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Abstract 

Diagnosis is the first step of IC failure analysis. The 

conventional objective of identifying the failure locations 

has been augmented with various physically-aware 

techniques that are intended to improve both diagnostic 

resolution and accuracy. Despite these advances, it is often 

the case however that resolution, i.e., the number of 

locations or candidates reported by diagnosis, exceeds the 

number of actual failing locations. Imperfect resolution 

greatly hinders any follow-on, information-extraction 

analyses (e.g., physical failure analysis, volume diagnosis, 

etc.) due to the resulting ambiguity. To address this major 

challenge, a novel, unsupervised learning methodology that 

uses ordinarily-available tester and simulation data is 

described that significantly improves resolution with 

virtually no negative impact on accuracy. Simulation 

experiments using a variety of fault types (SSL, MSL, 

bridges, opens and cell-level input-pattern faults) reveal 

that the number of failed ICs that have perfect resolution 

can be more than doubled, and overall resolution is 

improved by 22%. Application to silicon data also 

demonstrates significant improvement in resolution (38% 

overall and the number of chips with ideal resolution is 

nearly tripled) and verification using PFA demonstrates 

that accuracy is maintained. 

 

1. Introduction 

Diagnosis is a fast and non-destructive approach to 

preliminarily identify and locate possible defects in a failing 

IC [1]. It is a software-based method that analyzes the 

applied tests, the failed IC tester response, and its 

netlist/layout to produce a list of diagnostic candidates that 

represent the locations and sometimes behaviors/types of 

defects in the chip. Diagnosis can be then followed by 

physical failure analysis (PFA), a time-consuming and 

destructive approach for exposing the defect in order to 

characterize the failure mechanism [2]. Due to the high cost 

and destructive nature of PFA, the accuracy and resolution 

of diagnosis is of critical importance. 

In addition to being an integral part of PFA, diagnosis 

results from a population of failed chips also serve as input 

for a number of applications in a variety of other areas. For 

instance, the diagnostic results can reveal both important 

statistics including the defect distribution or the primary 

yield detractors [3, 4], and useful feedback for evaluating 

and improving the quality of manufacturing test [4, 5, 6]. 

In practice, diagnosis tends to be non-ideal for a variety of 

reasons. Two such reasons include the limitation on test-set 

size, and the equivalent circuit I/O behavior that inherently 

exists among candidates. Because there is a trade-off 

between the time needed to both create and apply tests and 

the cost of test, it is always the case that not all possible 

defects are fully exposed when they are detected by the 

production test set. Even if a comprehensive test is 

economically viable, there still can be candidates that have 

equivalent logical behavior among the many locations 

within the IC that are specific to the standard cells used and 

their interconnections. Also the fault models employed for 

both test and the diagnosis are not perfect either, meaning it 

is quite likely that the actual defective behavior cannot be 

fully explained by the fault model(s) selected [7]. The 

overall result is an imperfect diagnosis that typically 

produces an accurate result but a non-ideal resolution. 

Specifically, more than one candidate is often reported, 

where one or more may correspond to the actual failing 

locations while many others do not. Figure 1 illustrates this 

point by showing the cumulative diagnosis resolution of an 

in-production commercial chip. It can be easily seen that 

less than 10% of the diagnosed chips exhibit ideal resolution. 

However, it is possible to improve the resolution with add-

on techniques that rely on existing diagnosis results. 

Improving diagnostic resolution requires the derivation of 

certain characteristics that enable good candidates to be 

distinguished from bad ones. For instance, there have been 

a number of proven heuristics that allow candidates to be 

effectively ranked. In [8, 9], it is suggested that candidates 

detected by more tester-passing patterns are less likely to 

capture the actual defective location(s). Other work reveals 

that the same neighborhood state of a good candidate should 

not be observed in both the Tester-Pass-Simulation-Fail 

(TPSF) and the Tester-Fail-Simulation-Fail (TFSF) patterns 

[1, 4, 10, 11, 12]. If a neighborhood state appears in both 

TPSF and TFSF patterns, the candidate is said to be 

inconsistent and is likely incorrect [1, 4, 10, 11, 12]. While 

these techniques are effective (e.g., the work in [10] reports 

a resolution improvement of 67% for 2,293 chips), they only 
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utilize a limited amount of the tester and design data 

available for comparing and contrasting candidates. Our 

work here explores the use of additional information 

derived from fault simulation and ordinarily-available tester 

data for further improving diagnostic resolution. 

Specifically, chip- and candidate-specific features are 

created to both characterize and distinguish the diagnostic 

candidates. Some of the features are well known and 

involve the comparisons between the observed tester 

response and the fault-simulation response of a candidate. 

Other new features are also established in this work and are 

combined with existing features in order to characterize 

each chip failure and its corresponding candidates. The 

feature data from a population of candidates are then 

supplied to a classifier for learning a model that separates 

good candidates from bad ones. 

