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Abstract—Newton-Raphson based methods are widely used for
solving Optimal Power Flow (OPF) problems. Convergence can
be sensitive to the starting point of the algorithm, the step size,
and the condition number of the Jacobian. The inclusion of inter-
temporal constraints, i.e., constraints that link successive time
steps in the optimization, can in certain cases cause the Jacobian
to become singular and Newton-Raphson to diverge. These cases
occur when the binding inter-temporal constraints do not fulfill
the Linear Independence Constraint Qualification (LICQ). In this
paper, we discuss the conditions under which this happens, and
analyze when singularities occur in a particular storage device
model test case.

I. INTRODUCTION

OPTIMAL Power Flow (OPF) and Economic Dispatch
(ED) are important components of the Energy Man-

agement System (EMS) in electric power systems. Economic
Dispatch is used to determine the most cost-effective gen-
eration settings to supply the load whereas Optimal Power
Flow is used to determine the optimal settings of controllable
elements in the system with respect to a specific objective.
Both concepts are based on optimization and optimize the
operation of the system for a specific instant in time.

With the increased penetration of intermittent renewable
generation, it becomes highly important to optimally utilize
the available resources to balance the variability of these
resources. This can result in an increased need for ramping
of conventional resources; hence, ramping constraints play an
increasingly important role in the economic dispatch problem.
Another approach to overcome the variations in the power
output of the renewable generation is to deploy and use storage
devices to balance the variability. However, storage devices
differ from generation by the fact that they not only have
limitations on power output but also on energy. Whatever
energy is provided by the storage devices needs to be fed
into the storage at some point.

The ramping constraints for the generators and the energy
constraints for the storage devices lead to inter-temporal con-
straints, i.e., the setting of the generator or storage at instant
t+T is dependent on the settings at t, t−T, . . .. For an opti-
mized operation of generation and usage of storage devices, a
multi-step optimization which simultaneously optimizes over
a future time horizon becomes necessary. The consequence is
that the size of the optimization problem grows significantly,
especially if security constraints are to be included such as in
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Security Constrained Economic Dispatch (SCED) and Security
Constrained Optimal Power Flow (SCOPF).

In this paper, we use a decomposition technique based on
Approximate Newton Directions [1] to decompose the overall
optimization problem into smaller subproblems which are then
solved iteratively to find the optimal solution of the overall
problem. In addition to the reduced problem size, such an
approach is also motivated by the fact that power systems are
often operated by multiple entities which need to coordinate
but are usually not willing to exchange a large amount of data.
In a scenario where variable resources are located in an area
operated by one entity and potential balancing resources in
another area, such coordination providing an overall optimal
operation is even more important.

As indicated by the name, the Approximate Newton Di-
rection method is a Newton Raphson based approach. The
first order optimality conditions of the optimization problem
to be solved are formulated and then the Jacobian matrix of the
resulting equation system is transformed into a block diagonal
matrix by neglecting respective off-diagonal elements. By
these means, the Newton-Raphson steps can be carried out in
a distributed manner, exchanging needed information between
the subproblems after each Newton-Raphson step. However,
there are instances caused by the inter-temporal constraints at
which the overall and also the reduced Jacobian matrix become
singular. In this paper, we describe the problem, the causes,
and solutions to overcome the problem.

The paper is structured as follows: Section II discusses
the inter-temporal models used for generation and storage
constraints in this paper. Section III introduces the concept
of multi-step optimization and the KKT conditions for opti-
mality. Section IV defines the Linear Independence Constraint
Qualification, and its relevance to the considered problem
of a singular Jacobian. Section V discusses techniques to
avoid this problem. Section VI introduces the Approximate
Newton Directions method, and provides motivation for using
a distributed Newton-Raphson method for solving Optimal
Power Flow problems. Section VII shows simulation results,
and a discussion and a conclusion are given in Section VIII.

