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Abstract
We present a scalable and formal technique to verify locking 
time and stability for charge-pump phase-locked loops 
(PLLs). In contrast to the traditional simulation approach 
that only validates the PLL at a given operation condition, 
our proposed technique formally verified the PLL at all 
possible operation conditions. The dynamics of the PLL is 
described by a hybrid automaton, which incorporates the 
differential equations of the analog circuit elements as well 
as the switching logic of the digital circuit elements. Existing 
methods for computing reachable sets for hybrid automata 
cannot be used to verify the PLL model due to the large num-
ber of cycles required for locking. We develop a new method 
for computing effective overapproximations of the sets of 
states reached on each cycle by using uncertain parameters 
in a discrete-time model to represent the range of possible 
switching times, a technique we call continuization. Using 
this new method for reachability analysis, it is possible to 
verify locking specifications for a charge-pump PLL design 
for all possible initial states and parameter values in time 
comparable to the time required for a few simulation runs 
of the same behavioral model.

1. INTRODUCTION
In the standard design flow for analog mixed signal (AMS) 
circuits, the complete circuit is decomposed into its princi-
pal elements or blocks, which are first analyzed and designed 
using idealized low-order behavioral models. Detailed 
circuit-level designs are implemented only after the perfor-
mance specifications have been verified at the block level 
over the required range of parameter variations and operat-
ing conditions. The goal is to create robust designs to avoid 
costly redesign cycles in the downstream process.

Because of the complexity of the mixed continuous 
and discrete (i.e., hybrid) AMS dynamics, there are no 
analytical techniques to verify a given design satisfies 
the circuit specifications, even for the simplified block-
level behavioral models. Thus, numerical simulation has 
been the standard tool for evaluating the performance 
of behavioral models. Simulation is not completely sat-
isfactory, however, because each simulation run repre-
sents the behavior for only one set of values for the initial 
states and parameters, so many simulations are required 
to assess the robustness of the design. Moreover, some 
specifications can be verified only after simulations have 
run for very long durations, and some specifications such 

as stability cannot be confirmed with absolute certainty 
because simulations cannot be run indefinitely.

This paper demonstrates an alternative to simulation 
based on formal methods. Formal methods offer an attrac-
tive alternative to simulation because they can verify that 
specifications for a circuit are satisfied for all possible behav-
iors over entire ranges of initial states and parameter values. 
This corresponds to an infinite number of simulation runs 
of unbounded duration. In their survey of the literature on 
formal verification for AMS designs, Zaki et al. categorize 
the methods into equivalence checking, automated state-
space exploration, run-time verification, and proof-based 
methods.11 Reachability analysis, the technique developed 
in this paper, is a form of automated state-space exploration.

The basic idea of reachability analysis is to use the 
dynamic equations for the circuit to propagate the trajec-
tories of entire sets of states over time, rather than just a 
single state trajectory. The key issues are how to represent 
sets of states numerically and how to propagate these sets 
efficiently. Good techniques have been developed to repre-
sent and compute reachable sets for continuous dynamic 
systems (see e.g. Althoff 1 and Girard et al.8). All of these 
techniques are based on overapproximations, since the 
actual sets of reachable states are not convex in general. 
These overapproximations become less accurate as time pro-
gresses, however, and for hybrid dynamic systems the over-
approximations become even less accurate and more time 
consuming to compute due to the need to compute over-
approximations of intersections of reachable sets with the 
surfaces representing switching conditions.2, 6 Therefore, 
current reachability analysis techniques for hybrid systems 
are effective when there are only a few discrete transitions in 
the time interval of interest.

To demonstrate the applicability of formal methods 
and reachability analysis to AMS circuits, we consider the 
verification of block-level behavioral models for a class of 
phase-locked loops (PLLs). PLLs are integrated circuits that 
produce high-frequency output signals that are synchro-
nized to and in phase with low-frequency reference signals. 
Originally developed in the 1930’s as a circuit for radio 
receivers, millions of PLLs are now used in virtually all digital 

The original version of this paper was published in the 
Proceedings of the International Conference on Computer 
Aided Design, 2011, pp. 659–666.