 

 

 

One issue with creating a supervised classifier is the need 

for “training data” [13]. For the diagnosis application, this 

means we need a population of failed chips with candidates 

that are all correctly labeled as “good” or “bad”. One 

obvious choice for deriving training data is through PFA of 

actual diagnosed chips. But because PFA is both costly and 

time consuming, it is very unlikely that (1) it will be 

explicitly used to identify bad candidates and (2) it will 

result in a training-set size that is statistically significant. In 

this work, we have virtually eliminated this problem by 

a novel technique that derives labeled candidates (i.e., 

training data) from unlabeled candidates. Specifically, 

we use intuitive heuristics to identify failed chips that 

allow their corresponding diagnosis candidates to be 

correctly labeled, for the most part, as either good or bad. 

In past work [1, 4, 10, 11, 12], it has been shown that the 

consistency check was very adept at identifying bad 

                                                 
1Although simulation data is used in this work, it should be noted that it is 
not integral and is only used in order to verify accuracy. 

candidates.  We therefore employ a two-level classifier, 

where the first-level is a simple rule-base check of the 

neighborhood consistency of each candidate. The second-

level classifier is learned from those candidates that pass 

through the first-level classifier. SVM (support vector 

machine) [13] is used in our work for learning the second-

level classifier. It should be noted however that other 

classifiers (KNN [13], decision trees [13], etc.) can also be 

likely used as well. 

SVM is a versatile and robust machine learning framework 

for performing classification based on training-data features 

[13]. Machine learning techniques such as SVM have been 

shown to be effective in various tester-time reduction 

methods [14-17], and in a variety of diagnosis applications 

[18, 19]. In [18], the authors use decision trees to identify 

subtle bridge defects, and in [19] the authors use SVM to 

correlate the board-level diagnosis results with the root-

causes of failure. Nevertheless, these learning techniques 

are often limited by low-quality training sets. (Both [18] and 

[19] derive training data from simulation1.)  But it is well 

known that simulation of fault models rarely results in 

behaviors that match those exhibited by real defects [20]. 

An alternative for obtaining realistic training data is to use 

historical data, i.e., existing diagnosis results from other 

designs that have been labeled through PFA or other means. 

There are two major limitations in using historical data 

however. The first limitation has already been mentioned 

and again is the scarcity of labeled data from PFA. For a 

reliable performance, a classifier requires an adequate 

number of both good and bad candidates for training. A 

second limitation lies in the relevance of the previous 

diagnosis data. Using “old chip data” to train a classifier for 

a new design likely introduces error that substantially 

undermines the performance of the classifier. 

As already mentioned, we solve this problem by deriving 

training data (i.e., labeled candidates) from a population of 

candidates using intuitive heuristics. This means that an 

abundant amount of training data specific to the actual chip 

under diagnosis will always be available for use. 

In the remaining sections of this paper, we describe the 

details of the PADRE methodology in Section 2; Section 3 

demonstrates the applicability of PADRE in experiments 

that use both virtual and real failed ICs. Finally, Section 4 

discusses the experiment results and provides conclusions 

and directions for future work. 

 

2. PADRE 

Our approach for PADRE (Physically-Aware Diagnostic 

Resolution Enhancement) involves a two-level classifier 

that identifies bad candidates in the first level and good 

candidates in the second. PADRE takes as input the 

diagnosis results for a set of 𝑀  failed chips 𝐶 =
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Figure 1: The cumulative diagnostic resolution distribution of a 

commercial chip shows that less than 10% of a population of 1,202 failed 

chips has an ideal resolution of one. The cumulative diagnostic 
resolution plot sorts the chips by the number of candidates for each chip. 

Each point on the plot shows the proportion of chips in the entire 

population that have candidates equal or below certain number, ranging 

from 1 to the maximum number of candidates any chip has. 
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{𝑐1, 𝑐2, … , 𝑐𝑀} . Each chip 𝑐𝑖  has 𝑁 (𝑁 ≥ 1)  diagnosis 

candidates 𝐷𝑖 = 𝑑𝑖,1, 𝑑𝑖,2, … , 𝑑𝑖,𝑁, where each 𝑑𝑖,𝑗 has 𝑃 

feature values 𝐹𝑖,𝑗 = 𝑓𝑖,𝑗,1, 𝑓𝑖,𝑗,2, … , 𝑓𝑖,𝑗,𝑃 . Each feature 

value 𝑓𝑖,𝑗,𝑘 is a particular characteristic of the candidate 𝑑𝑖,𝑗 

that includes data from the design (the logical netlist and/or 

the physical layout) or from the test data (the simulation 

and/or the tester).  

PADRE consists of three major steps, namely candidate-

feature construction, first-level identification of bad 

candidates, and second-level identification of good 

candidates. Each step is discussed in detail in sub-sections 

2.1-2.3. 

