
Formal Verification of Phase-Locked Loops Using
Reachability Analysis and Continuization

Matthias Althoff
malthoff@ece.cmu.edu

Akshay Rajhans
arajhans@ece.cmu.edu

Bruce H. Krogh
krogh@ece.cmu.edu

Soner Yaldiz
syaldiz@ece.cmu.edu

Xin Li
xinli@ece.cmu.edu

Larry Pileggi
pileggi@ece.cmu.edu

Department of Electrical and Computer Engineering
Carnegie Mellon University

Pittsburgh, PA 15213

ABSTRACT
We present an approach for verifying locking of charge-pump
phase-locked loops by performing reachability analysis on a
behavioral model of the circuit. Bounded uncertain parame-
ters in the behavioral model make it possible to represent all
possible behaviors of more detailed models. The dynamics
of the behavioral model is hybrid (i.e., discrete and contin-
uous) due to the switching of charge pumps that drive the
analog control circuits. A unique feature of phase-locked
loops compared to most other hybrid systems is that they
require thousands of switchings in the continuous dynamics
to converge sufficiently close to a limit cycle. This makes
reachability analysis a challenging task since switches in the
dynamics are expensive to compute and result in conserva-
tive overapproximations. We solve this problem by overap-
proximating the effects of the switching conditions with un-
certain parameters in linear continuous models, a method we
call continuization. Using efficient reachability algorithms
for discrete-time linear systems, locking is verified over the
complete range of possible initial states of a charge-pump
PLL designed in 32nm CMOS SOI technology in compara-
ble time required for Monte Carlo simulations of the same
behavioral model.

1. INTRODUCTION
While formal verification techniques are used extensively

for checking the correctness of digital circuit design, their
application to analog and mixed-signal circuits has been
limited. Analog and mixed-signal circuit verification suf-
fers from the inherent complexity of continuous- and hybrid-
dynamic system verification. Typically, the analysis of ana-
log design correctness is done using transistor-level or be-
havioral simulations, which provide insight into the circuit
behavior for particular choices of parameter values and ini-
tial conditions. A thorough analysis over a large operating

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

range can require many simulations. Formal methods aim
to verify the correctness of circuit designs over entire ranges
of parameter variations and initial conditions without using
simulation.

This paper focuses on the formal verification of charge-
pump phase-locked loops (PLLs), which are critical com-
ponents of communication and computing systems [10]. A
PLL is a dynamic feedback system that synthesizes a low-
noise, high-frequency signal by locking its divided phase and
frequency to a low-frequency reference signal. A key perfor-
mance specification for PLLs is the lock time, which is the
time it takes to achieve phase and frequency locking after a
change in division ratio or after a perturbation to the sys-
tem. Although linear approximations of PLLs are useful for
checking stability [10], lock time analysis requires transient
simulations due to the time-varying sampled nature of the
system. To reduce the simulation cost, behavioral models
are used, particularly for stiff PLLs with high division ra-
tios. There is still a need for formal verification of the PLL
lock time since a finite set of simulations cannot guaran-
tee locking for all possible initial conditions and parameter
variations.

In this paper we demonstrate that the lock time for a
charge-pump PLL can be formally verified in time compara-
ble to the time required for Monte Carlo simulations of the
same behavioral model. In contrast to other hybrid systems
that have been analyzed in the literature, PLLs require thou-
sands of switchings in the continuous dynamics to converge
sufficiently close to a limit cycle. This makes reachability
analysis a challenging task since switches in the dynamics
are expensive to compute and result in conservative over-
approximations. Efficient reachability analysis is achieved
through continuization of the switching dynamics: a contin-
uous model is derived that replaces the switching conditions
with uncertain parameters. Using reachability analysis for
linear systems with uncertain parameters, all states reach-
able by any possible simulation of the original model can be
computed using the continuous model. It is also shown that
the added uncertainty does not result in a large overapprox-
imation of cycles for which locking of the PLL can be veri-
fied. Overapproximation might lead to the conclusion that
the PLL does not lock, although in reality it does when over-
approximations are not present. If the overapproximations
are tight, a negative result still implies the circuit design is
not sufficiently robust against parameter uncertainty.

