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ABSTRACT 
Thermal issues have become critical roadblocks for the 

development of advanced chip-multiprocessors (CMPs). In this 
paper, we introduce a new angle to view transient thermal analysis 
– based on predicting thermal profile, instead of calculating it. We 
develop a systematic framework that can learn different thermal 
profiles of a CMP by using an autoregressive (AR) model. The 
proposed AR model can serve as a fast alternative for predicting 
the transient temperature of a CMP with reasonably good 
accuracy. Experimental results show that the proposed AR model 
can achieve approximately 113X speed-up over existing thermal 
profile estimation methods, while introducing an error of only 
0.8˚C on average.

I. INTRODUCTION
Power density is increasing in each generation of 

microprocessors since feature size and frequency are scaling faster 
than the operating voltage. Power density directly translates into 
heat, and consequently the operating temperature of a processor is 
getting hotter. In recent years, thermal issues have severely 
hindered the development of highly advanced and reliable chip 
multiprocessors (CMPs). Excessively high operating temperature is 
the root of many reliability issues, and can cause temporary timing 
errors as well as permanent physical damages. The rates of many 
failure mechanisms will increase exponentially with operating 
temperature [1]. Also, high operating temperature is known for 
increasing CMP's power consumption [1], especially leakage 
power. The increase of leakage power contributes to the increase of 
total power consumption, which in turn increases the operating 
temperature. This thermal-leakage positive feedback loop may lead 
to thermal runaway, which in the worst case may burn the chip. 
A. PRIOR ART

Thermal modeling for CMPs has received a lot of attention 
recently. Accurate thermal modeling is the key to enable both 
thermal-aware designs and dynamic thermal management (DTM) 
[2][3][4]. Huang et al. [8] proposed Hotspot – an accurate, 
simulation-based thermal model for planar ICs – and the 
corresponding thermal-aware floorplanning. Li et al. [9] developed 
an efficient numerical method to solve large thermal grids for ICs. 
Bosch [10] demonstrated a thermal model with special focus on the 
heat flux distribution over the sides of a component. Sridhar et al. 
[11] developed 3D-ICE, a compact transient thermal model for fast 
thermal simulation of 3D ICs with inter-tier micro-channel cooling. 
Wang et al. [12] proposed a transient thermal simulator based on an 
alternating direction implicit method. Xu et al. [13] adapted the 
conventional flow for electrical RC network simulation to calculate 
the thermal profiles for 3D ICs with complex interconnect 
structures. 

Although thermal RC simulation or finite-difference method 
(FDM) [14] used by prior arts usually guarantee a good accuracy in 
thermal modeling, these methods are very expensive in terms of 
execution time, especially when the required accuracy of transient 
temperature is high. Furthermore, accurately modeling the 
temperature-leakage feedback loop will incur extra invocations of 
costly thermal simulations. Generally, several days may be needed 
when a large amount of power configurations need to be examined 
for evaluating the thermal behavior of software applications or to 
explore the architectural design space in the early design stage. 

Such a long simulation time can become prohibitively expensive 
for computer architects or system designers.  

Furthermore, dynamic thermal management (DTM) techniques 
heavily rely on thermal models which can efficiently estimate the 
temperature online [5]. Coskun et al. [6] adapted the performance 
counters, such as instruction per cycle (IPC), as a temperature 
estimator to perform thermal-aware job scheduling. Sharifi et al. [7] 
used Kalman filtering as an online thermal model for temperature 
prediction. The common point of these models is fast, and hence 
DTM techniques can be invoked within a short period to improve 
the performance or to reduce the peak temperature. From all the 
aforementioned reasons, an extremely fast thermal modeling that 
has reasonably good accuracy in capturing the transient thermal 
behaviors of CMPs is highly needed. 
B. PAPER CONTRIBUTIONS

To the best of our knowledge, this paper brings the following 
novel contributions:  