2.1 Candidate Features  

Candidate features are specific design and test 

characteristics that differentiate good diagnosis candidates 

from bad ones. The candidate features now considered in 

PADRE are summarized in Table 1.  

Feature Description 

no_nbrs No. of neighbors for a given candidate 

no_TPSFs 
No. of Tester-Pass-Simulation-Fail 

(TPSF) patterns  associated with a given 

candidate 

no_TFSFs 
No. of Tester-Fail-Simulation-Fail 
(TFSF) patterns associated with a given 

candidate 

no_TFSPs 
No. of Tester-Fail-Simulation-Pass 
(TFSP) patterns associated with a given 

candidate 

no_TPSF_outputs 
No. of Tester-Pass-Simulation-Fail 
(TPSF) outputs associated with a given 

candidate 

no_TFSF_outputs 
No. of Tester-Fail-Simulation-Fail 

(TFSF) outputs associated with a given 
candidate 

no_TFSP_outputs 
No. of Tester-Fail-Simulation-Pass 

(TFSP) outputs associated with a given 
candidate 

tot_no_fail_outputs 
Total no. of failing outputs of the 

Simulation-Fail patterns associated with a 

given candidate 

min_no_fail_outputs 
No. of failing outputs of the Simulation-

Fail patterns that exhibit the smallest 

number of failing outputs 

max_no_fail_outputs 
No. of failing outputs of the Simulation-
Fail patterns that exhibit the largest 

number of failing outputs 

mean_no_fail_outputs 
Average number of failing outputs of all 
the Simulation-Fail patterns 

unique_no_fail_outputs 
No. of unique failing outputs in the 

Simulation-Fail patterns among all chip 

candidates 

no_pass_states 
No. of different neighborhood states in the 

TPSF patterns 

no_fail_states 
No. of different neighborhood states in the 
TFSF patterns 

no_incst_states 
No. of neighborhood states exhibited by 

both the TPSF and TFSF patterns 

candidate_entropy 
The uncertainty level of a candidate’s 

logic value as a function of its possible 
neighborhood states 

Table 1: Diagnostic-candidate features that are based on various test and 

design characteristics. 

 

The candidate features no_pass_states, no_fail_states, 

no_incst_states, and candidate_entropy characterize the 

physical characteristics of a candidate when it is both 

activated and sensitized. Specifically, the neighborhood 

state of a candidate is defined to be the logic values driven 

on lines that are in physical proximity of the candidate for 

tests that detect the candidate (i.e., TPSF and TFSP patterns) 

[1]. The neighborhood of a candidate, as illustrated in 

Figure 2, includes:  

1. Physical neighbors: nets that are in close proximity of 

the candidate as determined by the design layout. 

2. Drivers: inputs of the cell that drives the candidate. 

3. Side inputs: side inputs of cells driven by the candidate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Despite the size of the circuit, the logic value of a candidate, 

whether faulty or fault-free, is assumed to be largely 

determined by the neighborhood state, i.e., the logic values 

of its neighbors [1]. The characteristics of the neighborhood 

may also provide an indication of the authenticity of a 

candidate. The heuristic is that if a candidate is indeed a site 

of failure, its failing behavior should be a consistent 

function of its neighborhood failing and passing states. 

More detailed discussions of the neighborhood-related 

features and other major features employed in PADRE are 

described next. 

Entropy. The notion of neighborhood entropy [12] is used 

as a candidate feature (candidate_entropy). In [12], the 

Figure 2: Example of a neighborhood for a candidate associated with net 
S6: (a) the physical neighbors ≡ nets in physical proximity and (b) the 

logical neighbors ≡ driver and receiving-cell side inputs. 
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authors describe the entropy of a candidate as a measure of 

the level of uncertainty of its logic value with relation to its 

neighbors. As already mentioned, the logic value of a 

candidate is assumed to be correlated to its neighborhood 

site. Moreover, for a particular set of neighborhood states, 

the lower the candidate_entropy, the greater the correlation 

between the candidate and its neighborhood. 

 

The feature candidate_entropy is the weighted average of 

the entropy of the observed neighborhood states. It is 

calculated as 𝐻(𝑋𝑑|𝑋𝑛 , 𝐺𝑑 = 𝑔𝑑
𝑘)  by the following 

equation: 

𝐻(𝑋𝑑|𝑋𝑛, 𝐺𝑑 = 𝑔𝑑
𝑘)

= − ∑[𝑃(𝑋𝑛 = 𝑥𝑛
𝑗
|𝐺𝑑 = 𝑔𝑑

𝑘)

2

𝑗=1

× ∑ 𝑃(𝑋𝑑 = 𝑥𝑑
𝑖 |𝑋𝑛 = 𝑥𝑛

𝑗
, 𝐺𝑑 = 𝑔𝑑

𝑘)