98    communications of the acm   |   october 2013  |   vol.  56  |   no.  10

results on computing reachable sets for linear systems with 
bounded uncertain parameters. Using the equations that gov-
ern the continuous dynamics of the PLL, we create a discrete-
time model that generates tight overapproximations of the 
reachable sets at the beginning of each continuous-time 
cycle. Since the actual times at which the discrete transitions 
occur can vary, we introduce bounded uncertain parameters 
in the linear discrete-time model that account for the varia-
tions in the actual transition times. We call this process of 
mapping variations in time into parameter uncertainties 
continuizaton.3 Finally, we show that satisfaction of the PLL 
specifications for the discrete-time model guarantees the 
specifications are satisfied at all points in time. The reach-
able sets for the discrete time model can be computed very 
fast, and the time reduced further by taking advantage of 
certain symmetries in the PLL dynamics. Our approach illus-
trates how the successful use of formal methods to solve real 
problems often requires extensions and insights that exploit 
the particular structure and features of the target applica-
tion. It is an enabling technique that facilitates us to effi-
ciently verify a PLL at all possible operation conditions.

We begin in the next section by showing how a class of 
charge-pump PLLs can be modeled at the behavioral level 
using hybrid automata with uncertain parameters. Section 
3 presents a conversion of the continuous-time behavioral 
model to a discrete-time model, which provides the solu-
tion of the original model after each cycle. Variations in 
switching times of the PLL are abstracted away in Section 4 
using the new concept of continuization. This makes it pos-
sible to abstract the hybrid dynamics of the PLL by a linear 
system with uncertain parameters. Using the model result-
ing from continuization, Section 5 presents the application 
of reachability analysis for formal verification of the PLL 
specifications, and Section 6 presents a comparison of the 
verification results using reachability to the classical simu-
lation approach. The concluding section summarizes the 
contributions of this paper.

2. PLL BEHAVIORAL MODEL
We consider the dual path, type II, third-order charge-
pump PLL shown in Figure 2, consisting of a reference sig-
nal generator (Ref), a voltage-controlled oscillator (VCO), a 
phase frequency detector (PFD), and charge pumps (CPs), 
along with RC circuits to implement a PI controller for the 
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communication systems, from satellites to mobile phones, 
as well as in many other applications such as clock genera-
tion for microprocessors. The charge-pump PLL is one of the 
popular PLL architectures.7 It is an AMS circuit: the error sig-
nal driving the analog feedback is generated by digital logic.7

The primary requirements to be verified for a PLL are 
the  circuit’s locking time and stability. These specifica-
tions are illustrated in Figure 1. Locking time is a transient 
specification: the PLL state must reach the invariant region 
within a specified number of cycles. Stability is an invariant 
specification: from some set of initial states, the magnitude 
of the phase difference must remain within a given bound 
indefinitely. Both of these specifications must be achieved 
robustly, that is, from an arbitrary initial state and over a 
range of parameter values that reflect the target operat-
ing conditions (e.g., a given temperature range) as well as 
the inherent uncertainties that will arise from the detailed 
design and manufacturing processes. Verifying the behav-
ioral model of a PLL using simulation is time consuming and 
ultimately inconclusive because: (i) locking can take a few 
thousand cycles, so very long simulation runs are required; 
(ii) each simulation run represents the behavior for only 
one set of values for the initial states and parameters, so 
many simulations are required to assess the robustness of 
the design; and (iii) invariance can only be inferred, but not 
guaranteed, because simulations cannot be run indefinitely.

We present a method for verifying both the transient and 
invariant specifications for a PLL over entire ranges of initial 
states and parameter values using reachable set computa-
tions that can be performed in the same amount of time cur-
rently required to simulate the circuit models for just a few 
selected points in the design space. Our approach relies on 
some new techniques tailored to the PLL problem because 
locking can require thousands of cycles, which implies 
there will be thousands of discrete transitions in the switch-
ing logic. Experiments with existing methods implemented 
in tools such as PHAVer5 or SpaceEx6 show that the overap-
proximations using existing methods become inaccurate 
so quickly that it is impossible to demonstrate that locking 
occurs, even for simple cases where locking can be demon-
strated analytically.