We develop a learning-based autoregressive (AR) framework 
to enable fast and accurate transient thermal prediction, 
specially targeting CMPs. Compared to existing 
simulation-based models like [8], the proposed framework 
achieves approximately 113X speed-up, while introducing a 
root-mean-square-error (RMSE) of only 0.8˚C. The proposed 
framework can be applied to enable a wide spectrum of 
thermal optimizations or evaluation schemes, such as thermal 
characterization of software applications and proactive DTM.  
The proposed framework provides concrete, quantitative 
statistical inferences for the thermal behaviors of a CMP. 
Somewhat counter-intuitively, the inferences show that the 
single most important factor to influence the transient 
temperature is the temperature temporal correlation, rather 
than its spatial correlation, dynamic power, leakage power or 
other factors. The temporal correlation can account for 
approximately 66% of transient temperature changes. 
To demonstrate the effectiveness of our framework, we 
perform thermal optimization of a CMP by mapping 
workloads in a thermal-aware fashion. The experimental 
results show that, compared to the results from a popular 
thermal-aware mapping similar to [6], the proposed approach 
can further reduce the peak temperature by 2.9˚C on average. 

C. PAPER ORGANIZATION
The remainder of this paper is organized as follows. Section II 

introduces the background knowledge. Section III provides the 
configurations used in this work. Section IV details the proposed 
AR framework for the transient thermal analyses of CMPs. Section 
V presents the implementation flow. Section VI demonstrates the 
experimental results. Section VII concludes this paper. 

II. BACKGROUND
In this section, we present the detailed thermal modeling, and 

demonstrate the spatial and temporal correlations of temperature 
changes, which will be used in the proposed AR framework. 
A. THERMAL MODELING

From a physical perspective, the temperature  is a function 
of time  and three spatial directions ,  and . We use 
to denote the temperature of location ( , , ) at a certain time point 
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.  can be expressed by the heat equation that describes the 
heat flow in a given homogenous region over time: 

 Eq(1) 

where  is the material-dependent thermal diffusivity and  is 
the internally-generated heat [15]. Generally, finite-difference 
methods (FDM) are used to approximate the partially differentiated 
terms; for example, the central difference approximation is a 
popular method to approximate :

Eq(2)

where  is a sufficiently-small step size used to discretize the 
continuous variable .  is the big O notation [16] used to 
represent the bound of accuracy loss due to the approximation. To 
consider the boundary condition, we assume that the environment 
temperature (or ambient temperature) is set to a given constant 
value and does not vary over time [8]. ,  and 

 can be derived in a similar manner as Eq(2).
There is a well-known analogy between the solid heat 

conduction and the electrical current flow. The heat conduction can 
be modeled as a heat current flowing through thermal resistance 
and capacitance network [15], resulting in temperature differences. 
The values of thermal RCs depend on the material used to fabricate 
CMPs. For the purpose of thermal analysis, heat conduction is 
converted into electrical conduction; CMPs are divided into several 
cuboidal thermal grids as shown in Figure 1(a), and each thermal 
grid can be converted into an equivalent RC network as shown in 
Figure 1(b), with the temperature modeled as voltage and heat flow 
modeled as electrical current. Therefore,  of Eq(1) is 
modeled as the voltage of grid (x,y,z) at the time frame t and  is 
modeled as the power consumption of a grid. In Figure 1(b), we 
can see that each node connects to six of its immediate neighboring 
nodes. This is because in many prior arts, such as [8], FDM similar 
to Eq(2), i.e., the central difference, is used to approximate the 
2nd-order partial derivatives. The physical meaning behind Eq(2) is 
that “first-level” neighboring grids are used to capture the spatial 
correlation of temperature changes. 

B. THERMAL CORRELATIONS
Heat conduction is a continuous process happening within a 

certain region and over a period of time. This continuous 
phenomenon makes temperature differences have both spatial and 
temporal correlations. More specifically, let us focus on x-y
directions and rewrite Eq(1) into: 

  Eq(3) 

By using the approximation described in Eq(2) on ,
 and , we will obtain [15]: 

  Eq(4) 

where  is the step size for time. Here we assume , so the 
accuracy loss is bounded by 1.
1. SPATIAL CORRELATION

The first term of Eq(4) represents the spatial correlation of 
temperature changes, and shows that the first-level neighboring 
grids are used to approximate . If we further include the 
second-level neighboring grids,  can be expressed as 
Eq(5) by using Taylor’s series: 

