
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 12, DECEMBER 2012 1831

Efficient SRAM Failure Rate Prediction
via Gibbs Sampling

Shupeng Sun, Student Member, IEEE, Yamei Feng, Changdao Dong, and Xin Li, Senior Member, IEEE

Abstract—Statistical analysis of SRAM has emerged as a chal-
lenging issue because the failure rate of SRAM cells is extremely
small. In this paper, we develop an efficient importance sampling
algorithm to capture the rare failure event of SRAM cells. In
particular, we adapt the Gibbs sampling technique from the
statistics community to find the optimal probability distribution
for importance sampling with a low computational cost (i.e.,
a small number of transistor-level simulations). The proposed
Gibbs sampling method applies an integrated optimization engine
to adaptively explore the failure region in a Cartesian or spherical
coordinate system by sampling a sequence of 1-D probability
distributions. Several implementation issues such as 1-D random
sampling and starting point selection are carefully studied to
make the Gibbs sampling method efficient and accurate for
SRAM failure rate prediction. Our experimental results of a
90 nm SRAM cell demonstrate that the proposed Gibbs sampling
method achieves 1.4–4.9× runtime speedup over other state-of-
the-art techniques when a high prediction accuracy is required
(e.g., the relative error defined by the 99% confidence interval
reaches 5%). In addition, we further demonstrate an important
example for which the proposed Gibbs sampling algorithm
accurately estimates the correct failure probability, while the
traditional techniques fail to work.

Index Terms—Failure rate, Gibbs sampling, Monte Carlo
analysis, process variation, SRAM.

I. Introduction

AS DEEP SUBMICRON technology advances, process
variations pose a new set of challenges on SRAM design.

SRAM has been widely embedded in a large amount of
semiconductor chips. For example, roughly half of the area
of an advanced microprocessor chip is occupied by SRAM
[19]. SRAM cells are generally designed with minimum-size
devices [19] and can be significantly impacted by large-scale
process variations (e.g., local mismatches caused by random
doping fluctuations) at nanoscale technology [2]–[4]. For this
reason, it becomes increasingly critical to evaluate the failure

Manuscript received January 3, 2012; revised April 29, 2012 and June 28,
2012; accepted July 3, 2012. Date of current version November 21, 2012. This
work was supported in part by Semiconductor Research Corporation, under
Contract 1836.044, and by the National Science Foundation, under Contract
CCF-1016890. This paper was presented in part at the Design Automation
Conference in 2011 [1]. This paper was recommended by Associate Editor
S. Vrudhula.

The authors are with the Department of Electrical and Computer
Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 USA (e-mail:
shupengs@ece.cmu.edu; yameif@ece.cmu.edu; changdao@ece.cmu.edu;
xinli@ece.cmu.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2012.2209884

rate of SRAM cells both efficiently and accurately in order to
achieve a robust design.

Toward this goal, a number of statistical analysis methods
have been proposed for SRAM circuits [5]–[15]. For instance,
analytical performance models have been derived to predict
SRAM parametric yields [5]–[7]. While these models offer
great design insights to understand SRAM circuits, they may
not accurately capture the circuit behavior due to various
approximations that are made. Another possible approach
for SRAM failure rate prediction is based on transistor-level
simulation, including both Monte Carlo analysis [8]–[14] and
deterministic failure region prediction [15].

Since SRAM cells typically have extremely small failure
probability (e.g., 10−8 ∼ 10−6), a simple Monte Carlo method
by directly sampling the variation space suffers from slow
convergence, as only a few random samples will fall into
the failure region. To improve the sampling efficiency, a
number of importance sampling methods have been proposed
for fast SRAM failure rate prediction [8]–[14]. The key idea
of importance sampling is to directly sample the failure region
based on a distorted probability density function (PDF) instead
of the original PDF of process variations.

Applying importance sampling to SRAM analysis, however,
is not trivial. The efficiency of importance sampling heavily
relies on the choice of the distorted PDF that is used to gener-
ate random samples. Ideally, in order to maximize prediction
accuracy, we should sample the failure region that is most
likely to occur. Such a goal, however, is extremely difficult
to achieve, since we never exactly know the failure region
in practice. The challenging issue here is how to determine
the optimal PDF for importance sampling so that the SRAM
failure rate can be efficiently predicted.

In this paper, a novel Gibbs sampling method is proposed to
improve the efficiency of SRAM failure rate prediction. Unlike
the traditional Monte Carlo algorithm that samples a given
PDF, the proposed Gibbs sampling approach does not need
to know the sampling PDF explicitly. Instead, it adaptively
searches the failure region and then generates random samples
in it. When applied to SRAM failure rate analysis, Gibbs
sampling can be conceptually viewed as a unique Monte
Carlo method with an integrated optimization engine which
allows us to efficiently explore the failure region. As a result,
SRAM failure probability can be accurately predicted with
a small number of sampling points (i.e., a small number
of transistor-level simulations). Our experimental results of
a 90 nm SRAM cell demonstrate that compared to other

0278-0070/$31.00 c© 2012 IEEE

1832 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 12, DECEMBER 2012

state-of-the-art techniques, the proposed Gibbs sampling algo-
rithm achieves 1.4–4.9× runtime speedup when a high predic-
tion accuracy is required (e.g., the relative error defined by the
99% confidence interval reaches 5%). In addition, we further
demonstrate an important example for which the proposed
Gibbs sampling algorithm accurately estimates the correct fail-
ure probability, while the traditional techniques fail to work.

While the Gibbs sampling method was initially developed
by the statistics community [16], [22], it is particularly tuned
for our SRAM analysis applications via four important new
contributions. First, the proposed Gibbs sampling algorithm
is implemented for both Cartesian and spherical coordinate
systems to optimally explore the failure region. The accuracy
achieved by these two different implementations is application-
dependent, as will be demonstrated by the experimental results
in Section V. A novel variable mapping scheme is derived to
facilitate efficient statistical sampling in spherical coordinate
systems. In particular, we define M + 1 random variables
to specify the spatial location in an M-dimensional spherical
coordinate system. Each of these M + 1 random variables fol-
lows a well-known statistical distribution and can be efficiently
sampled with a low computational cost.

Second, as previously mentioned, Gibbs sampling iteratively
searches the failure region. At each iteration step, it needs to
generate a random sample from an irregular 1-D PDF that is
not simply uniform or Normal. Such a sampling task cannot be
easily done by directly using a random number generator. For
this reason, we propose to adopt the inverse-transform method
[22] and incorporate it into our proposed Gibbs sampling
engine. As such, randomly sampling an arbitrary 1-D PDF
can be performed efficiently.

Third, an efficient implementation of Gibbs sampling re-
quires a good starting point to speed up the convergence.
This is similar to most optimization algorithms where a good
starting point facilitates fast convergence. We propose a model-
based optimization to determine a good starting point so that
the Gibbs sampling algorithm can converge quickly (i.e., accu-
rately predict the failure probability with few sampling points).

Finally, to further improve prediction accuracy and reduce
computational cost, a two-stage Monte Carlo flow is developed
where Gibbs sampling is applied to create a set of random
samples during the first stage, and these samples are used to
“learn” the joint PDF for importance sampling. Next, during
the second stage, a large number of random samples are
directly generated from the PDF learned from the first stage
to accurately estimate the failure probability.

The remainder of this paper is organized as follows. In
Section II, we briefly review the background on importance
sampling, and then propose the Gibbs sampling method in Sec-
tion III. Several implementation issues are discussed in detail
in Section IV. A 90 nm SRAM cell is used to demonstrate the
efficacy of the proposed Gibbs sampling method in Section V.
Finally, we conclude in Section VI.

II. Background

Suppose that x = [x1 x2 . . . xM]T is an M-dimensional
random variable modeling process variations and its joint PDF

is f (x). Typically, x is modeled as a multivariate Normal
distribution [5]–[15]. Without loss of generality, we further
assume that the random variables {xm; m = 1, 2, . . . , M} in
the vector x are mutually independent and standard Normal
(i.e., with zero mean and unit variance)

f (x) =
M∏

m=1

[
1√
2π

· exp

(
−x2

m

2

)]
. (1)

Any correlated random variables that are jointly Normal can
be transformed to the independent random variables {xm; m =
1, 2, . . . , M} by principal component analysis [20].

The failure probability of an SRAM cell can be mathemat-
ically represented as follows [8]:

Pf =
∫

�

f (x) · dx (2)

where � denotes the failure region, i.e., the subset of the varia-
tion space where the performance of interest (e.g., read margin,
write margin) does not meet the specification. Alternatively,
the failure probability in (2) can be defined as follows:

Pf =

+∞∫
−∞

I (x) · f (x) · dx (3)

where I(x) represents the indicator function

I (x) =

{
1 x ∈ �

0 x /∈ �.
(4)

The failure probability Pf can be estimated by Monte Carlo
analysis. The key idea is to draw N random samples from
f (x), and then compute the mean of these samples

P̃MC
f =

1

N
·

N∑
n=1

I
[
x(n)

]
(5)

where x(n) is the nth random sample generated by Monte Carlo
analysis.