2

𝑖=1

× log2 𝑃 (𝑋𝑑 = 𝑥𝑑
𝑖 |𝑋𝑛 = 𝑥𝑛

𝑗
, 𝐺𝑑 = 𝑔𝑑

𝑘)] 

where 𝑋𝑑 is the random variable that represents the actual 

value of the candidate 𝑑, 𝑥𝑓 is a possible value of 𝑋𝑑, 𝑋𝑛 is 

the random variable that represents the value of neighbor 𝑛 

of 𝑑, 𝑥𝑛 is a possible value of 𝑋𝑛, 𝐺𝑑 is the random variable 

that represents the fault-free value of 𝑑, and 𝑔𝑑 is a possible 

value of 𝐺𝑑.  𝑃(𝑋𝑛 = 𝑥𝑛
𝑗
|𝐺𝑑 = 𝑔𝑑

𝑘)  is the conditional 

probability of observing a neighborhood state 𝑥𝑛
𝑗
 given the 

fault-free value of candidate 𝑔𝑓
𝑘 . 

𝑃(𝑋𝑑 = 𝑥𝑑
𝑖 |𝑋𝑛 = 𝑥𝑛

𝑗
, 𝐺𝑑 = 𝑔𝑑

𝑘)  is the conditional 

probability of observing a candidate value 𝑥𝑑
𝑖  given the 

candidate fault-free value 𝑔𝑑
𝑘 and neighborhood state 𝑥𝑛

𝑗
. 

If the correlation between 𝑋𝑛 and 𝑋𝑑  is significant, or the 

actual value of 𝑑 is entirely controlled by the neighborhood 

state, then 𝐻(𝑋𝑑|𝑋𝑛 , 𝐺𝑑 = 𝑔𝑑
𝑘) = 0 . If the correlation is 

insignificant, in the worst case, for the given condition, 𝑋𝑑 

has equal chance to be 0  and1 , then the entropy is the 

maximum, i.e., 𝐻(𝑋𝑑|𝑋𝑛 , 𝐺𝑑 = 𝑔𝑑
𝑘) = 1. 

Unique failing outputs. The number of unique chip outputs 

(unique_no_fail_outputs) that fail as predicted by fault 

simulation of a candidate is potentially a good feature for 

characterizing the correctness of a candidate. If the failing 

output of a failed chip is explained2 by only one particular 

candidate, while other outputs are explained by many 

candidates, it may be likely that this particular candidate is 

correct. It should be noted however that the feature 

unique_no_fail_outputs may be zero for all of the 

candidates of a given chip. 

Passing/failing patterns and outputs. In addition to 

comparing/contrasting the pass-fail status of the test 

                                                 
2A candidate is said to “explain” a failed output 𝑜𝑗 observed on the tester 

for a given test pattern 𝑡𝑘 if its fault simulation response for 𝑡𝑘 predicts 

the failure of 𝑜𝑗. 

patterns on the tester and in simulation, we also 

compare/contrast the failing and passing outputs measured 

on the tester with those predicted by fault simulating the 

candidates.  The intuition for performing this bit-level 

analysis in addition to the pattern-level analysis is that it 

accounts for the differences that seemingly do not exist 

among conventionally-ranked candidates. 

Consider, for example, a three-output failed chip with test 

set 𝑇 = {𝑡1, 𝑡2, 𝑡3, 𝑡4}  that has the associated candidate 

simulation (S) and failed-chip tester (T) responses shown in 

Table 2. Table entries with a “P” indicate that the failed chip 

(candidate) did not cause the corresponding output to fail 

when the test was applied (fault simulated).  A table entry 

of “F”, on the other hand, has the opposite meaning. 

Test 
O1 O2 O3 

S T S T S T 

𝑡1 P P P P P P 

𝑡2 P F P F F F 

𝑡3 F P P F F P 

𝑡4 P F P F P F 

 Table 2: Output-level comparison of an example failed-chip tester 
response and a candidate-simulation response for a three-output circuit. 

Comparing and contrasting the tester response with the 

candidate fault simulation response at the pattern level leads 

to the feature values shown in Table 3. 

Test Response  Feature Value 

𝑡1 TPSP  no_TPSPs 1 

𝑡2 TFSF  no_TFSPs 1 

𝑡3 TFSF  no_TPSFs 0 

𝑡4 TFSP  no_TFSFs 2 

Table 3: Pattern-level feature values derived from the example responses 

from Table 2. 

Comparing and contrasting the tester response with the 

candidate fault simulation response at the output level leads 

to the feature values shown in Table 4. 

Test O1 O2 O3  Feature Value 

𝒕𝟏 TPSP TPSP TPSP  no_TPSP_outputs 3 

𝒕𝟐 TFSP TFSP TFSF  no_TFSP_outputs 6 

𝒕𝟑 TPSF TFSP TPSF  no_TPSF_outputs 2 

𝒕𝟒 TFSP TFSP TFSP  no_TFSF_outputs 1 

Table 4: Output-level feature values derived from the example responses 
from Table 2. 