The main technical contribution of this paper is a new 
method for computing accurate overapproximations of reach-
able sets for hybrid systems when there are a large number of 
discrete state transitions. This approach leverages previous 

Figure 1. Transient (locking time) and invariant (stability) 
specifications for a PLL.
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where the resistor and capacitor values are given in Figure 2 
and the values Ki, Kp, and f0 determine the frequency of the 
VCO: . Input values u vary depend-
ing on the signals leaving the PFD according to

The output signals of the PFD are determined by threshold 
crossings of phase signals. The switching logic is described 
by the automaton shown in Figure 3, where the states are 
labeled as up_active, dn_active, both_active, and both_off.

Starting in both_off, the next discrete state of the hybrid 
automaton is up_active if the reference signal leads by first 
reaching Φref = 2p, and dn_active when Φv = 2p is reached 
first. As shown in Figure 4, in order to use the same phase 
crossings for the next cycle, the phase values are reset to 
Φref := Φref − 2p, Φv := Φv − 2p upon continuing in up_active and 
dn_active. Once the lagging signal has a zero-crossing, the 
discrete state both_active is entered which models a time 
delay td for switching off both charge pumps. After the delay, 

feedback loop. The reference frequency generator produces 
a sinusoidal signal at a fixed low frequency (MHz), and the 
VCO generates a high-frequency signal (GHz). The desired 
output frequency of the VCO is determined by the reference 
frequency and the frequency divider ratio (i.e., N). The pur-
pose of the PLL is to ‘lock’ the controlled frequency of the 
VCO so that its output has the same frequency (when divided 
by N) and phase as the reference signal.

Locking of the PLL is achieved by the PFD by comparing 
the phases of the reference signal and the VCO signal and set-
ting the signals UP = 1 if the reference signal leads, and DN = 1 
if it lags. These signals pump charge into or out of the capaci-
tors, changing voltages vp and vi, which serve as proportional 
and integral (PI) control inputs to the VCO. For instance, if 
the reference signal leads, it means that the reference signal 
is faster than the VCO signal (when divided by N). In this case, 
UP is set to 1 and the “up” current will charge the capacitors 
so that the voltage values vi and vp increase. As a result, the 
VCO frequency increases in order to catch the reference signal. 
We do not consider adaptation of PLL parameters such as the 
frequency divider, resistor, or capacitor values.

As one can see from Figure 2, different components of the 
PLL system operate at different frequencies. For instance, 
the reference signal is at low frequency, while the VCO signal 
may be at extremely high frequency if the frequency divider 
ratio N is large. The large difference in frequency makes PLL 
simulation extremely challenging, since a traditional simu-
lation tool must adopt a very small time step to numerically 
solve the PLL response in time domain. It, in turn, results in 
a very long simulation time.

The behavioral model of the charge-pump PLL is a hybrid 
automaton4 with linear continuous dynamics and uncertain 
parameters. Appropriate bounds on the uncertain para
meters can be determined by equivalence checking with 
detailed circuit models.9, 10 These bounds should be chosen 
to assure that the behavioral model represents all possible 
behaviors of a detailed circuit model. If the more detailed 
model is at the transistor level, the approach is also able to 
catch issues at the transistor level. However, current equiva-
lence checking techniques are typically semi-formal such 
that a complete enclosure cannot yet be guaranteed.

The continuous state vector in the behavioral model is 
x = [vi vp1 vp Φv Φref]

T with input vector u = [ii ip]T (see Figure 2). 
The dynamics are

	 � (1)

with

both_off
UP = 0,
DN = 0

dn_active
UP = 0,
DN = 1

up_active
UP = 1,
DN = 0

both_active
UP = 1,
DN = 1

guard: Φref == 2p
reset:  Φv := Φv − 2p

Φref := 0

guard: Φv == 2p
reset:  Φref := Φref − 2p

guard: Φref == 0
reset:  t := 0

guard: Φv == 0
reset:  t := 0

Φv := 0

guard: t == td

Figure 3. Hybrid automaton.