For our proposed SRAM application, the failure probability
Pf in (3) is extremely small (e.g., 10−8–10−6) and most
random samples created by Monte Carlo analysis do not
fall into the failure region �. Hence, a large number of
(e.g., over 107–109) samples are needed by the Monte Carlo
method to accurately estimate the failure rate. Note that an
expensive transistor-level simulation is required to create each
sampling point. In other words, 107–109 simulation runs must
be performed in order to collect 107–109 random samples. It,
in turn, implies that the aforementioned Monte Carlo method
is extremely expensive, when applied to most SRAM analysis
problems.

To address this computational cost issue, importance sam-
pling has been proposed to improve the efficiency of Monte
Carlo analysis [8]–[14]. It aims to directly generate a large
number of random samples in the failure region by using a
distorted PDF g(x). In this case, the failure probability can be
expressed as follows [8]:

Pf =

+∞∫
−∞

I (x) · f (x)

g (x)
· g (x) · dx. (6)

SUN et al.: EFFICIENT SRAM FAILURE RATE PREDICTION VIA GIBBS SAMPLING 1833

In other words, (6) calculates the expected value of the
function I(x)·f (x)/g(x) where the random variable x follows
the PDF g(x). If N sampling points {x(n); n = 1, 2, . . . , N} are
drawn from g(x), the failure probability in (6) can be estimated
by [8]

P̃IS
f =

1

N
·

N∑
n=1

I
[
x(n)

] · f
[
x(n)

]
g

[
x(n)

] . (7)

Note that the estimated failure probabilities in (5) and (7) are
identical, if and only if the number of random samples (i.e., N)
is infinite. In practice, when a finite number of sampling points
are available, the results from (5) and (7) can be substantially
different. If the distorted PDF g(x) is properly chosen for
importance sampling, (7) can be much more accurate than
the simple Monte Carlo method in (5). In theory, the optimal
PDF g(x) leading to maximum estimation accuracy is [22]

gOPT (x) =
I (x) · f (x)

Pf

. (8)

Intuitively, if the PDF gOPT (x) in (8) is used, the function
I(x)·f (x)/gOPT (x) becomes a constant with zero variance.
Hence, its expected value can be accurately estimated by (7)
using few random samples.

Studying (8) reveals two important properties of the optimal
PDF gOPT (x). First, gOPT (x) is nonzero if and only if the
variable x sits in the failure region. It, in turn, implies that we
should directly sample the failure region to achieve maximum
accuracy. Second, gOPT (x) is proportional to the original PDF
f (x) of process variations. Namely, the entire failure region
should not be sampled uniformly. Instead, we should sample
the variation space where failure is most likely to occur.

In practice, however, sampling the optimal PDF gOPT (x) in
(8) is not trivial, as the indicator function I(x) is unknown.
Most existing importance sampling algorithms apply various
heuristics to approximate the optimal PDF gOPT (x) [8]–[14].
In this paper, we propose a new Gibbs sampling method
that adaptively samples the optimal PDF gOPT (x) without
explicitly knowing the indicator function I(x). As such, the
SRAM failure rate can be accurately predicted with a low
computational cost.

III. Gibbs Sampling

As described in Section II, directly sampling the optimal
PDF gOPT (x) in (8) is difficult for two reasons. First, the
indicator function I(x) is not known in advance, as the failure
region is unknown. Second, since gOPT (x) is not a simple mul-
tivariate statistical distribution such as uniform distribution or
Normal distribution, it is extremely difficult, if not impossible,
to directly draw random samples from gOPT (x).

In this paper, we adopt the Gibbs sampling method [16],
[22] from the statistics community to predict the failure
probability of SRAM cells. Gibbs sampling provides two
promising features, compared to other traditional techniques
[8]–[14]. First, it can efficiently search the failure region and
determine the indicator function I(x) on the fly. From this
point of view, Gibbs sampling can be conceptually viewed as

an integrated optimization engine that allows us to adaptively
sample the optimal PDF gOPT (x) in (8).

Second, Gibbs sampling does not directly draw random
samples from a multidimensional joint PDF. Instead, it iter-
atively samples a sequence of 1-D PDFs. These 1-D PDFs are
not simply uniform or Normal and, hence, cannot be directly
sampled by a simple random number generator. However, as
will be demonstrated in Section IV-A, the aforementioned 1-
D sampling can be efficiently implemented with an inverse-
transform method [22] with a low computational cost.

Our proposed Gibbs sampling method can be implemented
in both Cartesian and spherical coordinate systems. The
accuracy achieved by these two different implementations
is application-dependent. In what follows, we describe the
technical details for both implementations.

A. Gibbs Sampling in a Cartesian Coordinate System

To intuitively illustrate the Gibbs sampling algorithm, we
first consider the simple 2-D example in Fig. 1 where our
goal is to sample the PDF gOPT (x1, x2). In this example,
Gibbs sampling starts from an initial point [x(1)

1 x
(1)
2]T . It first

samples the conditional PDF gOPT [x1|x(1)
2] and replaces x

(1)
1

by a new value x
(2)
1 , as shown in Fig. 1(a) and (b). During this

iteration step, we generate a new sampling point [x(2)
1 x

(1)
2]T .

Next, Gibbs sampling samples a different conditional PDF
gOPT [x2|x(2)

1] and replaces x
(1)
2 by a new value x

(2)
2 , as shown in

Fig. 1(c) and (d). A new sampling point [x(2)
1 x

(2)
2]T is created.

Since the random variable x is 2-D in this example, Gibbs
sampling varies x1 again at the third iteration step. It draws
a new random value x

(3)
1 by sampling the conditional PDF

gOPT [x1|x(2)
2], resulting in a new sampling point [x(3)

1 x
(2)
2]T .

These iteration steps are repeatedly applied until a sufficient
number of random samples are created. It can be proven that
the aforementioned iteration yields a sequence of random sam-
ples that follow the given distribution gOPT (x1, x2) [16], [22].

The aforementioned 2-D Gibbs sampling can be ex-
tended to the general case where the PDF gOPT (x) =
gOPT (x1, x2, . . . , xM) is M-dimensional. Starting from an ini-
tial point [x(1)

1 x
(1)
2 . . . x

(1)
M]T , Gibbs sampling assigns a new

value to one of the M random variables at each iteration
step. This new value is determined by randomly sampling a
conditional PDF. For instance, when sampling the mth random
variable xm, the following conditional PDF is used:

gOPT (xm|x1, · · · , xm−1, xm+1, · · · , xM) = gOPT
(
xm|x\m

)
(9)

where x\m denotes the vector x with xm removed. Such random
sampling is repeated with one random variable sampled at
one time. Algorithm 1 summarizes the major steps of Gibbs
sampling.

B. Gibbs Sampling in the Spherical Coordinate System

The Gibbs sampling method summarized by Algorithm 1
can be extended to spherical coordinate systems. Note that the
accuracy achieved by the spherical coordinate implementation
can be substantially different from that of the Cartesian
coordinate implementation, depending on the application of

1834 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 12, DECEMBER 2012

Fig. 1. Simple example of 2-D Gibbs sampling uses [x(1)
1 x

(1)
2]T as the start-

ing point. (a) Intersection of the joint PDF gOPT (x1, x2) and the plane x2 = x
(1)
2

defines the conditional PDF gOPT [x1|x(1)
2]. (b) New sampling point x

(2)
1 is

drawn from gOPT [x1|x(1)
2]. (c) Intersection of the joint PDF gOPT (x1, x2)

and the plane x1 = x
(2)
1 defines the conditional PDF gOPT [x2|x(2)

1].
(d) New sampling point x

(2)
2 is drawn from gOPT [x2|x(2)

1].

Algorithm 1 Gibbs sampling in Cartesian coordinate system

1. Start from an M-dimensional PDF gOPT (x1, x2, . . . , xM).
2. Select an initial starting point [x(1)

1 x
(1)
2 . . . x

(1)
M]T .

3. For t = 1, 2, . . .

4. For m = 1, 2, . . . , M

5. Draw x(t+1)
m from the conditional PDF gOPT [xm |

x
(t+1)
1 , . . . , x

(t+1)
m−1 , x

(t)
m+1, . . . , x

(t)
M] to create a

new sampling point [x(t+1)
1 . . . x(t+1)

m x
(t)
m+1 . . . x

(t)
M]T .

6. End For
7. End For

interest. For instance, an SRAM example will be shown in
Section V-B where the spherical coordinate implementation
accurately estimates the failure probability while the Cartesian
coordinate implementation fails to work.

Traditionally, M variables are used to specify the spatial
location in an M-dimensional spherical coordinate system [21]

x1 = r · cos (θ1)
x2 = r · sin (θ1) · cos (θ2)
x3 = r · sin (θ1) · sin (θ2) · cos (θ3)
...
xM−1 = r · sin (θ1) · · · · · sin (θM−2) · cos (θM−1)
xM = r · sin (θ1) · · · · · sin (θM−2) · sin (θM−1).

(10)

Equation (10) shows the mapping from the spherical coordi-
nate r and θ = [θ1 θ2 . . . θM−1]T to the Cartesian coordinate x.
In (10), the variable r defines the radius (i.e., the distance to the
origin) and the other M−1 variables {θm; m = 1, 2, . . . , M−1}
define the angle. Fig. 2(a) shows a 3-D example of the
traditional spherical coordinate system.

Fig. 2. 3-D example compares the difference between (a) traditional spher-
ical coordinate system and (b) proposed spherical coordinate system.