It can be observed that the pattern-level features (i.e., 

no_TFSPs, no_TPSFs, and no_TFSFs) and the output-

level features (i.e., no_TFSP_outputs, no_TPSF_outputs, 

and no_TFSF_outputs) have very different values. It can 

be easily argued that the output-level features subsume the 

pattern-level features, and as a result, the pattern-level 

features should be simply eliminated. In the end, the pattern-

level features may indeed be ignored by the classifier but 

we do not a priori impose that decision on the classifier 

because all commercial diagnosis tools find the pattern-

level features useful for distinguishing candidates through 
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ranking. For example, Synopsys TetraMAX® [21] uses the 

following pattern-level feature formulation to rank 

candidates: 
 

𝑠𝑐𝑜𝑟𝑒 =  
                                                                                                                    

               
 

 

2.2 First-level Classifier 

The first-level classifier of PADRE is a one-rule 

discriminator that is based on the inconsistent-state feature 

(no_incst_states). As described earlier, this feature counts 

the number of unique neighbor states that both appear in at 

least one TPSF pattern and one TFSF pattern. The existence 

of an inconsistent state is likely an indication that the 

candidate is not actually a good candidate. While it is 

possible that a defective location can behave inconsistently, 

past work has shown that this feature is an excellent 

discriminator [1, 4, 10, 11, 12]. 

In the first-level classifier, any candidate with a non-zero 

no_incst_states is labeled as a bad candidate. For all the 

remaining candidates with no inconsistent state, their labels 

remain unknown. 

    𝑙𝑎𝑏𝑒𝑙 (𝑐𝑖) =  {
   bad                                            

 unknown                                        
 

2.3 Second-level Classifier 

Although the first-level classifier is able to accurately 

identify a good number of the bad candidates. Many of the 

candidates still remain unlabeled. We introduce a second-

level classifier to further process the remaining unlabeled 

candidates, with a particular focus to identify the good 

candidates. 

All unlabeled candidates from the first-level classifier are 

processed by an SVM-based second-level classifier. SVM 

requires a training set to derive (i.e., learn) a classifier. In 

our work, the training sets are constructed using novel and 

reasonable heuristics that identify the likely good and bad 

candidates from unlabeled candidates. 

The construction of the training sets from unlabeled 

candidates follows a three-step workflow as follows: 

- Initial sets: Initial good training set consists of all the 

chips with a single candidate; and the initial bad training 

set consists of all chips with more than 𝑄  candidates, 

where 𝑄 is a user-set threshold. In this work, we use 𝑄 =
20. 

- Refined sets: Interquartile range (IQR) [22] is used to 

remove any outliers from the initial sets. Specifically, 

any candidate with a feature value that is 3 × IQR away 

from the feature mean is eliminated from the training 

sets. 

- Balanced sets: Oversampling the smaller data set is 

performed to balance the sizes of the good and bad data 

sets. 

A detailed discussion of each step is given next. 

Initial set. Unlike conventional supervised-learning 

methods, the second-level classifier learned in PADRE 

derives training data from the pool of unlabeled candidates. 

Specifically, the initial good training set is obtained from all 

chips with a single candidate. Assuming that diagnosis is 

accurate, collecting a statistically-significant set of single-

candidate chips ensures that the features of good diagnosis 

candidates are reasonably captured. On the other hand, the 

bad training set is obtained from all the chips with more than 

𝑄 = 20 candidates. It is reasonable to assume that there is 

likely only one good candidate in a chip. Thus for a chip 

with multiple candidates, all but one will be bad. By taking 

all chips with more than 𝑄 = 20  candidates, the bad 

training set should mostly consist of bad candidates with an 

error bounded at 5%, i.e., at most 5% of candidates in the 

bad training set would be actually good candidates. This 

approach for identifying bad-candidate data introduces very 

little error. For example, for the simulation-based 

experiment discussed in Section 3.2, we found that fewer 

than 2.9% of the bad training-data candidates are actually 

good.  

 

Refined set. To improve the quality of the training set, IQR 

(interquartile range) is employed to remove outliers from 

the training set. The outlier analysis removes candidates 

from the initial sets that are outside the 3 ×  IQR of the 

initial training set, which corresponds to 4.72 sigma (i.e., 

99.9992% in a normal distribution). This ensures the quality 

of the training set by only including the most typical good 

and bad candidates. 

 

Balanced set. Because the size of the good training set and 

the bad training set are likely different (the good candidates 

identified from the unlabeled pool of candidates are 

typically much fewer than the bad candidates), a biased 

classifier from SVM may result. Specifically, if the size of 

the bad training set overwhelms the size of the good training 

set, the classification margin obtained by SVM will be 

heavily biased towards the bad candidates, causing the good 

candidates to fall within the margin of bad candidates [23]. 

