
october 2013 | vol. 56 | no. 10 | communications of the acm 97

doi:10.1145/2507771.2507783

Formal Verification of Phase-
Locked Loops Using Reachability
Analysis and Continuization
By Matthias Althoff, Akshay Rajhans, Bruce H. Krogh, Soner Yaldiz, Xin Li, and Larry Pileggi

Abstract
We present a scalable and formal technique to verify locking
time and stability for charge-pump phase-locked loops
(PLLs). In contrast to the traditional simulation approach
that only validates the PLL at a given operation condition,
our proposed technique formally verified the PLL at all
possible operation conditions. The dynamics of the PLL is
described by a hybrid automaton, which incorporates the
differential equations of the analog circuit elements as well
as the switching logic of the digital circuit elements. Existing
methods for computing reachable sets for hybrid automata
cannot be used to verify the PLL model due to the large num-
ber of cycles required for locking. We develop a new method
for computing effective overapproximations of the sets of
states reached on each cycle by using uncertain parameters
in a discrete-time model to represent the range of possible
switching times, a technique we call continuization. Using
this new method for reachability analysis, it is possible to
verify locking specifications for a charge-pump PLL design
for all possible initial states and parameter values in time
comparable to the time required for a few simulation runs
of the same behavioral model.

1. INTRODUCTION
In the standard design flow for analog mixed signal (AMS)
circuits, the complete circuit is decomposed into its princi-
pal elements or blocks, which are first analyzed and designed
using idealized low-order behavioral models. Detailed
circuit-level designs are implemented only after the perfor-
mance specifications have been verified at the block level
over the required range of parameter variations and operat-
ing conditions. The goal is to create robust designs to avoid
costly redesign cycles in the downstream process.

Because of the complexity of the mixed continuous
and discrete (i.e., hybrid) AMS dynamics, there are no
analytical techniques to verify a given design satisfies
the circuit specifications, even for the simplified block-
level behavioral models. Thus, numerical simulation has
been the standard tool for evaluating the performance
of behavioral models. Simulation is not completely sat-
isfactory, however, because each simulation run repre-
sents the behavior for only one set of values for the initial
states and parameters, so many simulations are required
to assess the robustness of the design. Moreover, some
specifications can be verified only after simulations have
run for very long durations, and some specifications such

as stability cannot be confirmed with absolute certainty
because simulations cannot be run indefinitely.

This paper demonstrates an alternative to simulation
based on formal methods. Formal methods offer an attrac-
tive alternative to simulation because they can verify that
specifications for a circuit are satisfied for all possible behav-
iors over entire ranges of initial states and parameter values.
This corresponds to an infinite number of simulation runs
of unbounded duration. In their survey of the literature on
formal verification for AMS designs, Zaki et al. categorize
the methods into equivalence checking, automated state-
space exploration, run-time verification, and proof-based
methods.11 Reachability analysis, the technique developed
in this paper, is a form of automated state-space exploration.

The basic idea of reachability analysis is to use the
dynamic equations for the circuit to propagate the trajec-
tories of entire sets of states over time, rather than just a
single state trajectory. The key issues are how to represent
sets of states numerically and how to propagate these sets
efficiently. Good techniques have been developed to repre-
sent and compute reachable sets for continuous dynamic
systems (see e.g. Althoff 1 and Girard et al.8). All of these
techniques are based on overapproximations, since the
actual sets of reachable states are not convex in general.
These overapproximations become less accurate as time pro-
gresses, however, and for hybrid dynamic systems the over-
approximations become even less accurate and more time
consuming to compute due to the need to compute over-
approximations of intersections of reachable sets with the
surfaces representing switching conditions.2, 6 Therefore,
current reachability analysis techniques for hybrid systems
are effective when there are only a few discrete transitions in
the time interval of interest.

To demonstrate the applicability of formal methods
and reachability analysis to AMS circuits, we consider the
verification of block-level behavioral models for a class of
phase-locked loops (PLLs). PLLs are integrated circuits that
produce high-frequency output signals that are synchro-
nized to and in phase with low-frequency reference signals.
Originally developed in the 1930’s as a circuit for radio
receivers, millions of PLLs are now used in virtually all digital

The original version of this paper was published in the
Proceedings of the International Conference on Computer
Aided Design, 2011, pp. 659–666.