In order to implement Gibbs sampling in an M-dimensional
spherical coordinate system, we must find the “spherical”
representation of the M-dimensional Normal PDF in (1).
We need to transform the M-dimensional Normal PDF from
the Cartesian coordinate system to the spherical coordinate
system. While such a transformation can be easily found for
low-dimensional cases (i.e., M is small), it becomes compu-
tationally expensive or even impossible as the dimensionality
(i.e., M) increases [20].

Motivated by this observation, we define the spherical coor-
dinate system in an alternative way so that the M-dimensional
Normal PDF can be easily specified in our proposed spherical
coordinate system. We write the Cartesian coordinate x as

x1 = r · α1
‖α‖2

x2 = r · α2
‖α‖2

· · · xM = r · αM

‖α‖2
(11)

where α equals [α1 α2 . . . αM]T and ||·||2 denotes the L2-norm
of a vector. In (11), the variable r defines the radius, which is
similar to (10). The other M variables {αm; m = 1, 2, . . . , M}
define the orientation of the vector x. Fig. 2(b) shows a 3-D
example of the proposed spherical coordinate system.

Comparing Fig. 2(a) and (b) reveals an important difference
between the traditional spherical coordinate system and the
proposed spherical coordinate system. While the traditional
spherical coordinate system uses M variables (i.e., r and θ)
to define a spatial location in the M-dimensional space, the
proposed spherical coordinate system requires M+1 variables
(i.e., r and α) to define the same spatial location. The M+1
variables used by our proposed spherical coordinate system are
redundant. For a given Cartesian coordinate x, it is not possible
to uniquely determine the values of r and α. In other words, the
mapping from x to r and α is not unique. The variables r and
α do not form a basis of the M-dimensional space. Hence, the
space spanned by r and α is not formally an M-dimensional
spherical coordinate system. However, by introducing the new
variables r and α, we can easily find the joint PDF of r and α

to make the variables {xm; m = 1, 2, . . . , M} in (11) mutually
independent and standard Normal, thereby facilitating an easy
implementation of the proposed Gibbs sampling method. In
what follows, we will derive the joint probability distribution
for r and α in detail.

Remember that the variable r represents the radius, and
hence it is equal to

r =
√

x2
1 + x2

2 + · · · + x2
M. (12)

SUN et al.: EFFICIENT SRAM FAILURE RATE PREDICTION VIA GIBBS SAMPLING 1835

Since the random variables {xm; m = 1, 2, . . . , M} are mu-
tually independent and standard Normal as shown in (1), it
is easy to verify that the random variable r follows the Chi
distribution with M degrees of freedom [20]

f (r) =
2 · rM−1 · exp

(−0.5 · r2
)

√
2M · � (0.5 · M)

(13)

where �(·) denotes the Gamma function.
Next, we consider the vector α that defines the orientation.

By studying (11) we would have two important observations.
First, the orientation of the vector x is uniquely determined
by α/||α||2. It is independent of the length of the vector
α (i.e., ||α||2). Second, since the random variables {xm;
m = 1, 2, . . . , M} in (11) are mutually independent and
standard Normal, the orientation α/||α||2 must be uniformly
distributed. The unit length vector α/||α||2 must take any
possible orientation with equal probability. Based on these two
observations, we define the following PDF for α:

f (α) =
M∏

m=1

[
1√
2π

· exp

(
−α2

m

2

)]
. (14)

In other words, {αm; m = 1, 2, . . . , M} are mutually indepen-
dent and standard Normal. It is well known that the multi-
variate Normal distribution in (14) is “spherically” symmetric
[20]. Hence, all points on a sphere ||α||2 = r, where r is
the radius of the sphere, have equal probability of occurring.
Sampling α based on (14) and normalizing α by its L2-norm
||α||2 allow us to generate a uniformly distributed orientation
in the M-dimensional space [17].

Finally, we combine f (r) in (13) and f (α) in (14) together
based on the fact that the radius and the orientation of the
multivariate Normal distribution in (1) should be mutually
independent. Hence, the joint PDF f (r, α) is equal to

f (r, α) =
2 · rM−1 · exp

(−0.5 · r2
)

√
2M · � (0.5 · M)

· ∏M
m=1

[
1√
2π

· exp

(
−α2

m

2

)]
.

(15)

Theorem 1 formally proves that given the joint PDF f (r, α)
in (15), the random variables {xm; m = 1, 2, . . . , M} defined
in (11) are mutually independent and standard Normal. The
detailed proof of Theorem 1 can be found in the Appendix.

Theorem 1: Given the random variables {xm; m =
1, 2, . . . , M} defined in (11) where r and α follow the joint
PDF f (r, α) in (15), the joint PDF f (x) is a multivariate
Normal distribution represented by (1).

Given the aforementioned definition of r and α, importance
sampling can be applied to estimate the failure probability in
the proposed spherical coordinate system. Here, the estimated
failure probability in (7) can be rewritten as follows:

P̃ IS
f =

1

N
·

N∑
n=1

I
[
r(n), α(n)

] · f
[
r(n), α(n)

]
g

[
r(n), α(n)

] (16)

where I(r, α) and g(r, α) represent the indicator function
and the distorted PDF in the spherical coordinate system,
respectively, [r(n) α(n)]T stands for the nth sampling point
drawn from g(r, α), and N denotes the total number of

Fig. 3. Scatter plots with 100 random samples are shown for x1 and x2 when
sampling the conditional distribution gOPT (α1 | r, α2) for the failure region
defined in (18). (a) r = 1 and α2 = 1. (b) r = 1 and α2 = 3.

Algorithm 2 Gibbs sampling in spherical coordinate system

1. Start from an (M + 1)-dimensional PDF
gOPT (r, α1, α2, . . . , αM).

2. Select an initial starting point [r(1) α
(1)
1 α

(1)
2 . . . α

(1)
M]T .

3. For t = 1, 2, . . .

4. Draw r(t+1) from the conditional PDF gOPT [r |α(t)
1 , . . . ,

α
(t)
M] to create a new sampling point [r(t+1) α

(t)
1 . . . α

(t)
M]T .

5. For m = 1, 2, . . . , M

6. Draw α(t+1)
m from the conditional PDF gOPT [αm|r(t+1),

α
(t+1)
1 , . . . , α

(t+1)
m−1, α

(t)
m+1, . . . , α

(t)
M] to create a new

sampling point [r(t+1) α
(t+1)
1 . . . α(t+1)

m α
(t)
m+1 . . . α

(t)
M]T .

7. End For
8. End For

samples. Similar to (8), the optimal PDF g(r, α) leading to
maximum estimation accuracy is as follows:

gOPT (r, α) =
I (r, α) · f (r, α)

Pf

. (17)

Given (16) and (17), Algorithm 2 can be formulated to
perform Gibbs sampling in the spherical coordinate system.
Similar to Algorithm 1, Algorithm 2 samples a 1-D conditional
PDF gOPT (r | α) or gOPT (αm |r, α\m), where α\m denotes the
vector α with αm removed, at each iteration step.

To intuitively illustrate how the spherical coordinate imple-
mentation (i.e., Algorithm 2) works, we consider a simple 2-D
example with two independent random variables x1 and x2 that
follow the joint Normal distribution in (1). In this example,
we simply assume the following failure region:

� =
{

(x1, x2) where x1 ≥ 0 and x2 ≥ 0
}

. (18)

When applying Algorithm 2 to generate Gibbs samples, we
iteratively sample the random variable r defining the radius
and the random variables α1 and α2 defining the orientation.
Fig. 3 shows the scatter plots of x1 and x2 when sampling the
conditional distribution gOPT (α1 | r, α2).

Studying Fig. 3 reveals two important observations. First,
when the conditional distribution gOPT (α1 | r, α2) is sampled,
the resulting random samples are distributed over a 2-D arc.
Second, the length of the arc where the random samples are
distributed depends on the value of α2. In this example, the
random samples can spread over a long arc if α2 is small.
This observation is consistent with the mapping defined in

1836 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 12, DECEMBER 2012

(11). Since the conditional PDF gOPT (α1 | r, α2) follows the
same truncated Normal distribution in both cases where α2 =
1 and α2 = 3, respectively, the variation range of x1 defined
by (11) is large if the value of α2 is small.

Unlike the Cartesian coordinate implementation where only
one of the random variables (i.e., either x1 or x2) can vary
at each iteration step, the proposed spherical coordinate im-
plementation allows multiple random variables (i.e., both x1

and x2) to vary simultaneously over an arc, as shown in
Fig. 3. Remember that x1 and x2 are independent and standard
Normal, as defined in (1). It implies that the arc shown in
Fig. 3 represents a contour line of the joint probability density
function f (x1, x2) on which the original random variables
x1 and x2 are distributed with equal probability. In a gen-
eral M-dimensional case, the proposed spherical coordinate
implementation allows us to sample the random variables
{xm; m = 1, 2, . . . , M} over an M-dimensional contour line.
Such a unique property facilitates the spherical coordinate
implementation to offer superior accuracy over the Cartesian
coordinate implementation in several cases, as will be demon-
strated by the experimental results in Section V.

