns and inter-

test-item correlations are two independent approaches, many

TTR methods have been proposed targeting either of the two.

It is natural to ask if there is a way to utilize both correlations

simultaneously and expand the dimensions of test data analytics.

For instance, having different sets of predictable test items from

VP and GL, we want to maximize the union of the two sets so

that we find the largest number of predictable test items. If a

test item has been identified as predictable in one method, the

other method should tend to predict the other test items instead

of the one already predicted by the first method.

In the following, we propose weighted group lasso (WGL), an

extension of GL, which could successfully address both issues

mentioned above.

A. Weighted Group Lasso

In solving the optimization problem (16), GL treats every item

equally and tends to find a solution with a maximum number of

predictable test items. However, as different test items incur different

test times, maximizing the number of predictable test items does not

necessarily maximize the reduction of test time.

WGL, whose basic formulation is similar to that of GL, is

expressed as follows:

argmin
α

n
∑

i=1

∥

∥

∥
Fi − F̂i

∥

∥

∥

2

2

subject to λ ≥

n
∑

g=1

wg

√

√

√

√

n
∑

i=1

α2

ig

(18)

where wg denotes the weight of the gth test item (the gth group).

A weight for the corresponding test item is therefore incorporated to

reflect its actual test time. In the SOCP form, WGL is formulated as

follows:

minimize
α,u

T

subject to

T ≥

√

‖u1‖
2

2
+ · · ·+ ‖un‖

2

2

gi ≥
√

α2

1i + α2

2i + · · ·+ α2

ni , 1 ≤ i ≤ n

ui = Fi − F̂i , 1 ≤ i ≤ n

λ = w1g1 + w2g2 + · · ·+ wngn

(19)

Groups of α’s with a larger weight will be more dominant in the

constraint in (18) than the groups with a smaller weight. Therefore,

WGL tends to find a solution that minimize the values of α’s for

heavier-weight groups. This results in a higher probability that a

group with larger weight would have more near-zero α’s, i.e., the

corresponding item has a higher probability to be a candidate test

item for removal from the test program.
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B. Determining The Weight of A Test Item

In the following we discuss issues of assigning an appropriate

weight for a test item in the WGL problem.

1) Reflecting Item’s Test Time: Directly using the test time of the

ith item as the weight wi in (18) or (19) might lead to impractical

solutions. For example, having groups with a very large weight in the

constraint in (18) might cause undesired dominance of the constraint

(which reflects the sparsity of the correlation matrix) over the cost

function for minimization (which reflects the prediction error) as the

optimization target. As a result, the solution might have unacceptably

high prediction error or find very few predictable test items.

In our methodology, we use the normalized test times as the

weights in WGL. For instance, assuming that we have n test items

and their test times are t1, t2, . . . , tn, respectively, we normalize all

t’s so that their normalized values are in the range of 0.5 to 1.5 and

the mean is equal to 1. These normalized t’s are then used as the

weights, w, in (18) and (19).

2) Weight Assignment for TTR Utilizing Both Spatial and Inter-

Test-Item Correlations: A straightforward TTR strategy to utilize

both spatial and inter-test-item correlations is to run both VP and

GL on all test items independently and the aggregate their results

for TTR. Assume TV P and TGL are the sets of predictable test

items identified by VP and GL, respectively. Then their union

TI = TV P ∪TGL would be the set of total predictable test items that

can be removed from measurement. However, such a strategy often

produces sub-optimal results. It is desirable to minimize the overlap

(i.e. intersection) of TV P and TGL and maximize their union, which

in turn maximizes the test time reduction. This optimized strategy

can be implemented by running VP first, followed by running WGL.

After identifying TV P , we set a lower weight, wl, for every test item

in TV P and a higher weight, wh for test items not in TV P before

running WGL. Because WGL tends to minimize the α’s for groups

with a higher weight, the resulted predictable test items by WGL,

TWGL, would have minimum overlap with TV P . As a result, the

final set of predictable test items, TJ = TV P ∪ TWGL, under this

strategy would most likely be larger than the set, TI , produced by

the straightforward strategy.

V. TEST METHODOLOGY BASED ON GL AND WGL

In this section, we describe in detail the application of the inter-test-

item correlation model of GL/WGL. The first issue to be addressed

is to evaluate if the prediction accuracy of a candidate test item

is sufficiently high and if the item can indeed be safely eliminated

from the test program without compromising the test quality. Those

candidate test items meeting a desired level of prediction accuracy

(i.e. predictability) are referred to as predictable test items in the

following.