98 communications of the acm | october 2013 | vol. 56 | no. 10

results on computing reachable sets for linear systems with
bounded uncertain parameters. Using the equations that gov-
ern the continuous dynamics of the PLL, we create a discrete-
time model that generates tight overapproximations of the
reachable sets at the beginning of each continuous-time
cycle. Since the actual times at which the discrete transitions
occur can vary, we introduce bounded uncertain parameters
in the linear discrete-time model that account for the varia-
tions in the actual transition times. We call this process of
mapping variations in time into parameter uncertainties
continuizaton.3 Finally, we show that satisfaction of the PLL
specifications for the discrete-time model guarantees the
specifications are satisfied at all points in time. The reach-
able sets for the discrete time model can be computed very
fast, and the time reduced further by taking advantage of
certain symmetries in the PLL dynamics. Our approach illus-
trates how the successful use of formal methods to solve real
problems often requires extensions and insights that exploit
the particular structure and features of the target applica-
tion. It is an enabling technique that facilitates us to effi-
ciently verify a PLL at all possible operation conditions.

We begin in the next section by showing how a class of
charge-pump PLLs can be modeled at the behavioral level
using hybrid automata with uncertain parameters. Section
3 presents a conversion of the continuous-time behavioral
model to a discrete-time model, which provides the solu-
tion of the original model after each cycle. Variations in
switching times of the PLL are abstracted away in Section 4
using the new concept of continuization. This makes it pos-
sible to abstract the hybrid dynamics of the PLL by a linear
system with uncertain parameters. Using the model result-
ing from continuization, Section 5 presents the application
of reachability analysis for formal verification of the PLL
specifications, and Section 6 presents a comparison of the
verification results using reachability to the classical simu-
lation approach. The concluding section summarizes the
contributions of this paper.

2. PLL BEHAVIORAL MODEL
We consider the dual path, type II, third-order charge-
pump PLL shown in Figure 2, consisting of a reference sig-
nal generator (Ref), a voltage-controlled oscillator (VCO), a
phase frequency detector (PFD), and charge pumps (CPs),
along with RC circuits to implement a PI controller for the

research highlights

communication systems, from satellites to mobile phones,
as well as in many other applications such as clock genera-
tion for microprocessors. The charge-pump PLL is one of the
popular PLL architectures.7 It is an AMS circuit: the error sig-
nal driving the analog feedback is generated by digital logic.7

The primary requirements to be verified for a PLL are
the circuit’s locking time and stability. These specifica-
tions are illustrated in Figure 1. Locking time is a transient
specification: the PLL state must reach the invariant region
within a specified number of cycles. Stability is an invariant
specification: from some set of initial states, the magnitude
of the phase difference must remain within a given bound
indefinitely. Both of these specifications must be achieved
robustly, that is, from an arbitrary initial state and over a
range of parameter values that reflect the target operat-
ing conditions (e.g., a given temperature range) as well as
the inherent uncertainties that will arise from the detailed
design and manufacturing processes. Verifying the behav-
ioral model of a PLL using simulation is time consuming and
ultimately inconclusive because: (i) locking can take a few
thousand cycles, so very long simulation runs are required;
(ii) each simulation run represents the behavior for only
one set of values for the initial states and parameters, so
many simulations are required to assess the robustness of
the design; and (iii) invariance can only be inferred, but not
guaranteed, because simulations cannot be run indefinitely.

We present a method for verifying both the transient and
invariant specifications for a PLL over entire ranges of initial
states and parameter values using reachable set computa-
tions that can be performed in the same amount of time cur-
rently required to simulate the circuit models for just a few
selected points in the design space. Our approach relies on
some new techniques tailored to the PLL problem because
locking can require thousands of cycles, which implies
there will be thousands of discrete transitions in the switch-
ing logic. Experiments with existing methods implemented
in tools such as PHAVer5 or SpaceEx6 show that the overap-
proximations using existing methods become inaccurate
so quickly that it is impossible to demonstrate that locking
occurs, even for simple cases where locking can be demon-
strated analytically.

The main technical contribution of this paper is a new
method for computing accurate overapproximations of reach-
able sets for hybrid systems when there are a large number of
discrete state transitions. This approach leverages previous

Figure 1. Transient (locking time) and invariant (stability)
specifications for a PLL.