Finally, it is worth emphasizing that directly sampling the
multidimensional joint PDF gOPT (x) or gOPT (r, α) can be
extremely difficult. By using Gibbs sampling, we only need to
sample the 1-D conditional PDF gOPT (xm | x\m), gOPT (r | α)
or gOPT (αm |r, α\m). As will be demonstrated in Section
IV-A, such 1-D sampling can be efficiently implemented by
using an inverse-transform method [22], even if the indicator
function and, hence, the PDF gOPT (x) in (8) or gOPT (r, α)
in (17) are not explicitly known. In addition, a model-based
optimization can be applied to determine a good starting point
[x(1)

1 x
(1)
2 . . . x

(1)
M]T or [r(1) α

(1)
1 α

(1)
2 . . . α

(1)
M]T so that the

proposed Gibbs sampling algorithm converges quickly. All
these implementation details will be discussed in Section IV.

IV. Implementation Details

The proposed Gibbs sampling method is efficiently imple-
mented with several important techniques, including: 1) 1-D
inverse-transform sampling; 2) initial starting point selection;
and 3) two-stage Monte Carlo analysis. In what follows, we
will discuss these implementation issues in detail.

A. 1-D Inverse-Transform Sampling

During each iteration step of Gibbs sampling, one of the
random variables is sampled from the 1-D conditional PDF
gOPT (xm|x\m), gOPT (r | α), or gOPT (αm|r, α\m). Such 1-D
sampling can be efficiently performed by using an inverse-
transform method [22]. To derive the 1-D sampling algo-
rithm used in this paper, we first consider the scenario of
sampling the random variable xm from the conditional PDF
gOPT (xm|x\m). In this case, we write gOPT (xm|x\m) as follows:

gOPT
(
xm|x\m

)
=

gOPT
(
xm, x\m

)
gOPT

(
x\m

) =
gOPT (x)

gOPT
(
x\m

) . (19)

Substituting (8) into (19) yields

gOPT
(
xm|x\m

)
=

I (x) · f (x)

Pf · gOPT
(
x\m

) . (20)

Fig. 4. (a) Single continuous failure region �xm is denoted by the gray area.
(b) Random variable xm is sampled by the inverse-transform method based
on the CDF F(xm).

Since the indicator function I(x) can be equivalently written
as I(xm, x\m) and the joint PDF f (x) equals the marginal PDF
f (x\m) multiplied by the conditional PDF f (xm |x\m), we have

gOPT
(
xm|x\m

)
=

I(xm,x\m)·f(x\m)·f(xm|x\m)
Pf ·gOPT (x\m)

=
f(x\m)

Pf ·gOPT (x\m) · I
(
xm, x\m

) · f
(
xm|x\m

)
.

(21)

The random variables {xm; m = 1, 2, . . . , M} are mutually
independent as shown in (1) and, hence, we have f (xm|x\m) =
f (xm). Equation (21) can be rewritten as follows:

gOPT
(
xm|x\m

)
=

f
(
x\m

)
Pf · gOPT

(
x\m

) · I (
xm, x\m

) ·f (xm) . (22)

By studying (22) we would have three important observa-
tions. First, gOPT (xm|x\m) is linearly proportional to the prob-
ability distribution f (xm). Second, gOPT (xm|x\m) is nonzero if
and only if the variable xm, combined with x\m, sits in the
failure region. Third, the term f (x\m)/Pf /gOPT (x\m) in (22)
is a constant, given any fixed value of x\m. For these reasons,
when sampling the 1-D conditional PDF gOPT (xm|x\m), we
should draw random samples from the failure region based on
the PDF f (xm).

Toward this goal, we consider the 1-D failure region shown
in Fig. 4(a) where the symbol �xm represents the failure
region over the variable xm, while all other random variables
are set to the given value x\m. Note that the failure region
�xm is represented as a 1-D interval [uxm, vxm]. In other
words, we assume that there is only one single continuous
and bounded failure region where uxm and vxm are the left
and right boundaries, respectively.

In practice, the failure region is likely to be continuous, if
we consider only one failure mechanism at one time, similar
to other previous works [8]–[10], [14]. For instance, taking
read noise margin (RNM) as an example, read failure due to
negative RNM can occur when reading either zero or one from
the SRAM cell. If the topology of the SRAM cell is symmetric,
there will be two discontinuous failure regions associated
with reading zero and one, respectively [19]. However, if we
consider the case of reading either zero or one at one time,
there is only a single failure region. Once the failure rate
associated with the single failure region is estimated, we can
multiply its value by two to determine the total failure rate
corresponding to both failure regions.

On the other hand, even if the actual failure region may not
be bounded, we can bound the high-probability failure region

SUN et al.: EFFICIENT SRAM FAILURE RATE PREDICTION VIA GIBBS SAMPLING 1837

by constraining the random variable xm within a given range.
For instance, if the random variable xm is standard Normal
as shown in (1), it is possible to constrain xm within the
interval [−ζ, +ζ] where ζ is a positive constant. As long as
ζ is sufficiently large (e.g., ζ = 8–10), the probability for xm

to fall outside the interval [−ζ, +ζ] is small and, hence, the
approximation error is negligible.

Based on the assumption that �xm is continuous and
bounded, we first find the left boundary uxm and the right
boundary vxm by performing binary search over the variable
xm with all other random variables set to the given value
x\m. Once uxm and vxm are known, we need to draw a
random sample from the interval [uxm, vxm]. It is important
to note that the PDF gOPT (xm |x\m) in (22) represents a trun-
cated Normal distribution defined by f (xm) over the interval
[uxm, vxm]. It cannot be directly sampled by using a ran-
dom number generator. The inverse-transform method samples
gOPT (xm |x\m) based on the cumulative distribution function
(CDF) F (xm).

To apply the inverse-transform method, we first calculate the
CDF F(xm) where xm follows a standard Normal distribution.
Next, we sample a new random variable sxm that is uniformly
distributed over the interval [F (uxm), F (vxm)], as shown in
Fig. 4(b). Finally, we map the sampling point sxm back to
xm based on the inverse CDF

xm = F−1 (sxm) (23)

where F−1(sxm) is the inverse function of F(xm). It can
be proven that the sampling point xm generated by the
inverse-transform method follows the statistical distribution
gOPT (xm |x\m) in (22) [22].

The aforementioned inverse-transform method can be sim-
ilarly applied to sample the other two 1-D conditional PDFs
gOPT (r|α) and gOPT (αm|r, α\m). Similar to (22), it is easy to
verify the following two equations:

gOPT (r|α) =
f (α)

Pf · gOPT (α)
· I (r, α) · f (r) (24)

gOPT
(
αm|r, α\m

)
=

f
(
r, α\m

)
Pf · gOPT

(
r, α\m

) · I (r, α) · f (αm) . (25)

In (24) and (25), f (r) is a Chi distribution with M degrees
of freedom and f (αm) is a standard Normal distribution. To
sample gOPT (r | α) and gOPT (αm | r, α\m), we first apply binary
search to find the 1-D failure regions [ur, vr] for the variable r
and [uαm, vαm] for the variable αm. Next, we sample the new
random variables sr and sαm from the uniform distributions
over [F(ur), F(vr)] and [F(uαm), F(vαm)], respectively. Finally,
we map sr and sαm back to r and αm based on the inverse CDFs

r = F−1 (sr) (26)

αm = F−1 (sαm) (27)

where F−1(sr) and F−1(sαm) are the inverse functions of the
CDFs F (r) and F (αm), respectively.

Algorithm 3 summarizes the major steps of the inverse-
transform method. It is important to emphasize that the com-
putational cost of Algorithm 3 is dominated by Step 2, where

Algorithm 3 1-D inverse-transform sampling

1. Start from the joint PDF f (x) in (1) or f (r, α) in (15),
a given random variable (i.e., xm, r or αm) for sampling,
and the sampled values of all other random variables that
should be fixed during the current iteration step of Gibbs
sampling.

2. Apply binary search to find the left boundary (i.e., uxm,
ur or uαm) and the right boundary (i.e., vxm, vr or vαm)
for the 1-D failure region of the random variable that
should be sampled (i.e., xm, r or αm).

3. Draw one random sample (i.e., sxm, sr or sαm) from
the uniform distribution over the 1-D failure region (i.e.,
[F (uxm), F (vxm)], [F(ur), F(vr)] or [F (uαm), F (vαm)]).

4. Map the random sample sxm, sr or sαm to xm, r or αm

based on (23), (26) or (27) where F−1(sxm) and F−1

(sαm) are the inverse CDFs of a standard Normal distri-
bution and F−1(sr) is the inverse CDF of a Chi distri-
bution with M degrees of freedom.

multiple transistor-level simulations are required to find the
left and right boundaries of the 1-D failure region. All other
steps do not involve transistor-level simulations and, hence,
can be computed with a low computational cost.

B. Initial Starting Point Selection

To efficiently implement the proposed Gibbs sampling
method, a good initial starting point should be appropriately
selected to speed up the convergence of Algorithm 1 and/or
Algorithm 2. During Gibbs sampling, as each sample is drawn
from a 1-D conditional PDF, the current sampling point is
correlated to the previous sampling point. In other words, the
random samples generated by Gibbs sampling depend on the
initial starting point. It has been proven by the statistics com-
munity that starting from an initial point, a number of random
samples generated at the beginning of the Gibbs sampling
process may not follow the given probability distribution (i.e.,
gOPT (x) for Algorithm 1 or gOPT (r, α) for Algorithm 2) [22].
These samples form the warm-up interval of Gibbs sampling.