We then discuss some practical issues of applying the proposed

methods in production. Specifically, we discuss the issues of han-

dling random defects, normalized prediction error, and the need of

continuous cross-validation to monitor if the manufacturing process

is sufficiently stationary.

Then we describe the two-stage test methodology of GL or WGL in

detail: the pre-test analysis for learning the inter-test-item correlation

model and the test application stage which utilizes the learned model

for TTR.

A. Criteria for Classifying Predictability

Even if the correlations among the test items are weak, GL or

WGL will still produce a correlation model. However, the prediction

accuracy based on the model might not be accurate.

According to Section III-B, a useful correlation model for TTR has

one or multiple near-zero columns. The values of the corresponding

candidate test items can be predicted by a combination of other test

items. Since we use a penalty parameter, λ, in the minimization

problem (17) to control the sparse level of α, each u of the solution

found may not be minimal. That is, there is no guarantee on the

prediction accuracy for the candidate test items derived from the

correlation model. Hence we need to apply one more filtering step

to the set of candidate test items: only a subset of them that meet

some criteria and achieve a desired level of prediction accuracy will

be selected as predictable test items.

We evaluate the predictability of a test item based on two criteria:

1) The maximum relative prediction error among a total of d chips

in the training set:

e = max({|(ĝi − gi)/gi| : i = 1, · · · , d}) (20)

where ĝi and gi denote the predicted and the measured values

of chip i in the training set.

2) The margin between specification limits of a test item and the

range covering most of the training chips’ predicted values. If

we denote the 25%, 50%, and 75% points of the cumulative

distribution function (CDF) of the predicted values of all training

chips as Q1, Q2, and Q3 respectively, the IQR, defined as the

range of the middle fifty, would be equal to Q3 − Q1. The in-

terquartile range method defines the range X from Q1−1.5IQR
to Q3 + 1.5IQR as the range covering most of the data points

for an arbitrary distribution (conceptually similar to the 3σ range

for a normal distribution).

If we denote Ll and Lh as the low and high limits of a test

item’s specification range respectively and M as the desired

margin between the specification limits and the range X defined

above (i.e. [Q1− 1.5IQR,Q3+1.5IQR]), the following is the

second criterion used for classifying a test item as predictable:

Ll +M < X(ĝi, i = 1, · · · , d) < Lh −M (21)

We define three levels of predictability, high, medium, and low, for

each of the two criteria in Table I. Based on the predictability levels,

we classify each test item as either predictable or unpredictable, as

shown in Fig 2. That is, a test item is considered predictable only if

it has a high predictability level for at least one criterion and does

not have a low predictability level for any criterion.

TABLE I: The Predictability Levels

Predictability level Relative error
Margin from spec limits,
percentage of (Lh − Ll)

High 0% ∼ 5% > 35%
Medium 5% ∼ 25% 15% ∼ 35%

Low 25% ∼ 100% < 15%

B. Random Defects, Normalized Error, and Process Stationarity

1) Selecting Test Items Targeting Random Defects: VP and GL are

effective only for test items and chips that are affected by process

and systematic variations. For chips with random defects, their values

of some test items might not follow the correlations captured from

the training chips. Therefore, even for predictable items, the values

of such defective chips predicted by VP and GL/WGL might be

inaccurate.

However, a defective chip with a random defect is usually more

catastrophic (than systematic and variation-induced failures) and can

often be detected by multiple test items. In addition, it has been
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Fig. 2: We classify each test item into one of two possible categories,

predictable or unpredictable, based on joint consideration of two

criteria. Predictability is evaluated through relative prediction error

and the distribution of the prediction error.

observed that chips with random defects can often be detected by

a small subset of test items, carefully selected from a test program

consisting of a large number of test items. As an example, Table II

shows the number of test items of a high-volume production chip that

are required to cover all failed chips in the training set whose test

items cannot be accurately predicted by VP and GL (i.e., most likely

the suspects with random defects). Out of 338 test items in total,

while the number of test items required to cover all random defect

suspects increases as more wafers are considered, the test item count

required is still relatively small in comparison with the total number

of test items.

Based on this observation, we address random defects by selecting

additional test items for explicit measurement, among those items

classified as predictable based on the criteria discussed in Sec-

tion V-A. Specifically, in the model validation phase, if the number

of chips escaping from a predictable test item is greater than a

threshold (i.e., the prediction error is abnormally large for too non-

trivial number of chips in the training set), we disqualify it as a

predictable item and, instead, classify it as unpredictable and thus

requiring explicit measurement.