Eq(5)

where ,  and  are constants derived from ,  and .
Since h << 1,  is smaller than  in Eq(4), which means 
the accuracy loss decreases when higher-level neighboring grids 
are included in the model. Theoretically, when -level 
neighboring grids are included, the accuracy loss should be reduced 
and bounded by . In practice, a large will lead to an 
extremely-high complexity thermal model. In this paper, is
empirically set to three to balance the accuracy and the model 
complexity. 
2. TEMPORAL CORRELATION

The second term of Eq(4) or Eq(5) shows the temporal 
correlation between  and . In Eq(4), the step size 
needs to be smaller than the thermal RC constant, , to guarantee 
the convergence of the numerical integration. According to 
[17][18],  is usually in the range of 0.1–0.5ms. In addition, the 
authors of [18] pointed out that it takes at least 0.1ms to raise the 
transient temperature of CMPs by 0.1˚C. Hence, in this work we set 
the step size  to 0.1ms. 

III. CONFIGURATIONS 
Before elaborating on the proposed AR framework, we first 

introduce the architecture and dataset used herein. We introduce the 
micro-architecture and CMP architecture in Section III.A, followed 
by the dataset used to train and test the proposed model in Section 
III.B.

A. TARGET ARCHITECTURE
The architecture used throughout this paper is a symmetric 

CMP, consisting of 16 out-of-order Alpha 21264 cores [19]. The 
corresponding micro-architecture parameters are listed in Table 1. 
Figure 2(a) illustrates the floorplan of Alpha 21264 processing core 
[19]. This floorplan along with the L2 cache is replicated 16 times 
in a 4×4 mesh to create a planar 2D CMP. As shown in Figure 2(b), 
processing cores and caches are placed in a fine-grained, 
interwoven manner. For simplicity and without losing much 
accuracy, the target CMP is homogenously partitioned into 32×32 
= 1,024 [18] thermal grids for analysis as shown in Figure 2(c). For 
example, four processors in the bottom-right corner of Figure 2(b) 
are mapped to the corresponding thermal grids in Figure 2(c). This 
resolution (32×32) of thermal grids can be changed according to 
the different requirements of accuracy. Note that thermal grids are 
distributed in x-y direction, instead of x-y-z as mentioned in Section 
II. This is because in the model proposed by [8], each grid 
implicitly includes all vertical components that generate heat, such 

                                                          
1 Due to page limit, we do not include all details of the derivation. 

Figure 1: Thermal RC model. 
(a) Thermal grids  (b) Equivalent RC network  

h

h

h

Si Si Si

Cu Cu 

Parameters Values 
Number of cores 16 
Frequency 3.0 GHz 
Technology 45nm node with Vdd =1.0V 
L1- I/D caches 64KB, 64B blocks, 2-way SA, LRU 
L2 caches 1MB, 64B blocks, 16-way SA, LRU 
Pipeline 7 stage deeps, 4 instructions wide 

Table 1. Processor parameters 
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as metal, active Si and substrates layers. 
B. DATASET 

In this paper, we use SPECcpu2000 [34] as workloads and the 
Hotspot [8] as the thermal simulator to characterize the thermal 
behavior of a CMP. The detailed implementation will be elaborated 
in Section V. The generated thermal responses are used as inputs to 
train and test the proposed AR model. The dataset contains 100 
different power configurations and 513×1,024 thermal responses 
for each power configuration, while 513 is the number of time 
frames and 1,024 is the number of grids. Each time frame is set to 
0.1ms [18]. In this work, we treat each grid (x,y) at a time frame t
as a sample, so a total of N = 100×513×1,024 107 samples are used 
to train and test the proposed AR framework. The features of the 
dataset is described in Table 2. Each sample has P features, 
including five physical features plus  autoregressive (AR) 
features. The five physical features of each sample include: its x
location ( ), y location ( ), radius ( ), total power consumption (

), and leakage power consumption ( ).  is calculated by 
; is set to (32+1)/2 (since the 

resolution of thermal grids is 32×32). Also,  is included in 
; we separate this term out because  is more sensitive to 

temperature changes [20] and may potentially be a good thermal 
predictive feature [21].  

As mentioned in Section II.B, ,  and  are 
highly correlated to , and therefore these features should be 
included in the dataset to improve the prediction accuracy. These 
features are called AR features. Unlike the physical features above, 
AR features will be evaluated at each time frame. Therefore, for 
each sample, its AR features need to be updated on the fly. 
represents the number of AR features. In this work,  is 13 
because =3, such that , ,  = 1 to 3 and  are 
included.  