The sampling points inside the warm-up interval should be
abandoned, since they do not represent the actual probability
distribution that we want to sample. In practice, the length
of the warm-up interval should be minimized; otherwise,
generating a large number of random samples inside the warm-
up interval can waste a large amount of computational time.
In this paper, we propose to reduce (or even almost eliminate)
the warm-up interval by appropriately selecting a good initial
starting point. In what follows, we first discuss the proposed
initial point selection scheme for Cartesian coordinate systems.

Remember that our objective is to draw random samples
from the failure region that is most likely to occur, as shown in
(8). Hence, the initial starting point [x(1)

1 x
(1)
2 . . . x

(1)
M]T should

meet the following two criteria: 1) [x(1)
1 x

(1)
2 . . . x

(1)
M]T is inside

the failure region; and 2) the PDF of process variations, i.e.,
f (x), takes a large value at [x(1)

1 x
(1)
2 . . . x

(1)
M]T . These two

requirements can be mathematically translated to the following

1838 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 12, DECEMBER 2012

optimization problem:

maximize
x

(1)
1 ,···,x(1)

M

f
[
x

(1)
1 , x

(1)
2 , · · · , x(1)

M

]

s.t.
[

x
(1)
1 x

(1)
2 · · · x

(1)
M

]T ∈ �.

(28)

In (28), we want to find the failure point that is most likely to
occur. Since the M-dimensional random variable x is modeled
as a multivariate Normal distribution in (1), the optimization
in (28) is equivalent to

minimize
x

(1)
1 ,···,x(1)

M

[
x

(1)
1

]2
+

[
x

(1)
2

]2
+ · · · +

[
x

(1)
M

]2

s.t.
[

x
(1)
1 x

(1)
2 · · · x

(1)
M

]T ∈ �.

(29)

Equation (29) aims to find the failure point that is closest to the
origin x = 0. It is similar to the norm minimization approach
proposed in [10].

Note that solving the optimization problem in (29) is not
trivial, since the failure region � is not explicitly known.
To address this issue, we propose to approximate the per-
formance of interest (e.g., read margin, write margin) as
a linear or quadratic model of the M-dimensional random
variable x. Once the model is available, the optimization
in (29) can be solved by either quadratic programming (for
linear performance model) or semidefinite programming (for
quadratic performance model) [18]. The detailed algorithm
for performance modeling and optimization can be found in
[18]. It is important to mention that even though the linear or
quadratic performance models may not be highly accurate to
cover a large variation space, we can still obtain a good starting
point required by the proposed Gibbs sampling algorithm.
Note that our goal is not to exactly solve (29). Instead, we
only want to find an approximate solution that can be used
by Gibbs sampling to further explore the variation space with
high failure probability.

Next, we will further extend the aforementioned initial point
selection method to spherical coordinate systems. In this case,
once the Cartesian coordinate [x(1)

1 x
(1)
2 . . . x

(1)
M]T is determined

for the initial starting point, we need to map it to the spherical
coordinate [r(1) α

(1)
1 α

(1)
2 . . . α

(1)
M]T . As shown in (12), the value

of r(1) can be easily calculated as follows:

r(1) =

√[
x

(1)
1

]2
+

[
x

(1)
2

]2
+ · · · +

[
x

(1)
M

]2
. (30)

To calculate {α(1)
m ; m = 1, 2, . . . , M}, (11) can be rewritten as

follows:

α
(1)
1 =

∥∥α(1)
∥∥

2 · x
(1)
1

r(1) α
(1)
2 =

∥∥α(1)
∥∥

2 · x
(1)
2

r(1) · · ·
α

(1)
M =

∥∥α(1)
∥∥

2 · x
(1)
M

r(1) .
(31)

As discussed in Section III-B, the vector α(1) only deter-
mines the orientation of x(1) and the length of α(1) can be
arbitrary. In other words, the values of {α(1)

m ; m = 1, 2, . . . , M}
cannot be uniquely determined based on the Cartesian coordi-
nate x(1). For our Gibbs sampling application, since we aim to
locate a failure point [r(1) α

(1)
1 α

(1)
2 . . . α

(1)
M]T that is most likely

to occur, we should determine {α(1)
m ; m = 1, 2, . . . , M} by max-

imizing the PDF f (α) in (14). Even though there are multiple

Algorithm 4 Initial starting point selection

1. Start from the joint PDF f (x) in (1).
2. Solve the optimization problem in (29) to find the

Cartesian coordinate x(1) by using the performance
modeling technique described in [18].

3. Map the Cartesian coordinate x(1) to the spherical
coordinate r(1) and α(1) based on (30) and (32).

possible solutions of α(1) that are associated with the same
Cartesian coordinate x(1), we are interested in the solution that
is most likely to occur (i.e., the maximum-likelihood solution).
Based on this maximum-likelihood criterion and the fact that
α(1) follows the multivariate Normal distribution defined in
(14), the length of α(1) should be sufficiently small so that the
PDF value f [α(1)] is large. Let ||α(1)||2 = ε, where ε → 0, and
(31) becomes

α
(1)
1 = ε · x

(1)
1

r(1) α
(1)
2 = ε · x

(1)
2

r(1) · · · α
(1)
M = ε · x

(1)
M

r(1)
. (32)

In practice, we find that ε = 10−3–10−2 is a good choice
based on our numerical experiments. Once ε is set and
{x(1)

m ; m = 1, 2, . . . , M} and r(1) are found by (29) and (30),
{α(1)

m ; m = 1, 2, . . . , M} are uniquely determined by (32).
Algorithm 4 summarizes the initial starting point selection
scheme for both Cartesian and spherical coordinate systems.

C. Two-Stage Monte Carlo Flow

To make the proposed Gibbs sampling algorithm of practical
utility, there is one additional implementation issue that should
be further addressed. Unlike the traditional Gibbs sampling
algorithm used by the statistics community [16], [22] where
the sampling PDF is given, we do not explicitly know the
multidimensional joint PDF gOPT (x) in (8) or gOPT (r, α) in
(17) as the indicator function I(x) or I(r, α) is unknown. In this
case, even if we can generate the Gibbs samples by applying
Algorithm 3, we cannot simply use the importance sampling
formula in (7) or (16) to calculate the failure probability.
Furthermore, as shown by both Algorithm 1 and Algorithm
2, multiple (typically 5–10) transistor-level simulations are
required to perform binary search and generate a single Gibbs
sample. It implies that applying Gibbs sampling to create many
random samples can be expensive, since it requires repeatedly
running a large number of transistor-level simulations.

For these reasons, once a set of (say, K) Gibbs samples are
created, it is desired to “learn” the joint PDF (e.g., gOPT (x) in
(8) for importance sampling in Cartesian coordinate systems)
from these samples. As such, additional random sampling
points can be directly drawn from the PDF that is learned
without running binary search. Such a strategy would help
to make the proposed Gibbs sampling technique applicable to
our application of SRAM failure rate prediction. It also further
reduces the computational cost and/or improves the prediction
accuracy.

Toward this goal, we propose to adopt a two-stage Monte
Carlo flow consisting of two sequential steps. First, Gibbs
sampling is applied to generate K random samples inside the
failure region. Next, at the second stage, we approximate the

SUN et al.: EFFICIENT SRAM FAILURE RATE PREDICTION VIA GIBBS SAMPLING 1839

Algorithm 5 Two-stage Monte Carlo flow

1. Start from a joint PDF f (x), a given value of K (i.e., the
number of Gibbs samples for the first stage), and a given
value of N (i.e., the number of random samples for the
second stage).

2. Apply Algorithm 1 (for Cartesian coordinate systems
only), Algorithm 2 (for spherical coordinate systems
only), Algorithm 3 (for both Cartesian and spherical
coordinate systems), and Algorithm 4 (for both Cartesian
and spherical coordinate systems) to generate K Gibbs
sampling points.

3. If the Gibbs samples are generated in a spherical coor-
dinate system, map them to the Cartesian coordinates by
using (11).

4. Calculate the mean value and the covariance matrix
of these K Gibbs samples in the Cartesian coordinate
system. Determine a multivariate Normal distribution
gNOR(x) to approximate the joint PDF for importance
sampling.

5. Generate N random samples from the multivariate
Normal distribution gNOR(x).

6. Calculate the failure rate from these N samples by
using (33).

optimal PDF gOPT (x) as a multivariate Normal distribution
gNOR(x) where the mean value and the covariance matrix of
gNOR(x) are calculated from the K Gibbs samples [23]. In our
implementation, since the initial starting point is appropriately
selected by Algorithm 4, we assume no warm-up interval and
all Gibbs samples from the first stage are used to estimate
the Normal distribution gNOR(x). The second stage is always
implemented in Cartesian coordinate systems. If Algorithm 2
is used to generate Gibbs samples in a spherical coordinate
system, these samples can be easily mapped to their Cartesian
coordinates based on (11) before fitting the Normal distribu-
tion gNOR(x). Once gNOR(x) is known, we directly sample it
to generate N random samples and estimate the failure rate
from these N samples

P̃ IS
f =

1

N
·

N∑
n=1

I
[
x(n)

] · f
[
x(n)

]
gNOR

[
x(n)

] . (33)

Algorithm 5 summarizes the major steps of the proposed two-
stage Monte Carlo flow.

Algorithm 5 requires a user to specify the appropriate values
of K (i.e., the number of Gibbs samples for the first stage)
and N (i.e., the number of random samples for the second
stage). These two parameters are often empirically chosen.
Based on our experience, we set K and N in the order of 102–
103 and 103–104, respectively, for our experimental examples
in Section V.