TABLE II: Number of Test Items Required to Cover All Random

Defect Suspects

Number of training wafers 1 2 3 5 10 25

Number of test items to cover
all random defect suspects

9 12 18 26 38 57

2) Screening Test Items by Normalized Error: While using the

relative prediction error in (20) and setting an upper bound on e
as one of the criteria for classifying the test items ensures the test

quality will not be compromised, the use of the relative prediction

error, however, is biased by the test item’s mean and variation when

evaluating the prediction quality. It is possible that a model in which

a test item’s distribution is not accurately captured, but still has a

small relative prediction error, if the test item’s mean is large and its

variation is small. For such a case, though the distribution of the test

values are not accurately captured, the errors, divided by their large

mean, are sufficiently small to pass the error bound e.

To address this problem, the test items that pass the two criteria in

Section V-A are further examined using their normalized prediction

error. The normalized prediction error, without the bias of the test

item’s mean and variation, better reflects the accuracy of capturing

the test item’s distribution. Specifically, those test items with a

normalized prediction error greater than a threshold will be screened

out and excluded from the final set of selected predictable test items.

3) Stationarity: There exist wafer-to-wafer and lot-to-lot varia-

tions. Therefore, in applying the model trained based on the test

data of one wafer for testing of another wafer, it is necessary to

perform additional validation to assure the correlation patterns of the

chip/wafer under test are sufficiently close to the patterns exhibited

in the training data.

The validation can be easily done by taking additional measure-

ment for a small number of the chips for the predictable test items.

If the statistics of the differences between the predicted values and

measurements are significantly greater than those estimated from the

training set, explicit measurements for all test items should be made

for all dies in the wafer. The complete test data of the wafer will

then go through further outlier analysis. If the analysis concludes

that the wafer is an outlier, the original model will continue to be

used. Otherwise, retraining based on the target wafer’s new data is

triggered and the retrained model will be used for further testing of

other wafers. Through this continuous validation, the methodology

can be adapted to address significant wafer-to-wafer and lot-to-lot

variations.

C. Test Procedure

In this subsection, we summarize the procedures of both pre-

analysis and test application stages.

1) Flow of Pre-Test Analysis: The input to the pre-test analysis

procedure includes a) complete test data of a set of chips as the

training set (including die locations and specification limits, measured

values, and test time for each individual test item), b) criteria for

predictability classification (as described in Section V-A), and c) the

preferred statistical regression methods (VP and/or WGL with a

choice of weight assignment as discussed in Section IV-B).

We run VP first, if VP is chosen as a preferred method. Based on

the options discussed Section IV-B, we use either the test times or test

items’ predictability classified by VP to determine the weights before

running WGL. Next, we build an inter-test-item correlation model by

solving the WGL problem defined in (19). After that, we determine

the predictable items based on the criteria illustrated in Table I and

Fig. 2. In addition, extra test items are selected for measurement,

based on the discussion in Section V-B1, to detect failed chips caused

by random defects. Finally, we estimate test time saving, the yield

loss, and the escape rate by comparing the predicted values with

measured values of training chips.

2) Test Application Flow: In the test application stage, we skip

predictable test items from measurement. Based on the partial mea-

surement results and the correlation model, the values of those

predictable test items are calculated. We can apply this procedure,

summarized in Fig. 3, to any wafer or any collection of chips for

testing. We first perform all tests for those predetermined sample

dies/chips in the target wafer or collection of chips. The measured

values of these samples are used for three purposes: a) used by VP

to calculate the predicted values of the other dies based on the spatial

correlations, b) used by GL/WGL to calculate each test item’s mean

and standard deviation for chips on the target wafer which are needed

for converting the normalized predicted values, defined in (7), to

the predicted values, defined in (8), and c) used for checking the

stationarity for the validity of inter-test-item correlation model on the

target wafer (or a target collection of chips) based on the discussion

in Section V-B3.
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Then we perform the following two processes concurrently for the

remaining chips that are not those predetermined samples: a) testing

the unpredictable test items for chips, and b) using the statistical

methods (VP and/or WGL) to predict the values of those predictable

test items. After gathering all predicted values and measured values,

we can apply the validation process described in Section V-B3. If

the wafer (or the collection of chips for testing) passes the validation

for stationarity, the test results are considered valid. Otherwise, we

cannot trust the predicted values and thus have to test all test items

for the measured values of all chips on the wafer for the outlier

analysis. Several proposed methods, such as [24], [28], can be used

to help identify outlier wafers. If the wafer is an outlier, we do not

change the correlation model and continue the above procedure to the

next wafer. Otherwise, we rerun the pre-test analysis to build a new

correlation model before applying the procedure to the next wafer.