0 500 1000 1500

–0.3

–0.2

–0.1

0

Cycle number

transient
part

P
ha

se
 d

if
fe

re
nc

e
∆Φ

invariant
part

allowed
∆Φ

Ci

Cp1

CP

Rp2

Rp3

frequency
divider

1/N

Cp3

vi

vp1 vpip

ii

Φref

Φv

phase
frequency
detector

(PFD)

Ref
UP

VCO

DN

Figure 2. Dual-path charge-pump PLL.

october 2013 | vol. 56 | no. 10 | communications of the acm 99

where the resistor and capacitor values are given in Figure 2
and the values Ki, Kp, and f0 determine the frequency of the
VCO: . Input values u vary depend-
ing on the signals leaving the PFD according to

The output signals of the PFD are determined by threshold
crossings of phase signals. The switching logic is described
by the automaton shown in Figure 3, where the states are
labeled as up_active, dn_active, both_active, and both_off.

Starting in both_off, the next discrete state of the hybrid
automaton is up_active if the reference signal leads by first
reaching Φref = 2p, and dn_active when Φv = 2p is reached
first. As shown in Figure 4, in order to use the same phase
crossings for the next cycle, the phase values are reset to
Φref := Φref − 2p, Φv := Φv − 2p upon continuing in up_active and
dn_active. Once the lagging signal has a zero-crossing, the
discrete state both_active is entered which models a time
delay td for switching off both charge pumps. After the delay,

feedback loop. The reference frequency generator produces
a sinusoidal signal at a fixed low frequency (MHz), and the
VCO generates a high-frequency signal (GHz). The desired
output frequency of the VCO is determined by the reference
frequency and the frequency divider ratio (i.e., N). The pur-
pose of the PLL is to ‘lock’ the controlled frequency of the
VCO so that its output has the same frequency (when divided
by N) and phase as the reference signal.

Locking of the PLL is achieved by the PFD by comparing
the phases of the reference signal and the VCO signal and set-
ting the signals UP = 1 if the reference signal leads, and DN = 1
if it lags. These signals pump charge into or out of the capaci-
tors, changing voltages vp and vi, which serve as proportional
and integral (PI) control inputs to the VCO. For instance, if
the reference signal leads, it means that the reference signal
is faster than the VCO signal (when divided by N). In this case,
UP is set to 1 and the “up” current will charge the capacitors
so that the voltage values vi and vp increase. As a result, the
VCO frequency increases in order to catch the reference signal.
We do not consider adaptation of PLL parameters such as the
frequency divider, resistor, or capacitor values.

As one can see from Figure 2, different components of the
PLL system operate at different frequencies. For instance,
the reference signal is at low frequency, while the VCO signal
may be at extremely high frequency if the frequency divider
ratio N is large. The large difference in frequency makes PLL
simulation extremely challenging, since a traditional simu-
lation tool must adopt a very small time step to numerically
solve the PLL response in time domain. It, in turn, results in
a very long simulation time.

The behavioral model of the charge-pump PLL is a hybrid
automaton4 with linear continuous dynamics and uncertain
parameters. Appropriate bounds on the uncertain para
meters can be determined by equivalence checking with
detailed circuit models.9, 10 These bounds should be chosen
to assure that the behavioral model represents all possible
behaviors of a detailed circuit model. If the more detailed
model is at the transistor level, the approach is also able to
catch issues at the transistor level. However, current equiva-
lence checking techniques are typically semi-formal such
that a complete enclosure cannot yet be guaranteed.

The continuous state vector in the behavioral model is
x = [vi vp1 vp Φv Φref]

T with input vector u = [ii ip]T (see Figure 2).
The dynamics are

	 � (1)

with

both_off
UP = 0,
DN = 0

dn_active
UP = 0,
DN = 1

up_active
UP = 1,
DN = 0

both_active
UP = 1,
DN = 1

guard: Φref == 2p
reset: Φv := Φv − 2p

Φref := 0

guard: Φv == 2p
reset: Φref := Φref − 2p

guard: Φref == 0
reset: t := 0

guard: Φv == 0
reset: t := 0

Φv := 0

guard: t == td

Figure 3. Hybrid automaton.

Figure 4. Typical charge pump activity.

Ii
UP

ton td

Φref

Φv

ii

t

t

t
2p

2p

0

0

0

100 communications of the acm | october 2013 | vol. 56 | no. 10

the system is in both_off again, which completes one cycle.
Locking is achieved when the phase difference reaches and
remains within the locked condition given by the interval
[−0.1°, 0.1°].