While Algorithm 5 approximates the optimal PDF gOPT (x)
as a multivariate Normal distribution, gOPT (x) can also be
approximated as other non-Normal distributions such as Gaus-
sian mixture distribution [23]. However, these non-Normal
distributions often require more Gibbs samples to fit than a
Normal distribution. In other words, we will have to increase

Fig. 5. 6-T SRAM cell is used as the test case to demonstrate the efficacy
of the proposed Gibbs sampling method.

the number of Gibbs samples in the first stage to accurately
fit a non-Normal distribution. In this paper, we focus on the
simple Normal approximation, as shown by Algorithm 5. The
possible extension to other non-Normal distributions will be
considered in our future research.

Finally, it should be noted that several traditional impor-
tance sampling techniques also draw random samples from
a multivariate Normal distribution [8], [14]. However, unlike
the traditional techniques that only estimate the mean value of
the multivariate Normal distribution for importance sampling,
we apply Gibbs sampling to optimally determine both the
mean value and the covariance matrix for gNOR(x). Hence,
the second-stage random sampling can converge quickly.

On the other hand, Algorithm 5 often requires more first-
stage simulation runs than other traditional techniques [8],
[14] in order to accurately estimate the covariance matrix
for second-stage sampling. For this reason, the proposed
method is expected to be more efficient than the traditional
approaches, when the error of failure rate prediction must
be sufficiently small (e.g., the relative error defined by the
99% confidence interval reaches 5%). In these cases, most
traditional techniques require a large number of second-stage
samples to achieve such a high prediction accuracy and, hence,
the proposed two-stage Monte Carlo flow is preferred due to its
fast convergence at the second stage, as will be demonstrated
by our experimental results in Section V.

V. Numerical Examples

Fig. 5 shows the circuit schematic of a 6-T SRAM cell
designed in a 90 nm CMOS process. In this section, the
SRAM cell is used to demonstrate the efficacy of the proposed
Gibbs sampling method. For testing and comparison purposes,
four different importance sampling methods are implemented:
1) mixture importance sampling (MIS) [8]; 2) minimum-norm
importance sampling (MNIS) [14]; 3) the proposed Gibbs sam-
pling implemented for Cartesian coordinate systems (G-C);
and 4) the proposed Gibbs sampling implemented for spherical
coordinate systems (G-S) where we set ε = 10−2 in (32)
to generate the initial starting point by Algorithm 4. All
these four methods employ a two-stage analysis flow. A
multivariate Normal distribution gNOR(x) is first constructed
from K random samples during the first stage and then N
additional random samples are drawn from gNOR(x) to calcu-

1840 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 12, DECEMBER 2012

Fig. 6. Estimated failure probability is plotted as a function of the number
of transistor-level simulations at the second stage. (a) RNM. (b) WNM.

Fig. 7. Relative error of failure rate prediction (defined by 99% confidence
interval) is plotted as a function of the number of transistor-level simulations
at the second stage. (a) RNM. (b) WNM.

TABLE I

Number of Required Simulations for Both First and Second

Stages to Achieve 5% Error Defined by

99% Confidence Interval

First Stage
Second Stage Total

RNM WNM RNM WNM
MIS [8] 5000 19 100 53 200 24 100 58 200
MNIS [14] 1000 14 200 20 100 15 200 21 100
G-C (proposed) 5000 3100 10 400 8100 15 400
G-S (proposed) 5000 5100 6800 10 100 11 800

late the failure probability at the second stage. All numerical
experiments are run on a 2.53 GHz server with 16 GB memory.

A. Noise Margin

In this subsection, two performance metrics, RNM and write
noise margin (WNM), are used to assess the stability of the
SRAM cell. Both RNM and WNM must be greater than
zero to ensure a stable SRAM cell. The importance sampling
methods are applied to estimate the failure rate associated with
RNM and WNM. The local VTH mismatches of all transistors
(i.e., six random variables {	VTH1, 	VTH2, . . . , 	VTH6}) are
considered for Monte Carlo analysis. These random variables
are modeled as a joint Normal distribution.

To compare the difference between the four importance
sampling algorithms, Fig. 6 shows the estimated failure prob-
ability as a function of the number of transistor-level sim-
ulations at the second stage. All four importance sampling
methods yield the same failure probability, if the number of
random samples is sufficiently large. In this example, the

proposed Gibbs sampling methods (i.e., G-C and G-S) are
more accurate than the other two traditional methods (i.e., MIS
and MNIS) given the same number of random samples.

To quantitatively assess the accuracy of different importance
sampling methods, Fig. 7 plots the relative prediction error as
a function of the number of second-stage simulations. Here,
the relative error is defined as the ratio of the 99% confidence
interval over the estimated failure probability. Table I further
compares the number of required simulations of both first and
second stages to achieve 5% error. For both G-C and G-S, the
first-stage simulations include two portions: 1) the simulations
required for initial starting point selection; and 2) the simu-
lations required for generating Gibbs samples. By studying
Table I, we note that the proposed Gibbs sampling methods
only require 8100–15 400 simulations in total, while MIS and
MNIS require 15 200–58 200 simulations to achieve the same
accuracy. In other words, G-C and G-S achieve 1.4–4.9×
runtime speedup over MIS and MNIS in this example.

To further understand the advantages and limitations of
the aforementioned importance sampling methods, Figs. 8–
11 plot the random samples that are generated at the second
stage. For illustration purposes, these figures only show the
VTH mismatches of two transistors that are critical to the
performance of interest (i.e., 	VTH1 and 	VTH3 for RNM
and 	VTH3 and 	VTH5 for WNM) for the SRAM cell in
Fig. 5. Each random sample is labeled as “Pass” or “Fail.”
It indicates whether the performance of interest (i.e., RNM or
WNM) associated with the random sample passes or fails the
specification.

Studying Figs. 8–11 reveals three important observations.
First, the failure points sampled by four different importance
sampling methods fall into the same failure region. It, in turn,
implies that all four importance sampling methods attempt to
draw random samples from the same failure region in this
example. Second, both MIS and MNIS do not accurately
approximate the optimal PDF gOPT (x) for importance sam-
pling. These two traditional methods only identify the mean
value of gOPT (x), while the covariance matrix is completely
ignored. Hence, a large number of random samples generated
at the second stage do not fall into the failure region. The
performance values associated with these random samples are
labeled as “Pass” in Figs. 8 and 9. Third, the proposed Gibbs
sampling algorithms (i.e., G-C and G-S) are able to accurately
capture both the mean value and the covariance matrix of
gOPT (x). For this reason, most sampling points generated by
G-C and G-S appropriately cover the failure region of interest,
as shown in Figs. 10 and 11.

The aforementioned three observations demonstrate that
while all four importance sampling methods sample the same
failure region in this example, G-C and G-S are able to
generate failure points more efficiently than MIS and MNIS.
This is the fundamental reason why G-C and G-S achieve su-
perior accuracy over MIS and MNIS for failure rate prediction
with the same number of simulations, as demonstrated by the
results shown in Figs. 6, 7, and Table I.

Finally, it is worth mentioning that even though G-C and
G-S yield similar accuracy in this example, they can lead
to different results in a number of other cases. One of

SUN et al.: EFFICIENT SRAM FAILURE RATE PREDICTION VIA GIBBS SAMPLING 1841

Fig. 8. Random samples generated by MIS (i.e., mixture importance sam-
pling [8]) at the second stage are plotted for (a) RNM and (b) WNM.

Fig. 9. Random samples generated by MNIS (i.e., minimum-norm impor-
tance sampling [14]) at the second stage are plotted for (a) RNM and
(b) WNM.

Fig. 10. Random samples generated by G-C (i.e., the proposed Gibbs
sampling implemented for Cartesian coordinate systems) at the second stage
are plotted for (a) RNM and (b) WNM.

these examples will be discussed in detail in the next sub-
section.

B. Read Current

In this subsection, we consider the read current of the
SRAM cell as the performance of interest. Given the circuit
schematic shown in Fig. 5, the read current is measured as
the drain current of the transistor M3, when the word line
(i.e., WL) and both bit lines (i.e., BL and B̃L̃) are connected
to the supply voltage VDD. The read current directly impacts
the discharge speed of bit lines during a read operation.
Hence, it is an important performance metric related to access
time failure. If the read current is greater than or equal to a
predefined threshold, the SRAM cell is considered as “Pass.”

We apply four different importance sampling methods to es-
timate the failure rate associated with the performance metric
of read current. In this example, the local VTH mismatches of
the transistors M1 and M3 (i.e., two random variables {	VTH1,
	VTH3}) are considered only due to the following reasons.
First, the read current variation is dominated by the local

Fig. 11. Random samples generated by G-S (i.e., the proposed Gibbs
sampling implemented for spherical coordinate systems) at the second stage
are plotted for (a) RNM and (b) WNM.

Fig. 12. Estimated failure probability of read current is plotted as a function
of the number of transistor-level simulations at the second stage.