Fig. 3: The flow of test application.

VI. EXPERIMENTAL RESULTS

We applied GL and WGL to the wafer sort data of a high-volume

industrial device. There were 25 wafers per lot and 5500+ dies per

wafer. For each lot, 500 randomly sampled dies (by Latin hypercube

sampling method) on the first wafer were used for training, and the

other 5000+ dies on the same wafer were used for validating the

trained model, as discussed in Section V-C1. The test program we

analyzed consists of hundreds of test items, approximately 70% of

which are parametric in nature, and those tests are the ones to which

we applied our proposed method.

A. Inter-Test-Item Correlations Analysis

The correlation matrix, which is the solution to the GL regres-

sion problem of (16), reveals the correlations among test items, as

formulated in (8). Coefficient αij reflects the significance of Fj

in predicting Fi. A larger αij means that Fj contributes more in

predicting Fi; therefore, test item j has a stronger correlation with

test item i. One example of the prediction is shown in Fig. 4 where

the values of the test item are color-coded. The prediction result of

the 87th test item shows very high consistency with the measurement

data. Fig. 5 shows the three test items with the largest coefficients

α’s in predicting test item 87 in Fig. 4. It can be observed from the

wafer maps that test item 35, with the largest α, has the strongest

correlation with test item 87.
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(b) Prediction result

Fig. 4: Die map of measurement and prediction data of test item 87.
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(a) Test item 35
(α = 0.2565)
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(b) Test item 266
(α = 0.0731)
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(c) Test item 97
(α = 0.0540)

Fig. 5: Test items with the largest coefficient α in predicting test

item 87.

Fig. 6 shows the number of predictable test items versus the penalty

parameter λ for different relative error bounds e, defined in (20). With

a fixed error bound, different λ values result in different numbers of

predictable test items. For a given λ, the larger the error bound,

the more the predictable test items. Furthermore, the λ value that

maximizes the number of predictable test items varies for different

e’s. The optimal value of λ depends on the test data, including the

number of test items, their measured values, and the number of dies

for training.

Fig. 6: Number of predictable test items versus penalty parameter λ
for six different error bounds e’s.

For e being infinity, which completely ignores the constraint

imposed by the bound of prediction error, all candidate test items

will be classified as predictable test items. The curve of e = inf,
thus showing the number of candidate test items, rises up rapidly

when λ becomes smaller than 50. It approaches very close to the

total number of test items when λ → 0 because sparsity of the

correlation matrix becomes the dominant emphasis while accuracy
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is ignored. As a general trend, those candidate test items found at a

low λ value, however, more likely have a larger prediction error and

thus will more likely be screened out by the predictability criteria

and considered unpredictable in our methodology. For e at 5%, the

maximum number of test items identified as predictable is around

19% among the 338 test items we analyzed.

In addition to identifying predictable test items, the correlation ma-

trix produced by GL also reveals the strength of correlations among

test items. Fig. 7 shows the relations between the predictable test

items and the test items used to predict others, i.e., the “predicting”

test items. In the scatter graphs, a point at coordinate (j, i) means that

test item fj is in the set of test items that are used for predicting test

item fi. The orders of the predictable and predicting test items were

rearranged so the figures show clusters of points. Showing points

with αij ≥ 0.01, Fig. 7a contains more points, some of which may

not represent significant relations. Fig. 7b, on the other hand, shows

only relations with αij ≥ 0.05 and reveals only relations that are

sufficiently strong.

If we have a cluster of points with x-coordinates in the range of u

and y-coordinates in the range of v, we can conclude that fu predict

fv, and therefore fu and fv have strong correlations. For example, in

Fig. 7b the first 23 reordered predictable test items are predicted by

7 of the first 8 predicting test items, implying that the 23 predictable

test items and the 7 predicting test items are highly correlated.
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(b) αij ≥ 0.05

Fig. 7: The relations between predictable test items and the “predict-

ing” test items.