978-1-4577-1400-9/11/$26.00 ©2011 IEEE 659

The following section reviews previous work on formal ver-
ification of analog circuits. In Sec. 3 we derive the behav-
ioral model of the PLL as a hybrid automaton and specify
the properties to be checked for lock time. Sec. 4 presents
the abstraction of the hybrid automaton to a discrete time
linear system with uncertain parameters, and Sec. 5 presents
the algorithms for verifying the transient and invariant be-
havior of the system. Computational results are presented
in Sec. 6.

2. PREVIOUS WORK
In [28], Zaki et al. survey the literature on the applica-

tion of formal verification techniques in analog and mixed-
signal (AMS) designs. They categorize the verification tech-
niques used in AMS designs into equivalence checking, au-
tomated state-space exploration, run-time verification and
proof-based methods. We briefly summarize these categories
and also cite work that has appeared since the 2008 survey.

Equivalence checking determines the maximum error of
the input-output behavior or other distance measures be-
tween two system models. Circuits are compared on the
same or different levels of abstraction, e.g. SPICE netlists
versus analog behavioral models [22,23].

Run-time verification analyzes signals using monitors syn-
thesized from specifications, which can be applied online or
offline [15,19,20,26]. Run-time verification is a very practi-
cal approach due to its small computational costs, but can-
not guarantee conformance of specifications due to the finite
number of tested signal traces.

For the verification of behavioral models, two main ap-
proaches exist: state-space exploration and theorem prov-
ing. Theorem provers guarantee properties by applying proof
rules, which simplify the formula to be checked (typically re-
quiring human intervention) until one obtains atomic state-
ments which are true or false [6,21].

Since we use a state-space exploration technique in this
paper, we will focus the remaining literature survey on this
approach. One line of research discretizes the state space
of the continuous circuit dynamics to obtain purely discrete
systems [11, 13, 16, 17, 25]. This makes it possible to use
model checking algorithms for discrete systems [4]. This
method suffers from the discrete state explosion problem,
limiting its application to systems with few (up to 4) con-
tinuous state variables. Another possibility is to directly
perform state exploration on the hybrid dynamics, which
is also called reachability analysis. There is a rich litera-
ture on reachability analysis [2], but we will focus on the
work that has been applied to analog circuits. In general,
the set of all reachable states cannot be represented ex-
actly. Therefore, it is overapproximated using geometrical
structures such as polyhedra [5, 9, 12], regions specified by
difference-bound matrices (polyhedra with 45◦ and 90◦ an-
gles) [18], or boxes computed via Taylor approximations and
interval arithmetic [27].

Other techniques that are not considered in [28] are a
boolean satisfiability (SAT) based method that directly works
with a circuit-level netlist [24], and statistical model check-
ing that, in contrast to pure Monte Carlo simulation, returns
probabilities on satisfying temporal properties [3].

None of the methods described above has been used to
verify PLL lock time because of the extremely long transient
time required for convergence. Our attempts to apply brute
force hybrid system reachability using tools such as PHAVer

[7] or SpaceEx [8] failed due to the slow convergence close
to locking.

3. PROBLEM FORMULATION
A PLL circuit typically consists of the following parts: a

reference signal generator (Ref), a voltage-controlled oscil-
lator (VCO), a phase frequency detector (PFD), and charge
pumps (CPs). We consider the dual path, type II, third
order charge-pump PLL shown in Fig. 1. The reference fre-
quency generator produces a high-quality sinusoidal signal
at a fixed low frequency (MHz). The VCO, on the other
hand, generates a lower quality, but high-frequency signal
(GHz). The purpose of PLLs is to ‘lock’ the controlled fre-
quency of the VCO so that its output has the same frequency
(when divided by N) and phase as the reference signal.

Ci

Cp1

CP

Rp2

Rp3

frequency
divider
1/N

Cp3

vi

vp1 vpip

ii

Φref

Φv

phase
frequency
detector
(PFD)

Ref
UP

VCO

DN

Figure 1: Dual-path charge-pump PLL.

Locking of the PLL is achieved by the PFD comparing the
phases of the reference signal and the VCO signal and set-
ting the signals UP = 1 if the Ref signal leads, and DN = 1
if it lags. These signals pump charge into or out of the
capacitors, changing voltages vp and vi, which serve as pro-
portional and integral (PI) control inputs to the VCO. We
do not consider adaptation of PLL parameters such as the
frequency divider, resistor, or capacitor values.