TABLE II

Failure Probability of Read Current Estimated by Different

Importance Sampling Methods

Number of Simulations Failure Relative
First Stage Second Stage Rate Error

MIS [8] 5 × 103 1 × 104 1.64 × 10−6 28.1%

MNIS [14] 1 × 103 1 × 104 1.26 × 10−6 44.7%

G-C (proposed) 5 × 103 1 × 104 1.29 × 10−6 43.4%

G-S (proposed) 5 × 103 1 × 104 2.25 × 10−6 1.32%

Brute-force MC 8.7 × 106 2.28 × 10−6 −

VTH mismatches of these two transistors. Second, considering
	VTH1 and 	VTH3 only (i.e., a 2-D variation space) facil-
itates us to make a comprehensive comparison of different
importance sampling algorithms and, hence, fully understand
their advantages and limitations based on the numerical results
presented in this subsection.

Fig. 12 shows the estimated failure probability as a function
of the number of transistor-level simulations at the second
stage. Unlike the RNM and WNM examples in the previous
sub-section where all four importance sampling methods even-
tually converge to the same failure probability, the proposed
Gibbs sampling for spherical coordinate systems (i.e., G-S)
results in a failure rate that is different from the other three
methods (i.e., MIS, MNIS, and G-C). In order to verify the
accuracy of these four importance sampling methods, we
further implement a brute-force Monte Carlo analysis engine
where 8.7 million random samples are directly drawn from
the PDF of process variations, i.e., f (x) in (1). The failure
probability calculated by the brute-force Monte Carlo analysis

1842 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 12, DECEMBER 2012

Fig. 13. 2-D failure region is plotted for the performance metric of read
current. The gray circles denote the contour lines of the joint probability
density function f (VTH1, 	VTH3) for the random variables 	VTH1 and
	VTH3. Each green square represents a failure point that is randomly sampled
from a 2-D uniform distribution. Each black cross denotes a failure point that
is generated by the importance sampling methods at the second stage. (a) MIS
[8]. (b) MNIS [14]. (c) G-C. (d) G-S.

engine is used as the “golden” result to assess the accuracy of
all importance sampling methods in this example.

Table II summarizes the failure probability estimated by the
four importance sampling methods and the brute-force Monte
Carlo analysis engine. On the basis of Table II, we notice that
G-S is more accurate than the other three importance sampling
methods (i.e., MIS, MNIS, and G-C), since the failure rate
estimated by G-S is almost identical to that estimated by
the brute-force Monte Carlo analysis engine with 8.7 million
samples. It is important to note that MIS, MNIS, and G-C do
not result in the correct failure rate, even though the number
of random samples reaches 10 000 at the second stage, as
shown in Fig. 12. In addition, once the number of second-stage
simulations reaches 6000, collecting extra random samples for
MIS, MNIS, and G-C does not help to quickly reduce the
estimation error. In other words, the error associated with MIS,
MNIS, and G-C cannot be efficiently reduced by increasing the
number of samples at the second stage. While G-S accurately
estimates the correct failure probability, MIS, MNIS, and G-C
all fail to work in this example.

To fully understand the limitations of MIS, MNIS, and G-C,
we uniformly sample the variation space to identify the failure
region for the performance metric of read current. Since only
the local VTH mismatches of two transistors are considered in
this example, the 2-D failure region can be easily found by
the aforementioned uniform sampling, as shown in Fig. 13.
Fig. 13 further plots the failure points generated by the four
importance sampling methods at the second stage.

Several important observations can be obtained by studying
the data in Fig. 13. First, the proposed G-S method is able to
generate random samples to fully cover the high-probability
failure region (i.e., the failure region that is close to the

Fig. 14. First three Gibbs samples are conceptually illustrated to compare
the difference between (a) G-C and (b) G-S. The gray area stands for the
high-probability failure region. The blue circle (labeled as “1”) indicates the
initial starting point, the green square (labeled as “2”) represents the second
Gibbs sample, and the red triangle (labeled as “3”) denotes the third Gibbs
sample.

origin). Second, the other three importance sampling methods
(i.e., MNS, MNIS, and G-C) cannot appropriately sample the
high-probability failure region in this example. Instead, they
only draw random samples from a small portion of the high-
probability failure region, thereby underestimating the failure
probability. If we further increase the number of random
samples at the second stage, MNS, MNIS, and G-C can
eventually converge to the correct failure rate. However, we
expect that an extremely large number of random samples must
be collected before these three methods can reach convergence.

In this example, MNS, MIS, and G-C all fail to work,
since the high-probability failure region corresponds to an
irregular, nonconvex shape, as shown in Fig. 13. When MNS
and MNIS are applied, they only shift the mean value of the
multivariate Normal distribution f (x) in (1) to construct a new
Normal distribution gNOR(x) for importance sampling. Since
the covariance matrix is not appropriately estimated based
on the high-probability failure region, both MNS and MNIS
cannot correctly capture the failure region of interest.

To further study the difference between G-C and G-S,
Fig. 14 conceptually illustrates the locations of the first three
Gibbs samples generated by both methods. In this example,
both G-C and G-S initially start from the same blue circle
that is determined by Algorithm 4. The initial starting point
sits in the high-probability failure region and it is close to the
boundary of the failure region.

When G-C is applied to generate Gibbs samples, it first
samples the random variable 	VTH1, while the other random
variable 	VTH3 is fixed. Since 	VTH1 follows a Normal
distribution, its probability density function f (VTH1) expo-
nentially decays, as 	VTH1 moves away from zero. As a result,
G-C yields a sample that is close to the boundary of the failure
region (namely, close to the origin of the Cartesian coordinate
system), as shown by the green square in Fig. 14(a). Note
that the green square is extremely close to the blue circle.
Next, G-C samples 	VTH3, while 	VTH1 is fixed. For the same
reason, the new sample is close to the boundary of the failure
region, as shown by the red triangular in Fig. 14(a). The new
Gibbs sample cannot move far away from the previous sample.
Hence, the Gibbs samples iteratively generated by G-C are lo-
cally distributed in a small region. This conclusion can be fur-

SUN et al.: EFFICIENT SRAM FAILURE RATE PREDICTION VIA GIBBS SAMPLING 1843

Fig. 15. Perturbation 	r, where 	r → 0, is applied to the radius of the 3-D
sphere ||x||2 = r.

ther supported by Fig. 13(c), where the failure points generated
at the second stage are distributed over a small local region.

On the other hand, G-S is able to successfully generate
Gibbs samples to fully cover the high-probability failure
region. To understand the reason, we need to take a close
look at the sampling process associated with G-S. As shown
in Fig. 14(b), G-S starts from the blue circle and it first samples
over the radius to reach the green square. Next, G-S samples
over the contour line of the joint probability density function
f (VTH1, 	VTH3), similar to the 2-D example shown in Fig. 3.
It results in a new sample that is far away from the initial
starting point, as shown by the red triangular in Fig. 14(b). This
is the fundamental reason why G-S does not get stuck within a
small local region in this example. The aforementioned discus-
sions demonstrate an important fact that even though both G-C
and G-S rely on Gibbs sampling, they can lead to substantially
different results due to their different implementations.

Finally, it is worth mentioning that the high-probability
failure region is not continuous along the contour line of the
joint probability density function f (VTH1, 	VTH3) in this
example, as shown in Fig. 13. Hence, when G-S applies binary
search in Algorithm 3 to the random variable α1 or α2 that
defines the orientation, it may not find a 1-D interval that
fully covers the failure region. In this case, the Gibbs sample
is drawn from a subset of the failure region, instead of the
actual failure region. However, it is likely that the binary
search converges to a different 1-D interval during the next
iteration step. It, in turn, helps to move the Gibbs sample
over a long distance. For this reason, the random samples
iteratively generated by G-S can be widely distributed over
the high-probability failure region eventually.

VI. Conclusion

In this paper, a novel Gibbs sampling method was proposed
for efficient failure rate prediction of SRAM circuits. The
proposed Gibbs sampling algorithm was implemented for
both Cartesian and spherical coordinate systems. It adaptively
explored the variation space so that a large number of
random samples fell into the failure region and the SRAM
failure probability could be accurately estimated with a low
computational cost. In particular, it iteratively sampled a
sequence of 1-D PDFs by an efficient inverse-transform
method. As was demonstrated by our experimental results
for a 90 nm SRAM cell, the proposed Gibbs sampling

achieved 1.4∼4.9× runtime speedup over other state-of-the-
art techniques, when a high prediction accuracy was required
(e.g., the relative error defined by the 99% confidence
interval reached 5%). In addition, we further demonstrated an
important example for which the proposed Gibbs sampling
algorithm accurately estimated the correct failure probability
while the traditional techniques failed to work. The Gibbs
sampling technique can be further incorporated into a
statistical optimization environment for accurate and efficient
parametric yield optimization of SRAM circuits.

On the other hand, it is important to mention that the
proposed Gibbs sampling method was particularly developed
to handle a single continuous failure region only. In addition,
the proposed Gibbs sampling technique can be computation-
ally inefficient for high-dimensional problems where there
are a large number of random variables in (1) (e.g., M ≥
30). In these high-dimensional applications, Gibbs sampling
only samples one random variable at each iteration step,
thereby resulting in slow convergence. Finally, for a given
circuit where the failure region is unknown, it remains an
open question how to automatically select the appropriate
importance sampling algorithm (e.g., MIS, MNIS, G-C, or G-
S) to achieve high estimation accuracy and low computational
cost. These issues will be further studied in our future research.