II. INTER-TEMPORAL CONSTRAINTS

In this section, we describe the models used for generation
and energy storage devices, including the inter-temporal con-
straints which as explained later in the paper will cause the
singularity of the Jacobian matrix in specific cases. These are
just a subset of the constraints that could potentially cause
these singularities, but provide a motivating example to show
constraints that could have these issues.



A. Generation

With objectives such as economic dispatch where the goal is
to determine the most cost-effective setting of the generators,
constraints which are often included are the upper and lower
limit of the generator output, i.e.

Pmin
G ≤ PG(t) ≤ Pmax

G , (1)

where PG(t) represents the active power generation of the
generator at time t. In addition, having a limitation on the ramp
rate of the generator results in the following inter-temporal
constraints:

∆Pmin
G ≤ PG(t)− PG(t− T ) ≤ ∆Pmax

G , (2)

where ∆Pmin
G and ∆Pmax

G are the minimum and maximum
ramp rates of the generator, respectively. It is important to
note that for the first time step t = 1, PG(t−T ) is the current
setting PG(0) of the generator which is a fixed value rather
than an optimization variable. This fact is one of the important
reasons behind the cause of the singular Jacobian matrix, as
will be discussed in detail later in the paper.

B. Storage

There are two main storage models which are being used
in the literature for steady-state power flow calculations.
Variations of a model of the following form

E(t+ T ) = E(t) + TPs(t), (3)
Emin ≤ E(t+ T ) ≤ Emax, (4)

−Pmax
out ≤ Ps(t) ≤ Pmax

in , (5)

are used, for example, in [2] and [3]. E(t) is the energy level
at time t and Ps(t), positive when the storage is charging
and negative when the storage is discharging, is the power
injected into the storage at time t. An issue with this model
is that losses from charging/discharging are not explicitly
accounted for in the energy balance equation. To account for
these roundtrip losses a variable that multiplies with Ps can
be introduced [3], but this does not correctly model the time
instance at which the losses actually occur.

The second model accurately gauges when losses occur
by using separate variables Pin for charging power and Pout

for discharging power. Charging and discharging efficiencies
are defined for these two actions as ηc and ηd, respectively,
resulting in

E(t+ T ) = E(t) + ηcTPin(t)−
T

ηd
Pout(t), (6)

Emin ≤ E(t+ T ) ≤ Emax, (7)
0 ≤ Pin(t) ≤ Pmax

in , (8)
0 ≤ Pout(t) ≤ Pmax

out . (9)

This model has been used in [4]–[6], for example. However,
as will be demonstrated in this paper, usage of this model
can cause the Jacobian of the first order optimality conditions
to become singular. The problem tackled in this paper does
not appear in all cases that simply incorporate this model.
Models such as the one in [7] that assume in certain cases

the storage will charge and in certain cases the storage will
discharge without actually performing Optimal Power Flow
or an optimization with these constraints would not have this
problem.

III. MULTI-STEP OPTIMIZATION

The general form of an optimization problem is given by

minimize
x

f(x)

subject to g(x) = 0,

h(x) ≤ 0.

(10)

for which the Lagrangian function can be formulated as

L(x) = f(x) + λT g(x) + µTh(x). (11)

In order to solve the first order optimality conditions via
Newton-Raphson, it is common practice to transform the
inequality constraints to equality constraints by introducing
slack variables z resulting in

h(x) + z = 0, (12)
z ≥ 0. (13)

Consequently, the first order optimality conditions or the
Karush-Kuhn-Tucker (KKT) [8] conditions are given by

∂

∂x
L(x∗, z∗, λ∗, µ∗) = 0, (14)

g(x∗) = 0, (15)
h(x∗) + z∗ = 0, (16)

µ∗z∗ = 0, (17)
µ∗ ≥ 0, (18)
z∗ ≥ 0. (19)

where x∗ and z∗ correspond to the optimal values of the state
and slack variables, respectively, and λ∗ and µ∗ to the La-
grange multipliers for the equality and inequality constraints,
at the optimal point, respectively.