As a result, it would be more likely for the resulting 

classifier to incorrectly categorize an actual good candidate 

as bad. A straightforward solution for this dilemma involves 

balancing the size of the training data by employing simple 

sampling techniques. There are two ways to perform the 

sampling. One approach is to under-sample the bad training 

set, and the alternative is to oversample the good training set 

[23]. Under-sampling the bad training set has the benefit of 

lower computational cost, but depending on the sizes of the 

training sets, it may incur the risk of not properly 

characterizing both the good and bad candidates. 

 

A major drawback of the oversampling method is over-

fitting. The duplicates reinforce the distribution of the 

existing candidates in the training set, instead of the real 

distribution of the good training set. The latter can only be 

(no_incst_states (𝑐𝑖) > 0) 
(no_incst_states (𝑐𝑖) = 0) 

no_TFSPs 

no_TFSFs + no_TPSFs + no_TPSFs 
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obtained by using an increased number of real good 

candidates. However, in our case, the imbalance among the 

good and bad training sets is not too significant. For 

example, in our simulation data sets, the number of bad 

candidates is about 9× larger than the good candidates. 

Therefore, any over-fitting introduced is likely not to 

significantly affect the performance of the classifier. We 

therefore chose to balance the two training sets by 

oversampling the good training set. Specifically, good 

candidates are randomly duplicated until their number 

equals the number of bad candidates. 

The SVM algorithm is chosen for PADRE due to its robust 

performance in classifying two different classes of data by 

error-margin maximization. Classification problems are 

essentially concerned with assigning a label 𝑦 to a sample 

based on its feature set 𝒙: 

       𝑦 = 𝑓(𝒙)     

where the scalar 𝑦 is the label of the sample and the vector 

𝒙 is the set of features of the sample. The function 𝑓(𝒙) is 

the classifier that we want to learn for determining the 

labels. A linear classifier uses the following discriminant 

function: 

          𝑓(𝒙) = {
0      (𝒘𝑇𝒙 + 𝑐 ≥ 0)

1      (𝒘𝑇𝒙 + 𝑐 < 0)
 

where 𝒘 is the weight vector for each feature, and 𝑐 is a 

constant. 

SVM is robust because it attempts to distinguish different 

classes by maximizing the error margin. This will usually 

give a robust separation of the classes [13]. The margin-

maximization problem associated with SVM can be 

formulated as: 

min
𝒘,𝑐,𝜉

∑ 𝜉𝑖 + 𝜆𝒘𝑇𝒘     

S. T.  𝑦𝑖(𝒘𝑇𝒙𝑖 + 𝑐) ≥ 1 − 𝜉𝑖;  𝜉𝑖 ≥ 0 

(𝑖 = 1,2, … , 𝑁) 

where 𝜆 regularizes the penalty of misclassification, and 𝜉𝑖 

is the error of the 𝑖-th data point. To avoid over-fitting, cross 

validation is usually used to determine 𝜆. 

The aforementioned SVM formulation is referred to as the 

soft-margin SVM in the literature [13]. It is able to classify 

samples with allowance of classification error, such as the 

case illustrated in Figure 3. The soft-margin SVM 

appropriately meets the needs of our application because the 

training set constructed from unlabeled candidates is 

inherently imperfect. This is particularly true for the bad 

training set, where a small number of the good candidates 

are knowingly included within the larger set of bad 

candidates. Soft-margin SVM allows robust classification 

even with an imperfect training set.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Experiment 

A comprehensive simulation experiment is performed to 

evaluate PADRE. In the experiment, fault-tuple macrofaults 

[24] are used to emulate real defects. Specifically, a large 

number of different fault types are injected into the 

benchmark circuit, and a typical testing procedure is 

employed to obtain the initial fault diagnosis results. 

PADRE is subsequently applied to refine the diagnostic 

resolution which is then evaluated for the level of 

improvement and accuracy achieved. The experiment is 

also repeated for actual failed chips from the LSI 

Corporation. 

3.1 Setup 

The circuit B12 from the ITC’99 benchmark suite [25] is 

used as the “chip under test”. B12 consists of 1,000 gates 

and 121 flip-flops. Five-hundred instances of six different 

types of faults are randomly injected into the circuit to 

emulate defective chips. The fault-tuple macrofaults used to 

emulate the defects are simulated using FATSIM [24]. The 

injected macrofaults include: and-, or-, and dominating-type 

bridge faults, cell-level input pattern faults [26], SSL faults, 

and MSL faults. The numbers of chips injected for each type 

of fault and detected by the applied test set are listed in 

Table 5. 

Fault type Number of chips 

and-bridge 493 

or-bridge 497 

dominant-bridge 499 

input pattern 487 

SSL 490 

MSL 421 

Table 5: Fault-tuple macrofaults of various types are randomly injected 

into B12 circuit to construct a virtual set of defective chips for diagnosis. 