3. TIME DISCRETIZATION
Given the hybrid automaton behavioral model of the PLL,
we first derive a discrete-time linear model with bounded
uncertain parameters based on the phase of the reference
signal, assuming the reference signal leads the VCO
signal, that is, for the discrete state sequence up_active →
both_active → both_off. The time for a cycle of the reference
signal is given by tcycle = 1/fref . Since the continuous dynamics
of the PLL is linear, we can take advantage of the superposi-
tion principle and obtain the initial state solution and the
input solution separately. The initial state solution for one
cycle is given by xh(t + tcycle) = e Atcycle x(t). The input solution
for constant input u over the time interval [0, r], where r is
the time the charge pump is active, can be written using the
Taylor series of e At as

	 �

(2)

where A ⊕ B = {a + b|a ∈ A, b ∈ B} is a Minkowski addition
and A ⊗ B = {ab|a ∈ A, b ∈ B} a set-based multiplication.
Note that sets can be sets of scalars, vectors, or matrices, and
sets may also contain just a single (certain) element. The
set multiplication sign is sometimes dropped when the
context makes it clear that uncertain matrices are involved.
The standard operator precedence rules apply. The set of
remainders E p(r) is overapproximated by an interval matrix,
that is, a matrix with lower and upper bounds on each ele-
ment, as presented in Althoff et al.3 Since there is no input
for the rest of the cycle, the input solution after one cycle is
xp(tcycle) ∈ e A(tcycle–r) Γ (r)u. Let ton denote the time the system
is in location up_active and recall that td is the time it is in
both_active. Also, let u denote the input in up_active and ud
denote the input in both_active. Finally, defining xk = x(k tcycle),
the combination of the initial state solution and all input
solutions can be written as

	 �

(3)

The above formula is a discrete-time overapproximation of
the continuous-time evolution after one cycle.

4. CONTINUIZATION
The model derived above computes the state of the system
after one cycle when the switching time of the charge pumps
is known. In this section, we develop a model that computes
the range of state values that can occur at each cycle, for the
entire range of possible switching times ton (while td is a given
constant). A closed form solution does not exist for ton, which

research highlights

depends on the state of the system. Simulation techniques
obtain ton by detecting a zero-crossing which corresponds
to crossing the guard condition Φv == 0. Here we propose
a more efficient method based on overapproximating the
interval of possible values for ton. Since ton depends only on
Φv = x4, it is sufficient to consider (see (1) )

	 � (4)

We assume user-defined bounds ,
which are monitored during the verification process. Viola
tion of these bounds would require to restart the verification
with larger intervals. Applying interval arithmetic to (4)
results in the bound . We further extract the bound

 on x4 from the reachable set at the beginning of each
cycle. We obtain
using the fact that the reference signal is leading
resulting in

	 � (5)

Using bounds on the switching times derived above, we
use the concept of continuization to compute the set of
reachable states resulting from uncertain switching times.
To compute the reachable set under uncertain switching
times (see Figure 5), we modify (3) and compute the solution
successively, first of k at times tk + on, then of k+1 at times
tk+1. This makes it possible to reset the uncertain switching
time to values in the interval [0, ∆ton], ∆ton =  on − on com-
pared to [on, on], which has computational benefits when
evaluating Taylor series since higher order terms can be
tightly bounded. The new equations are:

	 �

(6)

We drop the cycle index k for the following deviations
for simplicity. It is possible to extract the time from the set
G (∆ton), to obtain the relatively tight inclusion

where C (∆ton) is an interval matrix derived in Althoff et al.3
Combining this result with using the idea in (5) yields

u
ton

ton ton tcycle t

Figure 5. Range of times [ton, t−on] when the charge pump is switched
off. The mode both_active is not considered in this figure.

october 2013 | vol. 56 | no. 10 | communications of the acm 101

Now, the expression in (6) is written in
terms of , independent of the current mode. Thereto, we
use the fact that u only changes sign between modes based
on the phase difference, which is taken care of by redefin-
ing the input u := sgn(x4(tk) )(−u). We also consider that u ∈ U,
where U is an interval vector, such that

	 �

(7)

where 0 represents zero vectors of proper dimension and
Θ(∆ton) is an interval matrix.