In a multi-step optimization problem, the objective function
corresponds to

f(x) =
N−1∑
t=0

ft(x(t)), (20)

and the equality and inequality constraints to

gt(x(t), x(t− T )) = 0, (21)
ht(x(t), x(t− T )) ≤ 0, (22)

for t = 1, . . . , N where (21) and (22) indicate intra-temporal
as well as inter-temporal constraints. The variables include the
decision variables x(t) for all time steps t = 1, . . . , N within
the prediction horizon.

IV. LINEAR INDEPENDENCE CONSTRAINT QUALIFICATION

In this section, we provide the theoretical background and
the application of the Linear Independence Constraint Qualifi-
cation (LICQ) to the considered problem to demonstrate why
inter-temporal constraints may lead to problems when using
a Newton Raphson based approach to solve the multi-step
optimization problem.



A. Theory of LICQ

The Linear Independence Constraint Qualification (LICQ),
sometimes simply called the Constraint Qualification [9], is
one of many so-called regularity conditions or constraint
qualifications which needs to be fulfilled along with the KKT
conditions at the optimal point in order to be able to find
a (local) solution to the optimization problem. This specific
constraint qualification states that all binding constraints must
be linearly independent. That is, for each binding constraint
hi(x) and equality constraint gi(x), there must exist a single
vector w such that the inner product of the gradient of each
binding constraint with w must be less than 0 at the optimal
solution:

⟨∇hi(x
∗),w⟩ < 0 and ⟨∇gi(x

∗),w⟩ < 0. (23)

This is equivalent to stating that the Jacobian matrix of the
active constraints must have full-rank at the optimal solution.

The structure of the Jacobian matrix in the Newton-Raphson
algorithm for problem (41) has the following form:


∇2L(x, z, λ, µ) ∇g(x)T ∇h(x)T 0

∇g(x) 0 0 0
∇h(x) 0 0 I
0 0 diag{z} diag{µ}

 (24)

It is possible that a solution will fulfill the KKT conditions
while the LICQ does not hold, i.e., the binding constraints,
while optimal, are linearly dependent. The consequence is that
the existence of unique Lagrange multipliers is not guaranteed
[9], [10].

B. Application to Multi-Step Optimization

In the considered application of multi-step optimization, the
LICQ is not fulfilled in some specific situations due to the
inclusion of inter-temporal constraints. We use the general
form

xmin ≤ x(t) ≤ xmax, (25)
∆xmin ≤ x(t)− x(t− T ) ≈ ẋ(t) ≤ ∆xmax, (26)

to describe such inter-temporal constraints. It is clear that
the limits on generator output and ramping rate as seen
in (1) and (2) are constraints of this form. In case of the
storage, the charging power Ps(t) of the storage corresponds
to the derivative of the energy level E(t) in the storage.
Consequently, (4) and (5) are of this form as well. The only
difference in the storage model (6) - (9) is that the limits
described in constraint (26) are modeled using two separate
variables Pin and Pout with two corresponding constraints,
each with ∆xmin equal to 0.

The first order optimality conditions fail to fulfill the LICQ
when (25) and (26) are simultaneously binding during the
first time step, consequently resulting in a singular Jacobian
matrix. The LICQ is not fulfilled during the following
situations:

Case 1: x∗(1) = xmin and
x(0) = xmin −∆xmin or x(0) = xmin −∆xmax

Case 2: x∗(1) = xmax and
x(0) = xmax −∆xmin or x(0) = xmax −∆xmax

which covers the cases for all possible values of ∆xmin and
∆xmax; i.e., either may be positive, negative or zero; however,
depending on the values of ∆xmin and ∆xmax only some of
the stated initial conditions x(0) are feasible due to (25).

In case of the storage model (6) - (9) where ∆xmin = 0
and ∆xmax > 0 for charging and discharging powers, this
situation for example occurs when the storage level is at its
upper or lower limit, i.e., E(0) = Emin or E(0) = Emax and
it is optimal to stay at this level, i.e., P ∗

out(1) = P ∗
in(1) = 0.