To better explain the proposed methodology, we denote 
as the thermal response of the ith sample , and both physical and 
AR features as  = . The bold font represents a 
vector instead of a scalar. Here we focus only on the features of the 
dataset, which will be used to explain the proposed framework. 
More detailed implementaion about the dataset as well as this work 
will be presented in Section V. 

IV. METHODOLOGY
The proposed framework has two main components: k-means 

clustering and autoregressive (AR) model. K-means clustering 
serves as a pre-processing of the dataset, and based on the 
clustering results the AR model will learn the fitting coefficients to 
predict the temperature. 
A. K-MEANS CLUSTERING

The goal of k-means clustering [22] is to partition the 1,024 
thermal grids into k clusters such that each grid belongs to the 
cluster with the nearest mean power consumption. Therefore, grids 
in each cluster will have similar values of . Since the 
temperature of each grid is not known in advance,  is used as 
a proxy criterion to cluster grids. Empirically, thermal profiles of 
certain functional blocks of a CMP are completely different from 
others  usually thermal hotspots are located in power-hungry (PH)
blocks such as integer arithmetic logic unit (IALU) and register 
files (RF) [18], depending on the behaviors of executed 
applications. These functional units lie within processing cores. In 
this context, it is necessary to separate thermal grids into two 
groups that represent power-hungry (PH) and power-intermediate 
(PI) blocks, respectively. Nevertheless, as we will show later, not 
all blocks in the processing cores are power-hungry. Therefore, the 
clustering cannot be performed simply based on the functionality of 
a block. For each cluster, a set of regression coefficients will be 
learned and plugged into the proposed AR model in order to predict 
the respective temperatures. 

Based on the  of each grid, we apply k-means clustering 
to separate thermal grids into PH and PI groups, so k is empirically 
set to two since PH and PI blocks have their distinct thermal profiles 
from the aforementioned observation. Given 1,024 of grids, 
of each grid  is a -dimension vector, where =100×513. To 
reduce complexity and without losing accuracy, we use the average 
of to perform the 2-means clustering that aims to partition 
the 1,024 grids into 2 sets,  = { , } so as to minimize the 
within-cluster sum of squares (WCSS): 

Eq(6)

where  represents the average power of the grid  and  is 
the mean of  in . Eq(6) can be solved very efficiently by 
the methods proposed in [23][24] (not included due to space 
constraints). 

Figure 2(d) shows the clustering results. PH grids are identified 
by red circles, and the rest of grids are PI grids. The color bar 
indicates the average power intensity of each grid in Watts (W). 
From Figure 2(a) and (d), we can see most of PI grids lie within the 
L1 and L2 caches, whereas all PH grids lie within processing cores. 
However, several functional blocks within processing cores, such 
as the floating point units, are assigned to the PI group instead of 
the PH group. A total of 169 grids are categorized as PH grids. We 
want to point out that this number is design- and 
workload-dependent and may vary if these two factors change 
dramatically. Based on this clustering result, the original dataset is 
separated into two sub-dataset: one for PH and one for PI. The 
dimensions of each sub-dataset are =100×513×169 and 
=100×513×855, respectively. Since we apply the same AR 
framework on both PH and PI clusters, we only focus on the PH
cluster in the later sections for the conciseness of explanation. 
B. LEARNING-BASED AR FRAMEWORK

Thermal responses Samples×(Features) 
100×513×1024 
conf.×time×grids 

100×513×1024×( )
conf.×time×grids×(features) 

Table 2. Features of the dataset

Figure 2: A CMP and the corresponding thermal grids. 

(W)

(c) Thermal grids  (d) 2-means clustering 

(a) Detailed floorplan  (b) A 16-core CMP 
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The learning-based AR framework uses Lasso regression [25] 
as its kernel to predict . Lasso regression consists of a linear 
regression model with L1 regularization. It shrinks the fitting 
coefficients and sets some of them to exact zero, and hence tends to 
retain only the highly relevant features to predict . According to 
Eq(4) and Eq(5),  can be approximated by a linear function of 
predictive features :

    Eq(7)

where  are fitting coefficients. As in the usual regression 
setup,  are standardized so that  = 0 and 

 = 1, and  are assumed to be conditionally 
independent given  since the potential correlations among 
are already modeled by AR features in . Again, is the 
number of samples in the power-hungry cluster as mentioned in 
IV.A. The physical insight behind Eq(7) is that, in addition to the 
AR features and , the rest of the features are used to linearly 
converge to .