The result of (7) holds no matter if the phase difference
is positive or negative as long as the time interval [on, on] is
correctly overapproximated. The time intervals computed
in (5) are based on the cycle including up_active. If the cycle
containing dn_active is also considered, the bounds are

	 � (8)

When computing the state bounds for a constant cycle
time tcycle, the input is applied in the interval tk + [0, ton] for
the cycle containing up_active and in the interval tk − [0, ton]
for the cycle containing dn_active. As shown in Algorithm 1
below, the different times are taken care of by adding the
reachable set due to the input before and after tk when both
cycles are possible. The addition of the input solution for
tk + [0, ton] and tk − [0, ton] results in an overapproximation
since the input solution contains the origin, so that the pre-
vious sets are contained in the set after the addition. Further,
it is sufficient to only keep the input applied at tk + [0, ton] for
subsequent computations, which is illustrated in Figure 6.

Thus, the error for adding the input solution for tk + [0, ton]
and tk − [0, ton] does not accumulate. The procedure of only
keeping the input applied at tk + [0, ton] is realized by the aux-
iliary reachable set in Algorithm 1. We skip the proof that
this procedure is overapproximative due to space limitations.

5. REACHABILITY ANALYSIS
We now present how to compute the reachable set for a set
of initial states and a sequence of cycles. The reachable sets
are represented using zonotopes which have a maximum
complexity of O (n3) with respect to the system dimension n
for the required operations. A zonotope is defined as

where c ∈ Rn is the zonotope center (to which a zonotope
is centrally symmetric) and the g (i) ∈ Rn are called genera-
tors. The order of a zonotope is defined as . Figure 7
illustrates a zonotope being constructed step-by-step as the
Minkowski sum of a finite set of line segments i = [−1, 1] g (i).
Operations on zonotopes and operations between sets of
matrices and zonotopes are presented in Althoff.1

5.1. Transient analysis
The algorithm for the reachable set computation when the ref-
erence signal is initially leading is presented in Algorithm 1.
An interesting property of the PLL is that the number of
cycles required for locking is identical when the absolute
value of the initial phase difference is equal and the cor-
responding initial voltages are symmetric with respect to
the voltages in the completely locked state. We refer to this
property as symmetric locking time which makes it sufficient
to compute the reachable set only for the case when the ref-
erence signal is initially leading. For the symmetric lock-
ing, we additionally require that and ,
which can be relaxed for reachability analysis by choosing
the intervals for and large enough such that
their center is 0. The proof for symmetric locking is omitted
due to space limitations.

For simulation purposes, the values of the phases Φref and
Φv are needed to determine the time for turning the charge
pumps on and off. In contrast, the discrete-time model for
reachability analysis does not require the exact timing for
switching the charge pump values; it is sufficient to keep
only the phase difference x4 := Φv − Φref as a state variable and
remove x5 for the reachability computations.

(a)

(b)

Charge
pump

on

Charge
pump

on

neg. phase difference pos. phase difference

original signal
(not applied)

region of
charge pump

activity

tcycle tcycle tcycle tcycletcycle

tcycle tcycle tcycle tcycletcycle

tk

tk

t

t

1

1

0

0

Figure 6. Consideration of inputs when the phase difference changes
from negative to positive. (a) Signal of charge pump activity; (b) signal
used for reachability analysis up to time tk.

c

l̂1

(a)

c

l̂1 l̂2

c

l̂1 l̂2

l̂3

(c)(b)

Figure 7. Construction of a zonotope by Minkowski addition of line
segments. (a) c ≈ l̂1 (b) c ≈ l̂1 ≈ l̂2 (c) c ≈ l̂1 ≈ l̂2 ≈ l̂3

102 communications of the acm | october 2013 | vol. 56 | no. 10

research highlights

5.2. Invariant computation
Once the reachable set fulfills the locking condition |PRk| ≤
∆Φlock (see Algorithm 1), it remains to check if this condition is
fulfilled indefinitely. A straightforward procedure would be to
check after each cycle if Rk+1 ⊆ Rk, meaning that Rk is an invari-
ant. Checking Rk+1 ⊆ Rk is computationally expensive. This is
because zonotopes have to be represented by polytopes and the
enclosure check for polytopes is computationally expensive.1

For this reason, we use the following alternative proce-
dure illustrated in Figure 8. First, the reachable set compu-
tations are continued for  extra cycles after a reachable set
fulfills the locking condition in cycle klock, see Figure 8. Next,
the reachable set Rklock +  is overapproximated by an axis-
aligned box denoted by I. This leads to an overapproxima-
tion for the subsequent reachable sets, so  should be chosen
large enough such that all the subsequent sets fulfill the lock-
ing condition. Once a reachable set Rkfinal represented by a
zonotope is enclosed by I (which is computationally cheap to
detect), one can conclude that the PLL is locked indefinitely.