As this is a situation which may occur quite regularly, we will
now show specifically that this will lead to a violation of the
Linear Independence Constraint Qualification and to a singular
Jacobian matrix.

Consider an OPF problem with a storage device modeled as
in (6)-(9) with the initial energy level of the storage E(0) = 0.
Examining the first time step, the relevant variables to the
storage constraints are:

x =
[
E(1) Pin(1) Pout(1)

]T
. (27)

Considering the situation in which the optimal solution is

x∗ =
[
0 0 0

]T
. (28)

the following constraints are binding:

g1 = E(1)− E(0)− ηcTPin(1) +
T

ηd
Pout(1) = 0,

h1 = −E(1) + Emin ≤ 0,

h2 = −Pin(1) ≤ 0,

h3 = −Pout(1) ≤ 0.

(29)

Taking a look at the criteria for independent constraints, we
find that these binding constraints at x∗ have the following
gradients with respect to the variables in (32) (the entries in
the gradient vectors with respect to any other variables are
equal to zero and therefore omitted):

∇g1 =
[
1 Tηc − T

ηd

]T
,

∇h1 =
[
−1 0 0

]T
,

∇h2 =
[
0 −1 0

]T
,

∇h3 =
[
0 0 −1

]T
.

(30)

It is evident that because the initial energy stored is a
constant and not an optimization variable, the constraint gra-
dients for time step t = 1 are linearly dependent. However,
this situation only exists for the first time step. Consider the
variables for time steps t = 1, 2:

x =
[
E(1) Pin(1) Pout(1) E(2) Pin(2) Pout(2)

]T (31)

with the optimal solution as:

x∗ =
[
0 0 Pout(1)

∗ 0 0 0
]T

. (32)



The constraints which need to be considered for time step
t = 2 are

g2 = E(2)− E(1)− ηcTPin(2) +
T

ηd
Pout(2) = 0,

h4 = −E(2) + Emin ≤ 0,

h5 = −Pin(2) ≤ 0,

h6 = −Pout(2) ≤ 0,

(33)

with gradients

∇g2 =
[
−1 0 0 1 Tηc − T

ηd

]
,

∇h4 =
[
0 0 0 −1 0 0

]
,

∇h5 =
[
0 0 0 0 −1 0

]
,

∇h6 =
[
0 0 0 0 0 −1

]
.

(34)

It is obvious that the constraint vectors for time step
t = 2 are independent and the LICQ is fulfilled. The same
derivations can be made for the situation when the storage is
full.

For the generator constraints, it is safe to assume that
∆Pmax

G > 0 and ∆Pmin
G < 0. Hence, the situation of linearly

dependent binding constraints arises when the generator output
is at the level PG(0) = Pmax

G −∆Pmax
G and ∆P ∗

G = ∆Pmax
G

or similarly for the lower limit. While it is possible that such
a situation occurs, it is much less likely to happen than for
the storage case when using the model (6) - (9). The same
argumentation as for the generators can be made for the
storage model (3) - (5).

Hence, because changes to the energy level of the storage
are modeled with two separate variables in (6) - (9), each with
a minimum limit of zero, the cases in which linearly dependent
binding constraints occur is a realistic situation and a solution
to this issue has to be found.

Generally, there are two causes that can result in a singular
Jacobian matrix when the LICQ is not satisfied:

Problem 1: Row of Zeros
If LICQ does not hold, there is no guarantee that
for some binding constraint hi(x) with zi = 0,
there is a unique solution for µi. This means that
both zi and µi could become zero. Looking at
the rows of the Jacobian (24) that correspond to
the complementary slackness condition, this would
create a row of zeros, the overall Jacobian would be
singular, and Newton-Raphson would be unable to
converge.

Problem 2: Linearly Dependent Rows
Inspecting the following rows of the Jacobian:∇gbind(x) 0 0 0

∇hbind(x) 0 0 I
0 0 0 diag{µbind}

 , (35)

If the binding constraints are linearly dependent, as
a result the Jacobian will be singular. For example,
it is clear that if the constraints in (30) are binding,
these rows will be linearly dependent.