We then applied the model for testing the other 24 wafers. The

prediction errors of using the model produced by setting e = 5%,

the prediction errors of an exemplar are illustrated by a boxplot

in Fig. 8. The y-axis indicates the relative prediction error of dies

corresponding to each predictable test item (the x-axis). The ends of

a whisker represent the lowest datum still within the lower quartile

minus 1.5IQR (where IRQ is the interquartile range, the difference

between the upper and lower quartiles), and the highest datum

still within 1.5IQR plus the upper quartile. Any data not included

between the whiskers are plotted as a cross. As illustrated in Fig. 8,

all prediction errors are within the 5% error bound e when applying

the model obtained from the training wafer to another.

In our methodology, the margin from the spec limits is the other

criteria for classifying test item predictability. Increasing the desired

margin will reduce the number of test items classified as predictable

as shown in Table III. If the manufacturing process is relatively stable,

we can set a smaller margin and the number of test items classified

as predictable would be larger. For example, when the margin is

set to 5%, 71 test items (i.e., 21% of total items) are classified as

predictable.

Fig. 9 shows an example of GL’s training result of one wafer for

which each test item’s prediction error and its margin from the spec
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Fig. 8: Error boxplot of each predictable test item.

TABLE III: # of Predictable Item Versus Margin from Spec Limits

Margin from spec limits 5% 15% 25% 35% 45%
# of items as predictable 71 64 49 20 11

limits are illustrated. Each dot in the figure denotes a candidate test

item, in which the x-coordinate is the item’s prediction error and the

y-coordinate is one minus the margin from the spec limits (so the

smaller the y value, the larger the margin and the more predictable

the test item). We classify the test items in the unhatched area as

predictable test items, as discussed in Section V-A.

Fig. 9: The predictability of test items based on test data of one

wafer. Each dot denotes a candidate test item and the test items in

unhatched/hatched area are defined as predictable/unpredictable test

items.

For the evaluation of the test application procedure described in

Section V-C2, we used 500 dies in wafer No. 1 to train a model, and

used all the remaining dies in the wafer for selection of predictable

test items. When using the trained model for test application, we

are concerned about test escapes — escaping faulty chips whose

predicted values are mistakenly within the specification limits.

The test escapes of using various trained models are summarized

in Table IV. We trained five different models. The first two models

were generated by setting an error bound only, at e = 5% and e =
25% respectively. The third and the fourth models were generated

by setting a lower bound on the margin from the spec limits only,

at 15% and 35% respectively. The fifth model was generated using

both criteria as showed in the unhatched area in Fig. 9. Assuming

that the test time of all test items is identical, the percentages of test

time savings are 19.2, 21.0, 18.9, 5.9, and 17.5% respectively while

the number of escaped dies, among the 130,950 dies tested, are 3,

14, 12, 1, and 1, respectively. Setting large error bound derives more

predictable test items with, however, more escaped dies. On the other

hand, setting tight margin results in fewer escaped dies with lower

test time savings. The fifth model have a balance between test time

savings and prediction quality.
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TABLE IV: Number of Escaped Dies for Various GL Models

Error
bound

Spec
margin

# of escaped
dies a

Predictable
item #

Test time
savings

5% – 3 65 19.2%
25% – 14 71 21.0%

– 15% 12 64 18.9%
– 35% 1 20 5.9%

∼ 25% b ∼ 35% b 1 59 17.5%

a130,950 dies in total
b The unhatched area in Fig. 9

B. TTR With Test Time of Individual Item

Enhanced from GL, WGL enables two applications for further test

time reduction. First, it can take into account the distinct test times

of individual test items. As the information of the actual test time

and cost of each individual test item in the production test program

is not available to us, we randomly generated two different sets of

test times for our experiments to illustrate WGL’s functionality and

capability. In the first experiment, we used ten distinct test times,

ranging from 0.1 to 3.5 unit, and randomly assigned 10% of the test

items for each test time. In the second experiment, we also used ten

distinct test times but with a larger range, ranging from 0.25 to 25
unit, and assigned them evenly to all test items.

The experimental results are shown in Table V, where TGL and

TWGL denote the predictable test items found by GL and WGL,

respectively. For both cases, WGL can achieve further test time

reduction by taking into account the test time of individual test item.

In comparison with GL, WGL achieves additional 11% and 18% test

time savings than GL does for these two cases. Because the spread of

test times for different test items in case 2 is larger than that in case

1, WGL achieves a greater test time saving in case 2 even though it

classifies one fewer test item as predictable than the first case.