Figure 4. Typical charge pump activity.
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the system is in both_off again, which completes one cycle. 
Locking is achieved when the phase difference reaches and 
remains within the locked condition given by the interval 
[−0.1°, 0.1°].

3. TIME DISCRETIZATION
Given the hybrid automaton behavioral model of the PLL, 
we first derive a discrete-time linear model with bounded 
uncertain parameters based on the phase of the reference 
signal, assuming the reference signal leads the VCO 
signal,  that is, for the discrete state sequence up_active → 
both_active → both_off. The time for a cycle of the reference 
signal is given by tcycle = 1/fref . Since the continuous dynamics 
of the PLL is linear, we can take advantage of the superposi-
tion principle and obtain the initial state solution and the 
input solution separately. The initial state solution for one 
cycle is given by xh(t + tcycle) = e Atcycle x(t). The input solution 
for constant input u over the time interval [0, r], where r is 
the time the charge pump is active, can be written using the 
Taylor series of e At as

	 �

(2)

where A ⊕ B = {a + b|a ∈ A, b ∈ B} is a Minkowski addition 
and A ⊗ B = {ab|a ∈ A, b ∈ B} a set-based multiplication. 
Note that sets can be sets of scalars, vectors, or matrices, and 
sets may also contain just a single (certain) element. The 
set multiplication sign is sometimes dropped when the 
context makes it clear that uncertain matrices are involved. 
The standard operator precedence rules apply. The set of 
remainders E p(r) is overapproximated by an interval matrix, 
that is, a matrix with lower and upper bounds on each ele-
ment, as presented in Althoff et al.3 Since there is no input 
for the rest of the cycle, the input solution after one cycle is  
xp(tcycle) ∈ e A(tcycle–r) Γ (r)u. Let ton denote the time the system 
is in location up_active and recall that td is the time it is in 
both_active. Also, let u denote the input in up_active and ud 
denote the input in both_active. Finally, defining xk = x(k tcycle), 
the combination of the initial state solution and all input 
solutions can be written as

	 �

(3)

The above formula is a discrete-time overapproximation of 
the continuous-time evolution after one cycle.

4. CONTINUIZATION
The model derived above computes the state of the system 
after one cycle when the switching time of the charge pumps 
is known. In this section, we develop a model that computes 
the range of state values that can occur at each cycle, for the 
entire range of possible switching times ton (while td is a given 
constant). A closed form solution does not exist for ton, which 
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depends on the state of the system. Simulation techniques 
obtain ton by detecting a zero-crossing which corresponds 
to crossing the guard condition Φv == 0. Here we propose 
a more efficient method based on overapproximating the 
interval of possible values for ton. Since ton depends only on 
Φv = x4, it is sufficient to consider (see (1) )

	 � (4)

We assume user-defined bounds ,  
which are monitored during the verification process. Viola
tion of these bounds would require to restart the verification 
with larger intervals. Applying interval arithmetic to (4) 
results in the bound . We further extract the bound 

 on x4 from the reachable set at the beginning of each 
cycle. We obtain  
using the fact that the reference signal is leading  
resulting in

	 � (5)

Using bounds on the switching times derived above, we 
use the concept of continuization to compute the set of 
reachable states resulting from uncertain switching times. 
To compute the reachable set under uncertain switching 
times (see Figure 5), we modify (3) and compute the solution 
successively, first of k at times tk + on, then of k+1 at times 
tk+1. This makes it possible to reset the uncertain switching 
time to values in the interval [0, ∆ton], ∆ton =  on − on com-
pared to [ on, on], which has computational benefits when 
evaluating Taylor series since higher order terms can be 
tightly bounded. The new equations are:

	 �

(6)

We drop the cycle index k for the following deviations 
for simplicity. It is possible to extract the time  from the set 
G (∆ton), to obtain the relatively tight inclusion

where C (∆ton) is an interval matrix derived in Althoff et  al.3 
Combining this result with  using the idea in (5) yields

u
ton

ton ton tcycle t

Figure 5. Range of times [ton, t−on] when the charge pump is switched 
off. The mode both_active is not considered in this figure.
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Now, the expression  in (6) is written in 
terms of , independent of the current mode. Thereto, we 
use the fact that u only changes sign between modes based 
on the  phase difference, which is taken care of by redefin-
ing the input u := sgn(x4(tk) )(−u). We also consider that u ∈ U, 
where U is an interval vector, such that

	 �

(7)

where 0 represents zero vectors of proper dimension and 
Θ(∆ton) is an interval matrix.