Thus, there exists the problem of a potential row of zeros
created by zi = µi = 0, and the problem of linearly dependent
rows created by the constraints that do not fulfill LICQ. The
result is the inability of Newton-Raphson to converge to a
solution.

V. A SOLUTION TO THE SINGULARITY PROBLEM

As the problem of linearly dependent binding constraints
occurs far more regularly for the storage constraints than it
does for the generation constraints, we will focus primarily on
the storage model. In this section we will discuss and provide
solutions for avoiding a singular Jacobian matrix caused by
the storage equations given in (6) - (9).

The Jacobian matrix becomes singular when the storage
device is at its lower or upper limit and it is optimal to
keep this level constant during the initial time step. There are
multiple ways that one can deal with this issue. The least
desirable way is to reduce the convergence criteria on the
algorithm. If it is important for a specific application to merely
get close to the optimal solution without reaching the exact
solution, the Jacobian will still be ill conditioned as the optimal
solution approaches, but potentially still invertible. However,
it not guaranteed which constraints will be satisfied first; the
linearly dependent constraints could be satisfied even when the
overall problem is not close to the solution and the Jacobian
could become singular at any point in time. Thus, reducing
the convergence criteria is definitely not the best approach to
resolving this issue.

It is desirable to avoid approximate solutions or simplifying
the storage model. A better solution is to have a conditional
statement or indicator variable that is flagged when the storage
is empty or full initially, i.e., when E(0) = Emin or E(0) =
Emax. If the storage is empty, it is obvious that Pout(1) must
be zero, since we cannot withdraw energy that is not there.
If the storage is full, it is obvious that Pin(1) must be zero,
since we cannot store any more energy in the device. These
constraints and variables can be removed from the problem
formulation and the problem is resolved because now (23)
holds for all ∇gi and ∇hi in the active constraint set.

The occurrence of a singular Jacobian matrix for the most
general case when the constraints are modeled as in (25) and
(26) can be avoided by raising a flag if any of the initial
conditions given in the cases discussed in Sect. IV-B occurs
and then eliminate the respective constraint on the change in
the variable which potentially would lead to linearly dependent
binding constraints. It is not possible that the elimination of
this constraint would lead to a violation of that constraint
because the constraint on the variable itself will not allow
a greater change than given by ∆xmin or ∆xmax.

VI. APPROXIMATE NEWTON DIRECTIONS

The Approximate Newton Direction method [1] is a Newton
Raphson based method for the distributed solution of an



optimization problem. It decomposes the overall optimization
problem into M subproblems that exchange Newton-Raphson
updates after each iteration.

The Newton-Raphson update for the full optimization prob-
lem and for iteration number l is given by solving

C(l) ·∆(l) = d(l), (36)

where the right hand side vector d(l) includes the KKT con-
ditions evaluated for the solution of the optimization problem
for iteration l − 1 and the update vector is given by ∆(l).
The Jacobian matrix C(l) of the KKT conditions for the full
optimization problem is given by

C(l) =



J
(l)
1,1 J

(l)
1,2 · · · · · · J

(l)
1,M

J
(l)
2,1

. . . . . .
...

...
...

. . . . . . J
(l)
p−1,p

· · · J
(l)
p,p−1 J

(l)
p,p J

(l)
p,p+1 · · ·

J
(l)
p+1,p

. . . . . .
...

...
...

. . . . . . J
(l)
M−1,M

J
(l)
M,1 · · · · · · J

(l)
M,M−1 J

(l)
M,M


.