TABLE V: Test Time Improvement by WGL

Case
# of
TGL

Escaped
dies #

Time
savings

# of
TWGL

Escaped
dies #

Time
savings

1 59 1 17% 80 8 28%
2 59 1 17% 79 3 35%

C. Integrating Both Spatial and Inter-Test-Item Correlations

The second feature of WGL is the ability to exploit and integrate

both spatial and inter-test-item correlations in test data. As described

in Section IV-B2, we can merge the results of VP (targeting spatial

correlations) and GL (targeting inter-test-item correlations) in a

straightforward way by taking the union of the predictable test items

classified by each methods. Rather than directly taking the union of

predictable test items, WGL can be used to optimize the number

of total predictable test items. This is achieved by setting different

weights to VP-predictable and VP-unpredictable test items before

running WGL to explore the inter-test-item correlations.

The experimental results of comparing these two strategies are

shown in Table VI, where TV P denotes the predictable test items

derived by VP and TGL denotes either the predictable test items

derived by GL for the first strategy (in the row indicated as “Straight-

forward”) or by WGL for the second strategy (in the row indicated as

“Weighted”). The values shown in the table are counts of test items

in different sets. In this experiment, we assume all test items have an

identical test time. The weighted strategy can save an additional 5.7%

test time over the straightforward strategy for using both spatial and

inter-test-item correlations. WGL successfully reduces the overlap

between the predictable test items produced by VP and GL — the

number of test items in their intersection reduces from 21 to 8.

TABLE VI: Intuitive Merge vs. Weighted Merge

Method TV P ∪ TGL TV P TGL TV P ∩ TGL
Time

savings

Straight-
forward

134 96 59 21 (36%) 39.6%

Weighted 153 96 65 8 (12%) 45.3%

Fig. 10 attempts to compare the prediction errors of the same set of

test items for using inter-test-item correlations only versus using both

spatial and inter-test-item correlations. Fig. 10a shows the prediction

errors by using only inter-test-item correlation for prediction and

Fig. 10b shows the errors by using both spatial and inter-test-item

predictions for prediction. When utilizing both spatial and inter-test-

item correlations, VP was first run, whose results are then used as

the input to WGL.

The fact that, under the VP+WGL strategy, some test items which

are used for predicting other items in WGL were not actually tested

but, instead, predicted using VP increase the overall prediction error.

Test items 12 and 13 incurred a noticeable drop in accuracy. The

reason for this is because these two items classified as predicable

based on their relatively large margin from the spec limits, while

they have a relatively large prediction error. As shown in Fig. 10b,

the prediction error of test items 12 and 13 are still within the 25%
error bound used for classification.
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(a) Prediction errors by only inter-test-item correlations
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(b) Prediction errors by both spatial and inter-test-item correlations

Fig. 10: Compare the prediction errors of the same set of test items

which are the intersection of predictable test items derived by GL

and by VP+WGL.

Table VII compares the results of using different statistical methods

and strategies. In this comparison, the test time of each test item is

based on the assumption of case 2 in Table V. Applying VP or GL

only can achieve 31.5% and 15.7% test time savings, respectively. If

we integrate VP and GL, which is equivalent to using VP and WGL

with an assignment of the same weight to all test items, the test time

saving increases to 41.8%. Integrating VP and WGL by assigning

different weights to test items properly reflecting their test times can
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further improve the test time saving to 46.3%. If we integrate VP

with WGL whose weights are based on VP’s classification results, the

improvement reaches to 47.9%. Finally, the last case shows that the

integration of VP and WGL whose weights are jointly determined by

both test items’ test times and VP’s classification results can achieve

55.0% improvement. However, the number of escaped dies might

slightly increase in order to gain some of such improvements.

TABLE VII: Summary of Test Time Saving for Various Strategies

Method
# of escaped

dies a
# of predictable

items
Test time
savings b

VP only 4 96 31.5%

GL only 1 59 15.7%

VP+WGL with the
same weight

5 136 41.8%

VP+WGL weighted
by time

7 132 46.3%

VP+WGL weighted
by VP

12 151 47.9%

VP+WGL weighted
by time & VP

8 160 55.0%

a130,950 dies in total
bBased on the test time assumption of case 2 in Table V

VII. CONCLUSIONS

In this paper, we propose a methodology to utilize inter-test-

item correlations for test time reduction. We further improve the

methodology to take into account the test time of each individual test

item for further reduction of production test time. Through integration

with VP which can capture spatial correlations in test data, the

methodology also allows exploiting and utilizing both spatial and

inter-test-item correlations simultaneously for test time reduction. A

case study of a high-volume industrial device show that the proposed

methodology can reduce the test time by 55.0% with only 8 escaped

dies out of 130,950 tested dies in total.
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