Before we elaborate on how to adapt Lasso regression to 
predict , let us first introduce the coefficient-learning process for 
constructing a predictive model. In general, this process can be 
separated into two phases: the training phase and testing phase. The 
goal of the training phase is to learn the estimate of fitting 
coefficients , denoted as  and  = . The 

 can be learned by: 

  Eq(8)

where  is the parameter to control the amount of shrinkage that is 
applied to the estimates. In this work, the solver provided by 
Friedlander [27] is used to optimize Eq(8) and learn . Here, 
we use 10-fold cross validation (CV) [22] to select  which 
results in the smallest root-mean-square-error (RMSE): the best 
value of  is 1, selected from the range of 105 to 10-5. CV is the 
unbiased error estimator and is widely used in statistics and 
machine learning domains [22].  

In the testing phase,  are learned and plugged into 
Eq(7) and to calculate  as an estimate of :

    Eq(9) 

By using Eq(9),  can be calculated instantly if  is given. No 
time-consuming thermal simulation is required in this phase. Please 
note that Eq(9) is different from Eq(7) because  and  are 
estimates, while  and  of Eq(7) are actual values. 
1. PREDICTION ACCURACY

To evaluate the accuracy of the proposed learning model, we 
again use 10-fold cross-validation to calculate the prediction error:  
Figure 3 shows the cross-validated prediction results for the PH
cluster; the X axis stands for the actual simulated results obtained 
with Hotspot, whereas the Y axis represents the predicted 
temperatures by using the learning-based AR model. Each color 
represents one instance of cross validation. As it can be seen in the 
figure, our thermal prediction is very accurate. The RMSE is 
0.43˚C and the correlation coefficient (CC) is 0.99. For the PI
cluster, the prediction is even more accurate: the RMSE is 0.20˚C
and CC is almost one. Therefore, just relying on the fitting 
coefficients  learned from the proposed framework, one can 
accurately predict the transient temperature for a CMP, without 
actually performing time-consuming thermal simulations. 
2. COEFFICIENT ANALYSIS

We also show the distribution of fitting coefficients for each 
feature, namely , for the PH cluster. The physical meaning of 
is the sensitivity of temperature changes to each predictive feature. 
Figure 4 shows the relative percentage of  in a pie chart. All 
notations here are the same as described in Section III.  in
Figure 4 represents the sum of of . We can see that 

 dominates the prediction of  by 66%. This is 
counter-intuitive because  is generally considered as the most 
important factor to affect temperature. It is also worth mentioning 
that the  of  and  are negative values. This is 
interesting because a grid with a large  actually means that it is 
located on or close to the rim of a CMP, which has better heat 
dissipation. Also, a grid with a large  means that this grid 
idles often. Both these two phenomena lead to a lower temperature 
profile, and hence the corresponding coefficients of  and 
are negative.  

The other interesting observation is that if the step size 
increases from 0.1ms to 0.5ms and 1ms, its significance drops from 
66% to 51% and 43%, respectively. In contrast, the significance of 

increases from 15% to 31% and 42%, respectively. As a 
result, the proposed AR model could automatically capture these 
physical properties via statistical learning, and reflects these 
phenomena by setting different values to . Finally, we examined 
the pole-zero plot of the fitted AR model, and found that all poles 
fall within the unit circle, which means the stability of the model is 
guaranteed [15]. 
3. FORWARD PREDICTION

So far, we have demonstrated how to predict  with .
Recall that within , there are several AR features, such as ,
which cannot be known in advance before the time frame evolves 
to t. Hence, we need to wait for these AR features to be known, in 
order to predict . In other words, if we are interested in the 
transisent temperature at the time frame t+1, we need to wait until 
the thermal estimation or measurement, such as the reading from a 
thermal sensor, at the time frame t is available. This restriction 
greatly reduces the capability of the proposed AR framework. 