The fault types listed in Table 5 are chosen to represent the 

large variety of actual defects that occur in real chips. The 

advantage of using virtual failed chips is that it provides a 

large number of failed chips with known defect types and 

locations, which is essential for verifying accuracy. 

Figure 3: Two sets of data (blue crosses and red triangles) are plotted with 

respect to two features 𝒙𝟏  and 𝒙𝟐 . A soft-margin SVM allows 

classification errors and maximizes the margin between support vectors 
(circled crosses and triangle) to find a decision boundary. 

𝑥1 

𝑥2 

0 

decision boundary 

error 

error 
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The test set used in this experiment is a 100% stuck-at test 

set generated by a commercial ATPG tool. Each failed chip 

is tested and analyzed using physically-aware diagnosis [1, 

10, 12, 27]. Because each failed chip is virtual in nature (i.e., 

we know the locations of the “defective” lines), the accuracy 

of the diagnosis refinement is easy to verify. However, a list 

of golden answers is never available in practice. 

The number of candidates represents the resolution of the 

initial diagnosis. The cumulative distribution of the initial 

resolution for the virtual population is illustrated in Figure 

4. For every candidate of a failed chip, the previously 

described features in Section 2.1 are extracted for the 

classification process. 

3.2 Results and Discussion 

A total of 33,178 candidates result from diagnosing the 

virtual population of failed chips listed in Table 5. The 

number of bad candidates being labeled by the first-level 

classifier is 13,622. Comparing these results with the inject 

locations reveals that 99.85% of the predicted bad 

candidates are indeed the wrong candidates. 

A total of 19,556 unlabeled candidates from the first-level 

classifier are processed by the second-level classifier. The 

construction of the training sets from unlabeled candidates 

follows the three-step workflow described in Section 2.3. 

The sizes of the training sets in each step are tabulated in 

Table 6a.  

 

 

 

Chip-level diagnosis results of the total 2,887 chips are 

classified into four classes to understand the performance of 

PADRE. The classification examines the quality of the 

refined candidates sets of the chips, i.e., the sets of 

candidates produced by PADRE that have a reduced 

number of candidates compared to the original candidates 

of the respective chips. The description and number of chips 

that fall into each class are shown in Table 8. 

 Good training set Bad training set 

Initial sets 468 4,409 

Refined sets 324 3,283 

Balanced sets 3,283 3,283 

(a) 

 Good training set Bad training set 

Initial sets 897 1,228 

Refined sets 895 1,085 

Balanced sets 1,085 1,085 

(b) 

Table 6: The sizes of training sets in each step of the training-set-

construction workflow for (a) the virtual failed-chip population and (b) the 

actual failed-chip population from LSI. 

The SVM module from MATLAB is used to perform 

second-level classification. The balanced training sets are 

fed into SVM to learn the classifier. The second-level 

classifier labels each of the unlabeled candidates as either 

good or bad. A total of 793 good candidates are labeled by 

the second-level classifier, which means that a total of 

32,385 bad candidates are labeled by the PADRE. The 

candidate-level diagnosis results are summarized in Table 7. 

Comparing the predicted results with the actual locations 

reveals that 94.70% of the labeled good candidates are 

correct. For the labeled bad candidates, the first-level 

classifier has an accuracy of 99.85% while the second-level 

classifier only has an accuracy of 70.88%. Given that it is 

costly to mistake a good candidate as bad, we decide to only 

consider the classification results from the first-level 

classifier for bad candidates in PADRE. Although including 

the second-level classification for the bad candidates can 

aggressively improve the resolution, a considerable number 

of good candidates would be lost, which is undesirable.  

Type of labeling result Number of candidates 

Label good 
Correct 751 

Wrong 42 

Label bad 
Correct 28,610 

Wrong 3,775 

Table 7: The second-level classifier of PADRE shows a high accuracy for 

good-candidate classification and a moderate accuracy for bad-candidate 

classification. 

Overall, PADRE improves resolution for 1,959 of the 2,887 

chips. For the remaining 928 chips, PADRE does not 

identify any good candidate with the second-level classifier 

or eliminate any bad candidates with the first-level classifier, 

which may be due to the result of limited training sets that 

do not comprehensively cover all the possible 

characteristics of the good and bad candidates. Therefore, 

no improvement of resolution is achieved for those chips. 

However, by comparing the refined resolution, i.e., the 

number of candidates in refined candidate sets, with the 

original resolution, it is clear that the resolution 

improvement for the refined chips is significant as shown in 

Figure 4. Specifically, the average per-chip resolution 

improvement is over 32.0% for the refined chips, or 21.7% 

for all the chips. Moreover, the number of chips that exhibit 

perfect resolution (i.e., only one candidate) is more than 

doubled (i.e., 11% to 27%). 
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Figure 4: Resolution refinement through PADRE shows that resolution 

can be improved by 21.7% on average. Moreover, the number of chips that 

exhibit perfect resolution is more than doubled (i.e., 11% to 27%). 
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Class Description 
Number 

of chips 

1 

All good candidates remain in the refined 

candidate set; no bad candidates exist in the 

refined candidate set. 