(37)
The decomposition into M subproblems is achieved by setting
the off-diagonal block matrices Ji,j , i ̸= j, equal to zero re-
sulting in an overall block diagonal matrix C

(l)
∗ . The resulting

Newton-Raphson update

C
(l)
∗ ·∆(l)

∗ = d(l) (38)

can now be solved in a distributed way

J (l)
p,p ·∆

(l)
∗,p = d(l)p , (39)

with p = 1, . . . ,M . The order of the rows and columns or
constraints and variables in the Jacobian matrix C(l) is chosen
such that a meaningful decomposition into subproblems is
achieved when setting the off-diagonal block matrices to zero.
For example, in an Optimal Power Flow application, the
rows/columns corresponding to constraints and variables for
a specific area in the power system are grouped together such
that the resulting subproblems correspond to physical areas
in the system. The exchange of the updated variables then
corresponds to exchanging values for voltage magnitudes and
angles at the borders of the areas, as well as the Lagrange
multipliers and slack variables of these border constraints.

The decomposed system is guaranteed to converge to the
same solution as the original system if the criteria given in
(40) holds [1]:

ρ(I − Ĉ−1
∗ · Ĉ) < 1, (40)

where ρ(·) denotes the spectral radius of a matrix. This decom-
position procedure based on Approximate Newton Directions
provides a straightforward decomposition into subproblems
where subproblems exchange data after each Newton step.
For an application in power systems, it is advantageous to
have an approach like this for distributed optimization across
control areas where the areas are not willing to exchange full

system data. For example, this technique is used in [11] to
solve the Optimal Power Flow problem. If the optimization
problem includes inter-temporal constraints as discussed in
this paper, e.g. in order to coordinate renewable generation
in one area with storage in another area [12], the previously
discussed issues regarding singularity of the Jacobian matrix
arise and need to be resolved by the proposed means.

VII. SIMULATION RESULTS

In this section, we provide simulation results for the coor-
dination of renewable generation and storage devices across
two control areas. The test system is shown in Figure 1. It
corresponds to the IEEE 14-bus system with added storage
device at bus 5 and wind generators at buses 5 and 14
and is decomposed into two control areas. The objective of
the optimization is a multi-step Economic Dispatch, i.e., an
objective of the form:

f =
N∑
t=1

(
numGen∑

i=1

aiP
2
Gi
(t) + biPGi(t) + ci

)
, (41)

where ai, bi, and ci are the generation cost parameters of
generator i. The included constraints are the AC power flow
equations as well as the constraints on the storage device
modeled as in (6) - (9), with ηc = ηd = 0.97 and T = 5
minutes. The lower limit on the energy storage is set to 0.2
pu · 5-minutes and the maximum to 1.5 pu · 5-minutes.

The optimization horizon is N = 10 with each time step
equal to T = 5 minutes. After each optimization, the results
for the first time step t = 1 are applied, the horizon is moved
by one time step and the optimization takes place anew for
the shifted horizon. The overall simulation is performed over
a 24-hour period using given wind and load curves of this
length and a resolution of 5 minutes from the Bonneville
Power Administration [13].

The resulting values for the energy storage level E(t) are
shown in Fig. 2 and the power charged Pin and discharged
Pout, are given in Fig. 3. It can be seen that the energy
level stays at the maximum or minimum level for multiple
time steps several times. Without the suggested adjustment
of removing linearly binding constraints, a singular Jacobian

Fig. 1. Modified IEEE 14-bus System [12]



matrix would result in these instances and eventually lead
to divergence of the Newton-Raphson method. But with the
suggested approach, convergence is achieved in all time steps.
Figure 4 indicates when the adjustment is done for lower
and upper limits. It can be seen that the investigated situation
happens fairly frequently during the simulation.
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Fig. 2. State of charge of storage device
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Fig. 4. Time instances when proposed solution to avoid singular Jacobian
is required

VIII. DISCUSSION AND CONCLUSION

The purpose of this paper is to shed some light on the
potential reasons behind cases of non-convergence in Newton-
Raphson implementations when inter-temporal constraints are
taken into account. Including constraints on a variable and at
the same time on its change from one step to the next in an op-
timization problem formulation may lead to linearly dependent
binding constraints and therefore to a singular Jacobian matrix
of the respective KKT conditions. This was derived using the
Linear Independence Constraint Qualification. A solution was
proposed in which based on the initial value of the variable
it is decided if the constraint on the change in the variable
should be omitted as it becomes unnecessary.