APPENDIX

PROOF OF THEOREM 1

It has been shown in [17] that if the random variables
{αm; m = 1, 2, . . . , M} are mutually independent and standard
Normal, the variables {αm/||α||2; m = 1, 2, . . . , M} are uni-
formly distributed on the surface of a sphere with unit radius.
Hence, for a given value of r, the random variables {xm; m =
1, 2, . . . , M} defined in (11) are uniformly distributed on the
surface of a sphere ||x||2 = r. In other words, for all points on
the surface of the sphere ||x||2 = r, their PDF values are iden-
tical. In order to calculate the joint PDF for x, we consider the
sphere ||x||2 = r and add a small perturbation 	r to the radius,
as shown by the 3-D example in Fig. 15. If the perturbation
	r is sufficiently small (i.e., 	r → 0), the values of f (x) at
all points within the region r ≤ ||x||2 ≤ r + 	r are identical.

As shown in (13), the radius r follows the Chi distribution
with M degrees of freedom. The CDF of r is represented as
follows [20]:

F (r) =
2

� (0.5 · M)
·
(

1

2

)0.5·M
·
∫ r

0
tM−1 · e−0.5·t2 · dt. (34)

Hence, the probability for r ≤ ||x||2 ≤ r + 	r where 	r → 0
is equal to

	F = F (r + 	r) − F (r) = dF
dr

· 	r

= 2
�(0.5·M) · (

1
2

)0.5·M · rM−1 · e−0.5·r2 · 	r.
(35)

On the other hand, the volume of an M-dimensional sphere
can be written as follows [21]:

V (r) =
2 · π0.5·M

M · � (0.5 · M)
· rM. (36)

1844 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 12, DECEMBER 2012

Hence, the volume for the region r ≤ ||x||2 ≤ r + 	r where
	r → 0 is equal to

	V = V (r + 	r) − V (r) = dV
dr

· 	r

= 2
�(0.5·M) · π0.5·M · rM−1 · 	r.

(37)

Since the values of f (x) at all points within the region r ≤
||x||2 ≤ r + 	r (r → 0) are identical, f (x) is equal to the
ratio between 	F in (35) and 	V in (37)

f (x) =
	F

	V
=

(
1

2 · π

)0.5·M
· e−0.5·r2

. (38)

Substituting (12) into (38) yields

f (x) =

(
1

2 · π

)0.5·M
· exp

(
−x2

1 + x2
2 + · · · + x2

M

2

)
. (39)

The PDF in (39) is exactly equal to that of the multivariate
Normal distribution, as shown in (1).

References

[1] C. Dong and X. Li, “Efficient SRAM failure rate prediction via Gibbs
sampling,” in Proc. Des. Automat. Conf., 2011, pp. 200–205.

[2] A. Bhavnagarwala, X. Tang, and J. Meindl, “The impact of intrinsic
device fluctuations on CMOS SRAM cell stability,” IEEE J. Solid-State
Circuits, vol. 36, no. 4, pp. 658–665, Apr. 2001.

[3] R. Heald and P. Wang, “Variability in sub-100 nm SRAM designs,” in
Proc. Int. Conf. Comput.-Aided Des., 2004, pp. 347–352.

[4] B. Calhoun, Y. Cao, X. Li, K. Mai, L. Pileggi, R. Rutenbar, and K.
Shepard, “Digital circuit design challenges and opportunities in the era
of nanoscale CMOS,” Proc. IEEE, vol. 96, no. 2, pp. 343–365, Feb.
2008.

[5] S. Mukhopadhyay, H. Mahmoodi, and K. Roy, “Statistical design and
optimization of SRAM cell for yield enhancement,” in Proc. Int. Conf.
Comput.-Aided Des., 2004, pp. 10–13.

[6] K. Agarwal and S. Nassif, “Statistical analysis of SRAM cell stability,”
in Proc. Des. Automat. Conf., 2006, pp. 57–62.

[7] M. Abu-Rahma, K. Chowdhury, J. Wang, Z. Chen, S. Yoon, and M.
Anis, “A methodology for statistical estimation of read access yield in
SRAMs,” in Proc. Des. Automat. Conf., 2008, pp. 205–210.

[8] R. Kanj, R. Joshi, and S. Nassif, “Mixture importance sampling and
its application to the analysis of SRAM designs in the presence of rare
failure events,” in Proc. Des. Automat. Conf., 2006, pp. 69–72.

[9] A. Singhee and R. Rutenbar, “Statistical blockade: A novel method
for very fast Monte Carlo simulation of rare circuit events, and its
application,” in Proc. Des. Automat. Test Eur., 2007, pp. 1–6.

[10] L. Dolecek, M. Qazi, D. Shah, and A. Chandrakasan, “Breaking the
simulation barrier: SRAM evaluation through norm minimization,” in
Proc. Int. Conf. Comput.-Aided Des., 2008, pp. 322–329.

[11] J. Wang, S. Yaldiz, X. Li, and L. Pileggi, “SRAM parametric failure
analysis,” in Proc. Des. Automat. Conf., 2009, pp. 496–501.

[12] J. Jaffari and M. Anis, “Adaptive sampling for efficient failure proba-
bility analysis of SRAM cells,” in Proc. Int. Conf. Comput.-Aided Des.,
2009, pp. 623–630.

[13] K. Katayama, S. Hagiwara, H. Tsutsui, H. Ochi, and T. Sato, “Sequential
importance sampling for low-probability and high-dimensional SRAM
yield analysis,” in Proc. Int. Conf. Comput.-Aided Des., 2010, pp. 703–
708.

[14] M. Qazi, M. Tikekar, L. Dolecek, D. Shah, and A. Chandrakasan, “Loop
flattening and spherical sampling: Highly efficient model reduction
techniques for SRAM yield analysis,” in Proc. Des. Automat. Test Eur.,
2010, pp. 801–806.

[15] C. Gu and J. Roychowdhury, “An efficient, fully nonlinear, variability-
aware non-Monte-Carlo yield estimation procedure with applications
to SRAM cells and ring oscillators,” in Proc. Asia South Pacific Des.
Automat. Conf., 2008, pp. 754–761.

[16] C. Andrieu, N. Freitas, A. Doucet, and M. Jordan, “An introduction to
MCMC for machine learning,” Mach. Learning, vol. 50, no. 1, pp. 5–43,
Jan. 2003.

[17] G. Marsaglia, “Choosing a point from the surface of a sphere,” Ann.
Math. Statist., vol. 43, no. 2, pp. 645–646, Apr. 1972.

[18] H. Zhang, T. Chen, M. Ting, and X. Li, “Efficient design-specific worst-
case corner extraction for integrated circuits,” in Proc. Des. Automat.
Conf., 2009, pp. 386–389.

[19] A. Chandrakasan, W. Bowhill, and F. Fox, Design of High-Performance
Microprocessor Circuits. New York: Wiley-IEEE Press, 2000.

[20] A. Papoulis and S. Pillai, Probability, Random Variables and Stochastic
Processes. New York: McGraw-Hill, 2001.

[21] M. Kendall, A Course in the Geometry of n Dimensions. New York:
Dover, 2004.

[22] G. Fishman, A First Course in Monte Carlo. Pacific Grove, CA: Duxbury
Press, Oct. 2005.

[23] C. Bishop, Pattern Recognition and Machine Learning. Englewood
Cliffs, NJ: Prentice-Hall, 2007.

Shupeng Sun (S’11) received the B.S. degree in au-
tomation from Tsinghua University, Beijing, China,
in 2010. He is currently pursuing the Ph.D. degree
in electrical and computer engineering with the
Department of Electrical and Computer Engineering,
Carnegie Mellon University, Pittsburgh, PA.

His current research interests include statistical de-
sign and optimization of low-power SRAM circuits.

Yamei Feng received the B.S. degree in informa-
tion science and electronic engineering from Zhe-
jiang University, Hangzhou, China, in 2007, and the
M.S. degree in electrical and computer engineering
from Carnegie Mellon University, Pittsburgh, PA, in
2011.

She is currently with the Department of Elec-
trical and Computer Engineering, Carnegie Mellon
University. Her current research interests include
computer-aided design and signal processing.

Changdao Dong received the B.S. degree in com-
puter science from Tsinghua University, Beijing,
China, in 2007, and the M.S. degree in electrical
and computer engineering from Carnegie Mellon
University, Pittsburgh, PA, in 2011.

He is currently with the Department of Electrical
and Computer Engineering, Carnegie Mellon Uni-
versity. He was a Software Development Intern with
IBM CSDL, Beijing, in 2009. His current research
interests include statistical analysis and modeling for
memory circuits under process variations.

Xin Li (S’01–M’06–SM’10) received the B.S. and
M.S. degrees in electronics engineering from Fudan
University, Shanghai, China, in 1998 and 2001,
respectively, and the Ph.D. degree in electrical and
computer engineering from Carnegie Mellon Univer-
sity, Pittsburgh, PA, in 2005.

He is currently an Assistant Professor with the
Department of Electrical and Computer Engineering,
Carnegie Mellon University. His current research in-
terests include computer-aided design, neural signal
processing, and power system analysis and design.

Dr. Li has been an Associate Editor of the IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems since
2012. He has served on the technical program committees of DAC and
ICCAD. He is a recipient of the NSF CAREER Award in 2012, the DAC Best
Paper Award in 2010, and two ICCAD Best Paper Awards in 2004 and 2011.