814 

2 

All good candidates remain in the refined 
candidate set; some bad candidates also exist in 

the refined candidate set. 

1,869 

3 

Not all good candidates remain in the refined 

candidate set; no bad candidates exist in the 
refined candidate set. 

12 

4 

Not all good candidates remain in refined 

candidate set; some bad candidates exist in the 
refined candidate set. 

192 

Table 8: PADRE results viewed at the chip level reveal a high probability 

of including all the good candidates in the refined candidate set, and a 

relatively high probability that some of the bad candidates are also included 
in the refined candidate set. 

The computational time of PADRE does not degrade with 

circuit size, but does with the number of chips in the 

population. A total of 3.9s was used by the classifier to 

process the feature data of 33,178 candidates of 2,887 chips, 

which is equivalent to 0.12ms per candidate or 1.4ms per 

chip, on average. It is important to note however that 

PADRE is applied after traditional diagnosis, so it will 

always add to the time overhead. Besides, the objective of 

PADRE is to enable better diagnostic resolution instead of 

faster diagnosis, so the optimization of time overhead is not 

emphasized in current development. 

PADRE is also applied to actual failed test chips 

manufactured by the LSI Corporation that includes mostly 

74X181 ALU circuits. The LSI ALU consists of 2,309 

gates. Specifically, a total of 5,362 failed test chips are 

diagnosed using a commercial tool, leading to a total of 

36,186 diagnosis candidates. Similar to the virtual failed-

chip population, we provide the training set statistics for the 

LSI failed-chip population in Table 6b. The candidates of 

the LSI chips were processed by the first-level classifier and 

subsequently the second-level classifier. Figure 5 compares 

the (cumulative) distribution of diagnostic resolution 

produced by the commercial tool and the improved 

distribution produced by PADRE. Resolution is improved 

on average by 37.9% for 5,362 failed chips, and the number 

of chips that have ideal resolution is nearly tripled (i.e., 16% 

to 46%). 

Verifying the accuracy of PADRE for the virtual failed-chip 

population is straightforward since the fault type and 

location are known for each chip. This is not the case 

however for the silicon failed-chip population. But we do 

have in hand five chips that have been PFA’ed, the details 

of which are given in Figure 63. PADRE is deemed accurate 

if the actual failure locations are contained within the 

refined set of diagnostic candidates. As shown in Figure 6, 

for the five chips examined, diagnostic resolution is either 

dramatically improved or maintained, and in all cases, the 

                                                 
3It should be noted that the resolution reported here systematically differs 
from reference [10] simply because candidates (i.e., signal lines) are here 

correct candidate(s) are contained within the reduced 

candidate set.  

 

  

 

4. Conclusions and Future Work 

An improved diagnosis resolution reduces the time and cost 

of PFA and also benefits other applications that utilize the 

results of diagnosis for a population of chips (i.e., volume 

diagnosis). Despite the existence of various approaches for 

improving diagnostic resolution, there is still much room for 

improvement.  In this work, we present a novel resolution 

refinement method that uses a two-level unsupervised 

learning classifier, combined with a series of existing and 

new heuristics to distinguish good and bad candidates. 

PADRE (Physically-Aware Diagnostic Resolution 

Enhancement) constructs good and bad training data from 

the originally available unlabeled candidates, instead of 

relying on the historical data as is usually accomplished in 

past work [18, 19]. PADRE is shown to improve average 

resolution over conventional results by 21.7%, and also 

more than doubles the number of chips that exhibit perfect 

resolution for a virtual population of failed chips. These 

numbers improve even further for actual silicon chips. 

Specifically, resolution is reduced for 38% of the nearly 

3,000 failed chips examined, and the number of chips 

exhibiting ideal resolution is nearly tripled (i.e., 16% to 

46%). Finally, for five of the silicon failed-chips, we 

demonstrated that PADRE does not at all degrade 

diagnostic accuracy. 

PADRE demonstrates that it is possible to better understand 

the nature of a diagnostic candidate by exploiting the logical 

and physical information. Our future work will focus on 

exploring other effective chip- or candidate-related features 

to further improve the capability of PADRE. 

equated with signal-line locations, and in [10] candidates are equated with 
faults.  
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Figure 5: Resolution refinement through PADRE shows that resolution 
can be improved by 37.9% on average. Moreover, the number of chips that 

exhibit perfect resolution is nearly tripled (i.e., 16% to 46%). 
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Figure 6: For these five failed chips, diagnostic resolution is significantly improved or maintained without degrading accuracy. 
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