The result of (7) holds no matter if the phase difference 
is positive or negative as long as the time interval [ on, on] is 
correctly overapproximated. The time intervals computed 
in (5) are based on the cycle including up_active. If the cycle 
containing dn_active is also considered, the bounds are

	 � (8)

When computing the state bounds for a constant cycle 
time tcycle, the input is applied in the interval tk + [0, ton] for 
the cycle containing up_active and in the interval tk − [0, ton] 
for the cycle containing dn_active. As shown in Algorithm 1 
below, the different times are taken care of by adding the 
reachable set due to the input before and after tk when both 
cycles are possible. The addition of the input solution for 
tk + [0, ton] and tk − [0, ton] results in an overapproximation 
since the input solution contains the origin, so that the pre-
vious sets are contained in the set after the addition. Further, 
it is sufficient to only keep the input applied at tk + [0, ton] for 
subsequent computations, which is illustrated in Figure 6.  

Thus,  the error for adding the input solution for tk + [0, ton] 
and tk − [0, ton] does not accumulate. The procedure of only 
keeping the input applied at tk + [0, ton] is realized by the aux-
iliary reachable set  in Algorithm 1. We skip the proof that 
this procedure is overapproximative due to space limitations.

5. REACHABILITY ANALYSIS
We now present how to compute the reachable set for a set 
of initial states and a sequence of cycles. The reachable sets 
are represented using zonotopes which have a maximum 
complexity of O (n3) with respect to the system dimension n 
for the required operations. A zonotope is defined as

where c ∈ Rn is the zonotope center (to which a zonotope 
is centrally symmetric) and the g (i) ∈ Rn are called genera-
tors. The order of a zonotope is defined as . Figure 7 
illustrates a zonotope being constructed step-by-step as the 
Minkowski sum of a finite set of line segments i = [−1, 1] g (i). 
Operations on zonotopes and operations between sets of 
matrices and zonotopes are presented in Althoff.1

5.1. Transient analysis
The algorithm for the reachable set computation when the ref-
erence signal is initially leading is presented in Algorithm 1. 
An  interesting property of the PLL is that the number of 
cycles required for locking is identical when the absolute 
value of the initial phase difference is equal and the cor-
responding initial voltages are symmetric with respect to 
the voltages in the completely locked state. We refer to this 
property as symmetric locking time which makes it sufficient 
to compute the reachable set only for the case when the ref-
erence signal is initially leading. For the symmetric lock-
ing, we additionally require that  and , 
which can be relaxed for reachability analysis by choosing 
the intervals for  and  large enough such that 
their center is 0. The proof for symmetric locking is omitted 
due to space limitations.

For simulation purposes, the values of the phases Φref and 
Φv are needed to determine the time for turning the charge 
pumps on and off. In contrast, the discrete-time model for 
reachability analysis does not require the exact timing for 
switching the charge pump values; it is sufficient to keep 
only the phase difference x4 := Φv − Φref as a state variable and 
remove x5 for the reachability computations.
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Figure 6. Consideration of inputs when the phase difference changes 
from negative to positive. (a) Signal of charge pump activity; (b) signal 
used for reachability analysis up to time tk.

c

l̂1

(a)

c

l̂1 l̂2

c

l̂1 l̂2

l̂3

(c)(b)

Figure 7. Construction of a zonotope by Minkowski addition of line 
segments. (a) c ≈ l̂1 (b) c ≈ l̂1 ≈ l̂2 (c) c ≈ l̂1 ≈ l̂2 ≈ l̂3



102    communications of the acm   |   october 2013  |   vol.  56  |   no.  10

research highlights 

 