As a behavioral model of the charge-pump PLL, we con-
struct a hybrid automaton with linear continuous dynamics
with uncertain parameters. Appropriate bounds on the un-
certain parameters can be determined by equivalence check-
ing with detailed circuit models [22,23]. These bounds should
be chosen to assure that the behavioral model represents all
possible behaviors of a detailed circuit model. If the more
detailed model is at the transistor level, the approach is
also able to catch issues at the transistor level. However,
current equivalence checking techniques are typically semi-
formal such that a complete enclosure cannot yet be guar-
anteed.

The continuous state vector in the behavioral model is
x = [vi vp1 vp Φv Φref]

T with input vector u = [ii ip]
T (see

Fig. 1). The dynamics are

ẋ = Ax+Bu+ c, (1)

with

A =

0 0 0 0 0

0 − 1
Cp1

(
1

Rp2
+ 1

Rp3

)
1

Cp1Rp3
0 0

0 1
Cp3Rp3

− 1
Cp3Rp3

0 0
Ki

N
0

Kp

N
0 0

0 0 0 0 0

,

660

B =

1
Ci

0

0 1
Cp1

0 0
0 0
0 0

, c =

0
0
0

2π
N
f0

2πfref

,

where the resistor and capacitor values can be found in Fig.
1 and the values Ki, Kp, and f0 determine the frequency of
the VCO: fV CO = 1

2π
(Kivi + Kpvp) + f0. Input values u

vary depending on the signals leaving the PFD according to

u =

[IUP
i IUP

p]T , if UP = 1, DW = 0

[IDW
i IDW

p]T , if UP = 0, DW = 1

[IUP
i + IDW

i IUP
p + IDW

p]T , if UP = 1, DW = 1

[0 0]T , if UP = 0, DW = 0

The output signals of the PFD are determined by thresh-
old crossings of phase signals. The switching logic is de-
scribed by the automaton shown in Fig. 2, where the states
are labeled as up active, dw active, both active, and both off.
Including the continuous dynamics into the automaton for
the switching logic results in a hybrid automaton [14].

Starting in both off, the next discrete state of the hy-
brid automaton is up active if the reference signal leads by
first reaching Φref = 2π, and dw active when Φv = 2π is
reached first. As shown in Fig. 3, in order to use the same
phase crossings for the next cycle, the phase values are re-
set to Φref := Φref − 2π, Φv := Φv − 2π upon continuing
in up active and dw active. Once the lagging signal has a
zero-crossing, the discrete state both active is entered which
models a time delay td for switching off both charge pumps.
After the delay, the system is in both off again, which com-
pletes one cycle.

Locking is achieved when the phase difference reaches and
remains within the locked condition given by the interval
[−0.1◦, 0.1◦]. There are two specifications that need to be
verified:

Specification 3.1 (Transient Behavior). Given the
PLL starting from any initial state and any valid set of pa-
rameters, verify that the locked condition is reached in less
than k cycles.

Specification 3.2 (Invariant Behavior). Given a set
of states reached from any initial state and any valid set of
parameters such that all states are in the locked condition,
show that the locked condition is an invariant, that is, show
that starting from any state in the given set, the PLL state
remains in the locked condition indefinitely.

Although simulations may show that the PLL remains in
the locked condition for many cycles after k, finite-length
simulations can never guarantee the locked condition to hold
indefinitely.

4. TIME DISCRETIZATION AND CONTI-
NUIZATION

In this section, we create an abstraction of the PLL be-
havioral model to be used to perform reachability analy-
sis. We assume a particular initial state is given and fo-
cus on the computation of the state over one cycle of the
reference signal. Given the hybrid automaton behavioral
model of the PLL, we first derive a discrete-time linear model
with bounded uncertain parameters based on the phase of

both off

UP = 0,

DW = 0

up active

UP = 1,

DW = 0

dw active
UP = 0,

DW = 1

both active
UP = 1,

DW = 1

guard: Φref == 2π

reset: Φv := Φv − 2π

Φref := 0

guard: Φv == 2π

reset: Φref := Φref − 2π

Φv := 0

guard: Φv == 0

reset: t := 0

guard: Φref == 0

reset: t := 0

guard: t == td

Figure 2: Hybrid automaton.

ton td

Φref

Φv

ii

t

t

t

IUP
i

2π

2π

0

0

0

Figure 3: Typical charge pump activity.

the reference signal, assuming the reference signal leads the
VCO signal, i.e., for the discrete state sequence up active
→ both active → both off. We then generalize to handle
uncertain switching times, making it possible to apply con-
tinuization to eliminate the need to compute the effects of
the PFD switching explicitly. Finally, we incorporate the
case when the reference signal lags the VCO signal.