6. NUMERICAL RESULTS
We apply Algorithm 1 and the invariant computation to ver-
ify a 27 GHz PLL designed in 32 nm CMOS SOI technology.
Note that the PLL was designed in a commercial process at
an advanced technology node. Hence, it provides a practical
example to demonstrate the efficacy of our proposed verifica-
tion method. The parameters of the PLL and the reachable
set computation are listed in Table 1. The PLL considered
here employs a simple initialization circuitry that sets the
integral and proportional path voltages to common-mode
levels at power up and whenever the division ratio is changed.
This reduces locking time and aids the formal verification
by reducing the uncertainty on the initial node voltages. With
the initialization, the initial range of node voltages are vi(0)
∈ [0.34, 0.36], and vp1(0), vp(0) ∈ [−0.01, 0.01]. We normalize
the phases to [0, 1], and we normalize the time to microsec-
onds. The phase range of Φv is split into 5 subintervals Φv

i (0)
∈ - 0.1⋅[i, i - 1], where i = 1 … 5, and without loss of generality
we assume Φref (0) = 0. Because of symmetry, all possible ini-
tial phase differences are considered. The number of Taylor
terms chosen depends on the time horizon. For Γ(tcycle − ton),
30 Taylor terms are used and 10 Taylor terms are used for
all other computations. The aforementioned experiment
setup allows us to formally verify the PLL with consideration
of initial voltage and phase uncertainties. Note that these
uncertainties cannot be efficiently incorporated into the
traditional simulation approach, as a traditional simulation
can only validate the PLL with a specific initial condition.

The reachable set starting with the initial phase dif-
ference (0) is shown for the first 200 cycles in Figure 9
for projections onto four different pairs of state variables.
The sets computed to prove locking are shown in Figure 8.
In this example, the proposed verification algorithm is able
to prove that independent of the initial condition, the PLL
reliably locks to the reference signal. Note that the voltages
in Figure 9 are as high as 10 [V] since charge pump satura-
tion is not yet considered. It is possible to further extend our
verification method to consider charge pump saturation by
applying a nonlinear behavior model.

Table 2 shows the clock cycles it takes for the PLL to

Algorithm 1 Reachable set computation when reference
signal is leading at t = 0

Input: Initial set R0, system matrix A, input set U, input set
  for both_active

parameters: tcycle, ∆Φlock, ,
Output: Rklock

while |PRk| > ∆Φlock do

Compute Γ(t) for t ∈ { on, td, (tcycle − on)}; see (2)
Compute Θ for ∆ton = on − on; see (7)
Compute (∆ton); see (6)

k := k + 1
end while
klock = k − 1

−4 −2 0 2 4
x 10−4

0.3495

0.35

0.3505

(Φv−Φref)/2p (in rad)

v i
 (

in
 V

)

∆Φlock

I

kfinal

i=klock+ Ri

Rklock

Rklock+

Rkfinal

U

Figure 8. Reachable sets of different stages of the invariant computation.

Table 1. Parameters.

PLL model Reachable set comp.

Name Value Unit Name Value

fref 27 MHz Max
zonotope

f0 26.93e3 MHz Order o 100
N 1000 − 0
Ki 200 MHz/V 0.7
Kp 25 MHz/V −4
Ii [9.9,10.1]e−6 A 12
Ip [495,505]e−6 A  100
Ci 25e−12 F
Cp1 6.3e−12 F
Cp3 2e−12 F
Rp2 50e3 Ohm
Rp3 8e3 Ohm
td 50e−12 s

october 2013 | vol. 56 | no. 10 | communications of the acm 103

achieve locking for varying initial phase errors. The 1st and
the 2nd columns show the results from reachability analy-
sis. The 3rd column shows the maximum lock time obtained
from 30 behavioral simulations with randomly varying ini-
tial phase errors and charge pump currents. We use the
maximum lock time since the verification task is to check if
the PLL always locks before a specified locking time, that is,
we are investigating the worst-case behavior. Note that we
are not providing any stochastic evaluation since this is not
the focus of this work. Table 2 demonstrates that our reach-
ability analysis efficiently provides an upper bound on the
worst-case lock time in the presence of random phase error
and charge pump current variations. On the other hand, it
is important to note that the traditional approach based on
Monte Carlo simulation cannot guarantee to find the “true”
maximum lock time. Unless an infinite number of Monte
Carlo runs are performed, the maximum lock time may not
be captured by one of the Monte Carlo runs.