5.2. Invariant computation
Once the reachable set fulfills the locking condition |PRk| ≤ 
∆Φlock (see Algorithm 1), it remains to check if this condition is 
fulfilled indefinitely. A straightforward procedure would be to 
check after each cycle if Rk+1 ⊆ Rk, meaning that Rk is an invari-
ant. Checking Rk+1 ⊆ Rk is computationally expensive. This is 
because zonotopes have to be represented by polytopes and the 
enclosure check for polytopes is computationally expensive.1

For this reason, we use the following alternative proce-
dure illustrated in Figure 8. First, the reachable set compu-
tations are continued for  extra cycles after a reachable set 
fulfills the locking condition in cycle klock, see Figure 8. Next, 
the reachable set Rklock +  is overapproximated by an axis-
aligned box denoted by I. This leads to an overapproxima-
tion for the subsequent reachable sets, so  should be chosen 
large enough such that all the subsequent sets fulfill the lock-
ing condition. Once a reachable set Rkfinal represented by a 
zonotope is enclosed by I (which is computationally cheap to 
detect), one can conclude that the PLL is locked indefinitely.

6. NUMERICAL RESULTS
We apply Algorithm 1 and the invariant computation to ver-
ify a 27 GHz PLL designed in 32 nm CMOS SOI technology. 
Note that the PLL was designed in a commercial process at 
an advanced technology node. Hence, it provides a practical 
example to demonstrate the efficacy of our proposed verifica-
tion method. The parameters of the PLL and the reachable 
set computation are listed in Table 1. The PLL considered 
here employs a simple initialization circuitry that sets the 
integral and proportional path voltages to common-mode 
levels at power up and whenever the division ratio is changed. 
This reduces locking time and aids the formal verification 
by reducing the uncertainty on the initial node voltages. With 
the initialization, the initial range of node voltages are vi(0) 
∈ [0.34, 0.36], and vp1(0), vp(0) ∈ [−0.01, 0.01]. We normalize 
the phases to [0, 1], and we normalize the time to microsec-
onds. The phase range of Φv is split into 5 subintervals Φv

i (0) 
∈ - 0.1⋅[i, i - 1], where i = 1 … 5, and without loss of generality 
we assume Φref (0) = 0. Because of symmetry, all possible ini-
tial phase differences are considered. The number of Taylor 
terms chosen depends on the time horizon. For Γ(tcycle − ton), 
30 Taylor terms are used and 10 Taylor terms are used for 
all other computations. The aforementioned experiment 
setup allows us to formally verify the PLL with consideration 
of initial voltage and phase uncertainties. Note that these 
uncertainties cannot be efficiently incorporated into the 
traditional simulation approach, as a traditional simulation 
can only validate the PLL with a specific initial condition.

The reachable set starting with the initial phase dif-
ference  (0) is shown for the first 200 cycles in Figure 9 
for  projections onto four different pairs of state variables. 
The sets computed to prove locking are shown in Figure 8. 
In this example, the proposed verification algorithm is able 
to prove that independent of the initial condition, the PLL 
reliably locks to the reference signal. Note that the voltages 
in Figure 9 are as high as 10 [V] since charge pump satura-
tion is not yet considered. It is possible to further extend our 
verification method to consider charge pump saturation by 
applying a nonlinear behavior model.

Table 2 shows the clock cycles it takes for the PLL to 

Algorithm 1 Reachable set computation when reference 
signal is leading at t = 0

Input: Initial set R0, system matrix A, input set U, input set  
   for both_active

parameters: tcycle, ∆Φlock, ,  
Output: Rklock

while |PRk| > ∆Φlock do

Compute Γ(t) for t ∈ { on, td, (tcycle − on)}; see (2)
Compute Θ for ∆ton = on − on; see (7)
Compute (∆ton); see (6)

k := k + 1
end while
klock = k − 1

−4 −2 0 2 4
x 10−4

0.3495

0.35

0.3505

(Φv−Φref)/2p (in rad)

v i
 (

in
 V

)

∆Φlock

I

kfinal

i=klock+ Ri

Rklock

Rklock+

Rkfinal

U

Figure 8. Reachable sets of different stages of the invariant computation.

Table 1. Parameters.

PLL model Reachable set comp.