4.1 Time Discretization
The time for a cycle of the reference signal is given by

tcycle = 1/fref . Since the continuous dynamics of the PLL is
linear, we can take advantage of the superposition principle
and obtain the initial state solution and the input solution
separately. The initial state solution for one cycle is given by
xh(t+ tcycle) = eAtcyclex(t). The input solution for constant
input u over the time interval [0, r], where r is the time the
charge pump is active, can be written using the Taylor series
of eAt as

xp(r) =

∫ r

0

eA(r−t) dt u

=
(η
∑

i=0

1

(i+ 1)!
Airi+1 +

∞∑

i=η+1

1

(i+ 1)!
Airi+1

︸ ︷︷ ︸

=:Ep(r)

)

u.

The remainder Ep(r) can be overapproximated by an inter-
val matrix, i.e., a matrix with lower and upper bounds on
each element, given by the following proposition.

Proposition 4.1 (Remainder Ep(r)). The remainder
matrix Ep(r) can be overapproximated by an interval matrix

with symmetric bounds: Ep(r) = [−W̃ (r), W̃ (r)], where

W̃ (r) = W (r) r, W (r) = e|A|r −

η
∑

i=0

|A|iri

i!
,

and |A| is computed elementwise, i.e. |A|ij = |Aij |.

661

Proof.

|Ep(r)| =

∣
∣
∣
∣

∞∑

i=η+1

Ai

(i+ 1)!
ri+1

∣
∣
∣
∣
≤

∞∑

i=η+1

|A|iri+1

(i+ 1)!

≤

(∞∑

i=η+1

|A|iri

i!

)

r =

(

e|A|r −

η
∑

i=0

|A|iri

i!

)

︸ ︷︷ ︸

=:W (r)

r.

We define the interval matrix

Γ(r) :=

η∑

i=0

1

(i+ 1)!
Airi+1 ⊕ Ep(r), (2)

where ⊕ denotes the Minkowski sum.1 Since there is no
input for the rest of the cycle, the input solution after one
cycle is xp(tcycle) ∈ eA(tcycle−r)Γ(r)u. Let ton denote the
time the system is in location up active and recall that td
is the time it is in both active. Also, let u denote the input
in up active and ud denote the input in both active. Finally,
defining xk = x(k tcycle), the combination of the initial state
solution and all input solutions can be written as

xk+1 ∈ eAtcyclexk
︸ ︷︷ ︸

=xh

⊕Γ(tcycle)c
︸ ︷︷ ︸

=:x
p
const

⊕ eA(tcycle−ton)Γ(ton)u
︸ ︷︷ ︸

=:x
p
up

⊕ eA(tcycle−ton−td)Γ(td)ud
︸ ︷︷ ︸

=:x
p
both

.
(3)

The above formula is a discrete-time overapproximation af-
ter one cycle of the continuous-time evolution.

4.2 Overapproximation of Switching Times
The next step in computing the state after one cycle is to

determine the switching time ton (while td is a given con-
stant). A closed form solution does not exist for ton, which
depends on the state of the system. Simulation techniques
obtain ton by detecting a zero-crossing which corresponds to
crossing the guard condition Φv == 0. Here we propose a
more efficient method based on overapproximating the in-
terval of possible values for ton. Since ton depends on only
Φv = x4, it is sufficient to consider (see (1))

ẋ4 =
1

N
(Kix1 +Kpx3 + 2πf0). (4)

We assume user-defined bounds x1 ∈ [ω1, ω1], x3 ∈ [ω3, ω3],
which are monitored during the verification process. Viola-
tion of these bounds would require to restart the verifica-
tion with larger intervals. Applying interval arithmetic to
(4) results in the bound ẋ4 ∈ [υ, υ]. We further extract the
bound [δ, δ] on x4 from the reachable set at the beginning
of each cycle. We obtain ton ∈ [ton, ton] = {x4/ẋ4|x4 ∈

[δ, δ], ẋ4 ∈ [υ, υ]} using the fact that the reference signal is
leading (δ, δ < 0), resulting in

ton = |δ|/υ, ton = |δ|/υ. (5)

4.3 Continuization
In this section we apply the concept of continuization to

compute the set of reachable states resulting from uncertain
switching times. We use Minkowski addition and set-based

1Minkowski sum of two sets: A⊕B = {a+ b|a ∈ A, b ∈ B}.

multiplication A ⊗ B = {ab|a ∈ A, b ∈ B} as operations
on sets. Note that sets can be sets of scalars, vectors, or
matrices, and sets may also contain just a single (certain)
element. The set multiplication sign is sometimes dropped
when the context makes it clear that uncertain matrices are
involved. The standard operator precedence rules apply.