The computation times for the reachability analysis start-
ing at different initial sets of phase differences are listed in
Table 3. It can be seen that the results are obtained in less
than a minute. The average computation time of the reach-
ability analysis for a single cycle is around 27 [ms], which
is only slightly longer than 24 [ms] required for a simula-
tion of one cycle of the behavior model in MATLAB. All

0.4 0.5 0.6 0.7

0

5

10

vi (in V) vi (in V)

v p
1

(i
n

V
)

initial set

(a)

(c)

0.4 0.5 0.6

−0.4

−0.2

0

0.2

(Φ
v

−
 Φ

re
f)

/2
π

(i
n

ra
d)

(Φ
v

−
 Φ

re
f)

/2
π

(i
n

ra
d)

initial
set

(b)

(d)

0 5 10

0

5

10

vp1 (in V) vp (in V)

v p
 (

in
 V

)

initial set

0 5 10

−0.4

−0.2

0

0.2

initial set

Figure 9. The blue regions show the reachable set of each cycle for the first 200 cycles. Simulation results of each cycle are plotted by red dots.
(a) Projection onto vi, vp1; (b) projection onto vi, (Φv − Φref)/(2p); (c) projection onto vp1, vp; and (d) projection onto vp, (Φv − Φref)/(2p).

Table 2. Required cycles for locking.

Reachability analysis Simulation

Fv(0)
Cycles to guarantee

locking
Cycles to
reach I

(Max.) Cycles
to reach I

[−0.5,−0.4] 2039 1845 1271
[−0.4,−0.3] 1981 1787 1225
[−0.3,−0.2] 1908 1714 1173
[−0.2,−0.1] 1811 1616 1086
[−0.1,0] 1652 1457 994

Fv(0) ∈ −0.1 [5,4] [4,3] [3,2] [2,1] [1,0]
Comp. times (in s) 55.0 54.4 53.5 47.8 42.9

Table 3. Computation times of the PLL. Computed number of cycles
equals the left column of Table 2.

computations mentioned so far have been performed on an
Intel i7 processor with 1.6 GHz and 6 GB memory. Simulating
the behavioral model in VerilogA for a particular initial con-
dition requires only 2 [ms] per cycle on an Intel Xeon CPU
with 2.53 GHz, which is an order of magnitude faster than
reachability analysis. However, reachability analysis is still

104 communications of the acm | october 2013 | vol. 56 | no. 10

research highlights

competitive if we consider that the VerilogA model needs to
be simulated for thousands of Monte Carlo samples to cap-
ture random initial conditions and parameter variations.

7. CONCLUSION
This paper presented a method for verifying PLL locking
using efficient reachability analysis. Efficient reachabil-
ity computations are achieved using a discrete-time linear
model with uncertain parameters and continuization to
eliminate the complexity of switching. In contrast to apply-
ing a classical reachability approach, the intersection of
guard sets can be dropped. As a consequence, the only opera-
tions on sets that remain, can be performed using zonotopes,
which have a maximum complexity of O (n3) with respect
to the system dimension n. The verification of locking does
not require any Lyapunov function to show convergence. For
future work, we plan to consider saturations of charge pumps
and varactor nonlinearities. We are also looking at other
applications of continuization for hybrid systems where the
transition time can be accurately overapproximated by a lin-
ear function of the state plus uncertainty. In addition to PLL,
the proposed reachability analysis may be further extended
to verify the circuit functionality and performance specifica-
tions of other AMS systems in time domain.