To handle the aforementioned problem, we develop a 

Figure 3: Prediction accuracy. 

RMSE = 0.43 ˚C
CC = 0.99

Line of perfect
prediction 
(slope = 1) 

Figure 4: Coefficient distribution. 

(Negative) 

(Negative) 
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technique called forward prediction. The concept is simple: if 
is not available yet, but we need it to predict  we predict 

 first and then use , i.e., the estimate of , to predict 
. The concept can be recursively applied until the time frame 

equals zero, i.e., all temperature values are the ambient 
temperature. The computational complexity of this forward 
prediciton is linear with the number of time frame , denoted as 

, and hence can be efficiently computed. With this forward 
prediction technique, the proposed AR model could be used to 
predict the transient temperature at any time frame, without be 
restricted by AR features. The prediciton accuracy of the forward 
prediction will be demonstrated in Section VI.A. 
4. DYNAMIC THERMAL MANAGEMENT (DTM) 

The proposed AR model can be used to enable fine-grained 
DTM techniques. Once the model is trained offline, i.e., the fitting 
coefficients are learned, the thermal prediction allowed by 
Eq(9) can be used online. Furthermore, since the overhead of this 
thermal prediction is very small (only one instance of matrix 
multiplication), the trained model can be plugged into the proactive 
DTM techniques, such as thermal-aware thread migration [3][6], to 
control the thermal behaviors of a CMP within a short interval of 
time. Note that in a real setting, the reading from thermal sensors 
could be used as thermal responses to train the proposed AR 
framework.
C. LIMITATION

There is a limitation of the proposed AR framework – the 
training cost. To learn the fitting coefficients , the thermal 
response  of each  is required. In this paper, for the 
workloads considered,  is obtained via thermal simulations that 
take up to eight hours. However, this is a one-time training cost. 
Once  are learned, the transient temperature can be predicted 
instantly given . The model may need to be retrained if the 
underlying design changes significantly. For example, if the 
floorplan or cooling device of the target CMP changes,  may 
need to be relearned by the newly generated .

We would like to point out that the proposed framework is to 
serve as a faster alternative of existing thermal characterization 
frameworks and associated DTM techniques. The proposed 
framework relies on accurate temperature analysis or simulation to 
provide high quality training inputs to learn the fitting coefficients. 
Also, while the proposed methodology is generic, the model trained 
by this framework is not a general-purpose thermal models – it 
specifically targets and models the thermal profiles of a given 
CMP.

V. IMPLEMENTATION
In this section, we describe the experimental setup and the 

corresponding implementation flow in detail. To obtain the dataset 
described in Section III, we use modified SimpleScalar [28], 

Wattch [31], and Hotspot [8] for the performance, power, and 
thermal simulations, respectively. We modified the leakage power 
model in Wattch based on [32][33][36] for more accurate leakage 
values. Leakage currents are characterized by using HSPICE 
simulation with the 45nm high performance Predictive Technology 
Model [35]. For the Hotspot configuration, the chip size and 
spreader size are set to 0.03m×0.03m; sampling rate is set to 3×105

clock cycles; the parameters not mentioned here are assumed to be 
the default values. SPECcpu2000 benchmarks [34] are randomly 
selected to form 100 different multi-program workloads for a 
16-core CMP. With the above settings, we perform a full-system 
simulation for 500 million instructions, and then collect the power 
profiles for the temperature simulation.  

Figure 5 presents the overall flow of the proposed 
methodology. First, the multi-programmed workloads are fed in as 
inputs to the performance and power simulators, hereby providing 
both active and leakage power profiles. Second, the Power 
Estimation Engine collects temperature profiles and then updates 
the power values based on the current temperature value. The 
updated power values are fed into the temperature simulator to 
estimate the new temperature value. This temperature-power 
iteration will continue updating until the temperature value 
converges; the converged temperature and power profiles are 
collected and used as the dataset described in Section III.B.

After the dataset is obtained, 2-means clustering is applied to 
separate grids into PH and PI groups as mentioned in Section IV.A. 
Finally, for each group, and are learned by using AR 
Lasso model as mentioned in Section IV.B, and then plugged into 
Eq(7) to predict the transient temperature of a CMP under a new 
power configuration. 