To compute the reachable set under uncertain switching
times, we modify (3) so as to use the input u for [0, ton],
and then the uncertain input [0, 1]⊗ u for [ton, ton] when it
is not exactly known if the charge pump is on or off. This
is illustrated by the gray region in Fig. 4.

u
ton

ton ton tcycle t

Figure 4: Range of times [ton, ton] for which the

charge pump is switched off. The mode both active

is not considered in this figure.

The set of possible next states is then given by

xk+1 ∈eAtcyclexk ⊕ xp
const ⊕ eA(tcycle−ton)Γ(ton)u

︸ ︷︷ ︸

∋x
p
up

∗∗; input solution for [0,ton]

⊕ [0, 1]⊗ eA(tcycle−ton)Γ(ton − ton)u
︸ ︷︷ ︸

∋x
p
up

∗; input solution for [ton,ton]

⊕xp
both.

The computation of xp
both has to be modified for uncertain

ton, too, as shown below. The drawback of this procedure
is that the overapproximation grows with the uncertainty of
ton since for each state, all possible values of ton have to
be assumed, although the switching time is a function of the
state. To address this situation, we translate the uncertainty
of the switching time to an uncertainty of the state transition
matrix, thus considering the dependency of the state for the
switching dynamics. Considering the varying signs of the
input u makes it possible to accommodate the switching
dynamics in a continuous model. In summary, the input
solution for [ton, ton] is given by

xp
up

∗ ∈ eA(tcycle−ton)eA(ton−ton)Γ(ton − ton)sgn(x4)(−u).
(6)

Next, we present a lemma that addresses the computation

of eA(ton−ton)Γ(ton − ton) in (6) when ton is uncertain. In
the lemma, it is assumed that ton = 0 which is later revoked.

Lemma 4.1 (Input-to-State-Matrix Set). The input-
to-state-matrix set

G :=
{

eA(ton−ton)Γ(ton)
∣
∣
∣ton ∈ [0, ton]

}

,

is overapproximated as

G ⊆
{

tonC(ton)
∣
∣
∣ton ∈ [0, ton]

}

, (7)

where

C(ton) = Q(ton)⊕ Ep(ton)⊗
(3∑

i=0

Ai[0, (ton)
i]

(i+ 1)!
⊕ Ep(ton)

)

,

Q(ton) =I ⊕
[1

2
ton, ton

]

A⊕
[1

6
(ton)

2,
1

2
(ton)

2
]

A2

⊕
[1

8
(ton)

3,
1

6
(ton)

3
]

A3

662

based on a cubic Taylor approximation. I is the identity
matrix, and Ep(ton) =

∑∞
i=3

1
(i+1)!

Ai[0, (ton)
i].

The proof is omitted due to space limitations. In the fol-
lowing theorem, the time ton in (7) is replaced by a function
of the state, making it possible to write the dynamics en-
tirely as a function of the state and ton.

Theorem 4.1 (Bounded Input Solution). The input
solution after one cycle for a constant, but uncertain set of
inputs U and uncertain switching times is (for ton = 0)

xp
up

∗ ∈ Θ(ton)⊗ x(t0), (8)

Θ(ton) =
[

0 0 0 − 1
[υ,υ]

eA(tcycle−ton)C(ton)U
]

,

where 0 represents zero vectors of proper dimension, [υ, υ]
is an interval, C is an interval matrix, and U is an interval
vector. Thus, Θ is an interval matrix.

Proof. Replacing eA(ton−ton)Γ(ton) in (6) by (7) yields

xp
up

∗ ∈
{

eA(tcycle−ton)tonC(ton)sgn(x4(t0))(−u)
∣
∣
∣

ton ∈ [0, ton], u ∈ U
}

.

The switching time can be overapproximated as ton ∈ |x4|
[υ,υ]

;

see (5). After inserting this result into the previous set, one
obtains

xp
up

∗ ∈ −eA(tcycle−ton)C(ton)U
x4(t0)

[υ, υ]
.

The multiplication with x4(t0) can be rewritten as a multi-
plication of the state x(t0) with the interval matrix Θ.