Acknowledgments
The authors acknowledge the support of the NSF Award
CCF0926181 and the C2S2 Focus Center, one of six research © 2013 ACM 0001-0782/13/10 $15.00

References
	 1.	A lthoff, M. Reachability analysis

and its application to the safety
assessment of autonomous cars.
Dissertation, Technische Universität
München, 2010. http://nbn-resolving.
de/urn/resolver.pl?urn:nbn:de:bvb:
91-diss-20100715-963752-1-4.

	 2.	A lthoff, M., Krogh, B.H. Avoiding
geometric intersection operations in
reachability analysis of hybrid systems.
In Hybrid Systems: Computation and
Control (2012), 45–54.

	 3.	A lthoff, M., Rajhans, A., Krogh, B.H.,
Yaldiz, S., Li, X., Pileggi, L. Formal
verification of phase-locked loops using
reachability analysis and continuization.
In Proceedings of the International
Conference on Computer Aided Design
(2011), 659–666.

	 4.	A lur, R., Courcoubetis, C., Halbwachs, N.,
Henzinger, T., Ho, P., Nicollin, X., Olivero,
A., Sifakis, J., Yovine, S. The algorithmic
analysis of hybrid systems. Theoretical
Computer Science, 138 (1995), 3–34.

	 5.	 Frehse, G. PHAVer: Algorithmic
verification of hybrid systems past
HyTech. Int. J. Software Tool. Tech.
Tran. 10 (2008), 263–279.

	 6.	 Frehse, G., Guernic, C.L., Donzé,

A., Cotton, S., Ray, R., Lebeltel, O.,
Ripado, R., Girard, A., Dang, T., Maler, O.
SpaceEx: Scalable verification of hybrid
systems. In Proceedings of the 23rd
International Conference on Computer
Aided Verification (2011), LNCS 6806,
Springer, 379–395.

	 7.	G arder, F.M. Phaselock Techniques, third
edn, John Wiley, Hoboken, NJ, 2005.

	 8.	G irard, A., Le Guernic, C., Maler, O.
Efficient computation of reachable
sets of linear time-invariant systems
with inputs. In Hybrid Systems:
Computation and Control (2006),
LNCS 3927, Springer, 257–271.

	 9.	S ingh, A., Li, P. On behavioral model
equivalence checking for large analog/
mixed signal systems. In Proceedings
of IEEE/ACM International Conference
on Computer-Aided Design (ICCAD)
(2010), 55–61.

	10.	S teinhorst, S., Hedrich, L. Advanced
methods for equivalence checking
of analog circuits with strong
nonlinearities. Formal Meth. Syst. Des.
36, 2 (2010), 131–147.

	11.	 Zaki, M.H., Tahar, S., Bois, G. Formal
verification of analog and mixed signal
designs: A survey. Microelectron. J. 39,
12 (2008), 1395–1404.

Matthias Althoff (matthias.althoff@
tu-ilmenau.de), Ilmenau University of
Technology, Ilmenau, Germany.

Akshay Rajhans, Bruce H. Krogh,
Xin Li, and Larry Pileggi ({arajhans,

krogh, xinli, and pileggi}@ece.cmu.
edu), Carnegie Mellon University,
Pittsburgh, PA.

Soner Yaldiz {soner.yaldiz@intel.com},
Intel Corporation, Hillsboro, OR.

centers funded under the Focus Center Research Program
(FCRP), a Semiconductor Research Corporation entity.�

You’ve come a long way.
Share what you’ve learned.

ACM has partnered with MentorNet, the award-winning nonprofit e-mentoring network in engineering,
science and mathematics. MentorNet’s award-winningOne-on-OneMentoring Programs pair ACM
student members with mentors from industry, government, higher education, and other sectors.

• Communicate by email about career goals, course work, and many other topics.
• Spend just 20minutes a week - and make a huge difference in a student’s life.
• Take part in a lively online community of professionals and students all over the world.

Make a difference to a student in your field.
Sign up today at: www.mentornet.net

Find out more at: www.acm.org/mentornet
MentorNet’s sponsors include 3M Foundation, ACM, Alcoa Foundation, Agilent Technologies, Amylin Pharmaceuticals, Bechtel Group Foundation, Cisco
Systems, Hewlett-Packard Company, IBM Corporation, Intel Foundation, Lockheed Martin Space Systems, National Science Foundation, Naval Research
Laboratory, NVIDIA, Sandia National Laboratories, Schlumberger, S.D. Bechtel, Jr. Foundation, Texas Instruments, and The Henry Luce Foundation.