Name Value Unit Name Value

fref 27 MHz Max 
zonotope

f0 26.93e3 MHz Order o 100
N 1000 − 0
Ki 200 MHz/V 0.7
Kp 25 MHz/V −4
Ii [9.9,10.1]e−6 A 12
Ip [495,505]e−6 A  100
Ci 25e−12 F
Cp1 6.3e−12 F
Cp3 2e−12 F
Rp2 50e3 Ohm
Rp3 8e3 Ohm
td 50e−12 s
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achieve locking for varying initial phase errors. The 1st and 
the 2nd columns show the results from reachability analy-
sis. The 3rd column shows the maximum lock time obtained 
from 30 behavioral simulations with randomly varying ini-
tial phase errors and charge pump currents. We use the 
maximum lock time since the verification task is to check if 
the PLL always locks before a specified locking time, that is, 
we are investigating the worst-case behavior. Note that we 
are not providing any stochastic evaluation since this is not 
the focus of this work. Table 2 demonstrates that our reach-
ability analysis efficiently provides an upper bound on the 
worst-case lock time in the presence of random phase error 
and charge pump current variations. On the other hand, it 
is important to note that the traditional approach based on 
Monte Carlo simulation cannot guarantee to find the “true” 
maximum lock time. Unless an infinite number of Monte 
Carlo runs are performed, the maximum lock time may not 
be captured by one of the Monte Carlo runs.

The computation times for the reachability analysis start-
ing at different initial sets of phase differences are listed in 
Table 3. It can be seen that the results are obtained in less 
than a minute. The average computation time of the reach-
ability analysis for a single cycle is around 27 [ms], which 
is only slightly longer than 24 [ms] required for a simula-
tion of one cycle of the behavior model in MATLAB. All 
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Figure 9. The blue regions show the reachable set of each cycle for the first 200 cycles. Simulation results of each cycle are plotted by red dots. 
(a) Projection onto vi, vp1; (b) projection onto vi, (Φv − Φref)/(2p); (c) projection onto vp1, vp; and (d) projection onto vp, (Φv − Φref)/(2p).

Table 2. Required cycles for locking.

Reachability analysis Simulation

Fv(0)
Cycles to guarantee 

locking
Cycles to 
reach I

(Max.) Cycles 
to reach I

[−0.5,−0.4] 2039 1845 1271
[−0.4,−0.3] 1981 1787 1225
[−0.3,−0.2] 1908 1714 1173
[−0.2,−0.1] 1811 1616 1086
[−0.1,0] 1652 1457 994

Fv(0) ∈ −0.1 [5,4] [4,3] [3,2] [2,1] [1,0]
Comp. times (in s) 55.0 54.4 53.5 47.8 42.9

Table 3. Computation times of the PLL. Computed number of cycles 
equals the left column of Table 2.

computations mentioned so far have been performed on an 
Intel i7 processor with 1.6 GHz and 6 GB memory. Simulating 
the behavioral model in VerilogA for a particular initial con-
dition requires only 2 [ms] per cycle on an Intel Xeon CPU 
with 2.53 GHz, which is an order of magnitude faster than 
reachability analysis. However, reachability analysis is still 
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competitive if we consider that the VerilogA model needs to 
be simulated for thousands of Monte Carlo samples to cap-
ture random initial conditions and parameter variations.

7. CONCLUSION
This paper presented a method for verifying PLL locking 
using efficient reachability analysis. Efficient reachabil-
ity computations are achieved using a discrete-time linear 
model with uncertain parameters and continuization to 
eliminate the complexity of switching. In contrast to apply-
ing a classical reachability approach, the intersection of 
guard sets can be dropped. As a consequence, the only opera-
tions on sets that remain, can be performed using zonotopes, 
which have a maximum complexity of O (n3) with respect 
to the system dimension n. The verification of locking does 
not require any Lyapunov function to show convergence. For 
future work, we plan to consider saturations of charge pumps 
and varactor nonlinearities. We are also looking at other 
applications of continuization for hybrid systems where the 
transition time can be accurately overapproximated by a lin-
ear function of the state plus uncertainty. In addition to PLL, 
the proposed reachability analysis may be further extended 
to verify the circuit functionality and performance specifica-
tions of other AMS systems in time domain.
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