VI. EXPERIMENTAL RESULTS 
This section presents the experiment results, including (1) 

transient thermal prediction by using forward prediction, and (2) 
thermal optimization by using workload mapping.  
A. RESULTS OF FORWARD PREDICTION

Here, we demonstrate the accuracy of the forward prediction 
by using the proposed AR model. Figure 6 shows the RMSE (in Z 
axis) of each grid (in X axis) over each time frame (in Y axis). For 
better visualization, we pick 20 of the hottest grids in the PH group 
as grids of interest. These grids of interest are often the location of 
themal hotspots, so our prediction needs to be accurate here. Note 
that the RMSE is calculated by using 10-fold cross validation. 
Generally, the RMSE of each grid stays around 0.7 C, and the 
highest error in Figure 6 is less than 1.1 C. The overall RMSE of 
every single grid over each time frame is 0.8 C.

Also, we are interested in the peak temperature prediction. 
Figure 7 illustrates the peak temperature (in Y axis) of a whole 
CMP at each time frame t (in X axis) under a “clean” power 
configuration (not involved in the training process of the model). 
The blue line is the actual temperature obtained via thermal 
simulation, whereas the red line is the predicted temperature. 
Although the prediction indeed introduces some errors up to 1.2˚C,
it is clear that the general trend of peak temperature changes is 

Figure 5: Overall implementation flow. 

: Existing tools : Our tools 

Benchmarks/Workloads 

Thermal Simulator

Perf/Power Simulator

Power Estimation Engine 

Power traces 

Dataset collection 

Updated power  

k-means clustering 

AR Lasso model 

Dataset:

Temp. converges 

New power 
traces

Thermal predictor 

Thermal
prediction

Temp. profiles 

Figure 6: Accuracy of forward prediction. 
˚C
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captured very well by the proposed framework.  
For execution time, Hotspot [8] needs approximately 291 

seconds of CPU time to finish the transient analysis for one power 
configuration with other settings described in Section V. Once the 
AR model is trained, only 2.57 seconds are needed by using the 
forward prediction, and therefore a 113X speed-up is achieved. All 
these results demonstrate that the proposed forward prediction is 
accurate and stable. 
B. CASE STUDY: THERMAL-AWARE WORKLOAD MAPPING

To demonstrate the effectiveness of thermal prediction, we 
present an application of thermal optimization based on the 
proposed framework. The experimental setup is described as 
follows. According to [18], we separate SPECcpu2000 benchmarks 
into two categories: intermediate and intensive thermal demands, 
and then randomly select eight benchmarks from each category to 
form a representative multi-program workload for a 16-core CMP. 
The remaining parameters are the same as in Section V. The goal is 
to find a static workload mapping that leads to the lowest peak 
temperature. 

Similar to the thermal-aware mapping proposed by [6], we 
map eight thermal-intensive applications to the corners and edges 
of a CMP and intermediate ones to the center. Next, we 
exhaustively swap the four applications in the corners and the four 
in the centers to search for the “coolest” mapping. As a result, a 
total of 4!×4! = 576 swapping and thermal evaluations are required. 
Note that using conventional thermal simulations will take 90.1 
hours; with our model, this can be done within 49 minutes. Figure 8 
shows the results of workload mapping. The X axis represents the 
time while the Y axis stands for the peak temperature of a whole 
CMP. The blue line is the conventional thermal-aware mapping, 
whereas the red line is the mapping enabled by the proposed AR 
model. Compared to the conventional mapping, we further reduce 
the peak temperature by 3.1˚C with a different mapping order. The 
key of achieving this reduction is that, while the conventional 
strategy separates thermal-intensive applications spatially (to 
different corners or edges), our approach further ensures that the 
applications assigned to processors close to each other do not have 
similar timing of hotspot occurrence. To evaluate our approach 
with a more general scenario, the whole process described above is 
repeated for ten times, and on average peak temperature is reduced 
by 2.9˚C compared to the conventional mapping similar to [6]. 

VII. CONCLUSION 
In this paper, we present a systematic learning framework that 

accurately predicts the transient temperature of a CMP by using an 
AR Lasso model. The proposed model achieves 113X speed-up 
while introducing a RMSE of only 0.8˚C. An interesting line future 
work is to further develop this framework to predict the transient 
temperature of a three-dimensional (3D) CMP. 
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