With regards to power systems, the discussed situation
can happen in multi-step optimal power flow or economic

dispatch when including constraints on energy level and charg-
ing/discharging power of a storage device or constraints on
ramp rates of generators. While it only very rarely is caused
by the inclusion of generation ramp rates, it does frequently
happen when modeling charging and discharging of a storage
device by two separate variables.

An example where renewable generation in one control
area is coordinated with storage in another control area via
a decomposition technique based on Approximate Newton
Directions demonstrated the necessity and effectiveness of
the proposed solution to the problem of a singular Jacobian
matrix. The usefulness of a method such as Approximate
Newton Directions when applied to distributed optimization
makes using a Newton-Raphson based optimization method
very valuable, and the discussed potential issues must be
identified and accounted for. It is important to be aware of
the problems that could arise in multi-time step optimization,
and how to mitigate these problems.

ACKNOWLEDGEMENT

The authors would like to acknowledge the financial support
from the National Science Foundation under award ECCS
1027576.

REFERENCES

[1] A. J. Conejo, F. J. Nogales, and F. J. Prieto, “A decomposition procedure
based on approximate Newton directions,” in Mathematical Program-
ming, ser. A. New York: Springer-Verlag, 2002.

[2] K. Chandy, S. Low, U. Topcu, and H. Xu, “A simple optimal power flow
model with energy storage,” in Decision and Control (CDC), 2010 49th
IEEE Conference on, Dec. 2010, pp. 1051-1057.

[3] T.-Y. Lee and N. Chen, “Optimal capacity of the battery energy storage
system in a power system,” IEEE Trans. Energy Convers., vol. 8, no. 4,
pp. 667-673, Dec. 1993.

[4] S. Chakraborty, T. Senjyu, H. Toyama, A.Y. Saber and T. Funabashi,
“Determination methodology for optimising the energy storage size for
power system,” IET Generation, Transmission and Distribution, vol. 3,
pp. 987-999, Aug 2009.

[5] Gao, Z.Y.; Wang, P.; Bertling, L.; Wang, J.H.; , “Sizing of Energy Storage
for Power Systems with Wind Farms Based on Reliability Cost and Worth
Analysis,” Power and Energy Society General Meeting, 2011 IEEE, pp.1-
7, 24-29 July 2011.

[6] Kankanamalage, R.; Hug-Glanzmann, G.; , “Usage of storage for optimal
exploitation of transfer capacity: A predictive control approach,” Power
and Energy Society General Meeting, 2011 IEEE, pp.1-8, 24-29 July
2011.

[7] M.a Elhadidy, S.M Shaahid, Optimal sizing of battery storage for hybrid
(wind+diesel) power systems, Renewable Energy, Volume 18, Issue 1, 2
September 1999, pp. 77-86.

[8] H. W. Kuhn and A. W. Tucker, “Nonlinear programming,” in Proc. 2nd
Berkeley Symp. Mathematical Statistics and Probability, Berkeley, CA,
1951, pp. 481-492.

[9] D. A. Wismer and R. Chattergy. Introduction To Nonlinear Optimization:
A Problem Solving Approach. Amsterdam: North-Holland Publishing
Company, 1978, ch. 4, pp. 86-89.
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2008.

[11] Nogales, F.J., A.J. Conejo, and F.J. Prieto, A Decomposition Methodol-
ogy Applied to the Multi- Area Optimal Power Flow Problem. Annals of
Operations Research, 2003. Vol. 120: pp. 99-116.

[12] K. Baker, G. Hug, and X. Li, “Optimal integration of intermittent energy
sources using distributed multi-step optimization,” Power and Energy
Society General Meeting, 2012 IEEE, July 2012.

[13] Bonneville Power Administration Wind Generation Forecast,
http://transmission.bpa.gov/business/operations/wind/forecast/forecast.aspx.
Last accessed on August 14, 2011.