When both charge pumps are active, the partial solution
is given by

xp
both ∈ eA(tcycle−ton−td)eA(ton−ton)

︸ ︷︷ ︸

=e
A(tcycle−ton−td)

Γ(td)ud

∈eA(tcycle−ton−td) ⊗ {eAt|t ∈ [0,∆ton]} ⊗ Γ(td)ud,

where ∆ton = ton − ton since ton ∈ [ton, ton] and

M̃(∆ton) := {eAt|t ∈ [0,∆ton]} =

η∑

i=0

Ai

i!
[0,∆ton]⊕E(∆ton).

(9)
Note that it is sufficient to compute E(t) at the last point in
time since ∀τ : 0 < τ < t : E(t− τ) ⊂ E(t).

In Theorem 4.1 it has been assumed that ton = 0. This
is revoked by first computing x̃k := x(tk + ton). Next, the
time is reset to zero (which is possible since the system is
time-invariant), and the computation is continued with x̃k

as the new initial state:

x̃k ∈eAtonxk ⊕ Γ(ton)c⊕ eA(tcycle−ton)Γ(ton)u

xk+1 ∈(eA(tcycle−ton) ⊕Θ(∆ton))x̃k ⊕ Γ(tcycle − ton)c

⊕ eA(tcycle−ton−td)M̃(∆ton)Γ(td)ud.

(10)

4.4 Bounding the Solution for Leading and Lag-
ging Reference Signal

Theorem 4.1 shows that positive and negative phase dif-
ferences can be handled without any distinction of the sign

of the phase difference as long as the time interval [ton, ton]
is correctly overapproximated. The time intervals computed
in (5) are based on the cycle including up active. If the cycle
containing dw active is also considered, the bounds are

ton = 0, ton = max(|δ|/υ, |δ|/υ, |δ|/υ, |δ|/υ). (11)

When computing the state bounds for a constant cycle
time tcycle, the input is applied in the interval tk+[0, ton] for
the cycle containing up active and in the interval tk− [0, ton]
for the cycle containing dw active. As shown in Algorithm
1 below, the different times are taken care of by adding the
reachable set due to the input before and after tk when both
cycles are possible. The addition of the input solution for
tk + [0, ton] and tk − [0, ton] results in an overapproximation
since the input solution contains the origin, so that the pre-
vious sets are obtained in the set after the addition. Further,
it is sufficient to only keep the input applied at tk + [0, ton]
for subsequent computations, which is illustrated in Fig. 5.
Thus, the error for adding the input solution for tk + [0, ton]
and tk − [0, ton] does not accumulate. The procedure of
only keeping the input applied at tk + [0, ton] is realized by

the auxiliary reachable set R̃k in Algorithm 1. We skip the
proof that this procedure is overapproximative due to space
limitations.

(a) signal of charge pump activity

(b) signal used for reachability analysis up to time tk

charge
pump
on

charge
pump
on

neg. phase difference pos. phase difference

original signal
(not applied)

region of
charge pump

activity

tcycle tcycle tcycle tcycletcycle

tcycle tcycle tcycle tcycletcycle

tk

tk

t

t

1

1

0

0

Figure 5: Consideration of inputs when the phase

difference changes from negative to positive.

5. REACHABILITY ANALYSIS
We now present how to compute the reachable set for a

set of initial states and a sequence of cycles. The reachable
sets are represented using zonotopes which have a maximum
complexity of O(n3) with respect to the system dimension
n for the required operations. A zonotope is defined as

Z =
{

x ∈ R
n
∣
∣x = c+

p
∑

i=1

βi g
(i), −1 ≤ βi ≤ 1

}

,

where c ∈ R
n is the zonotope center (to which a zonotope is

centrally symmetric) and the g(i) ∈ R
n are called generators.

The order of a zonotope is defined as o = p

n
. Fig. 6 illustrates

a zonotope being constructed step-by-step as the Minkowski
sum of a finite set of line segments l̂i = [−1, 1] g(i). Opera-
tions on zonotopes and operations between sets of matrices
and zonotopes are presented in [1].

663

0 0.5 1 1.5 2
0

0.5

1

1.5

2

c

l̂1

(a) c⊕ l̂1

−1 0 1 2 3
−1

0

1

2

3

c

l̂1 l̂2

(b) c⊕ l̂1 ⊕ l̂2

−2 0 2 4
−1

0

1

2

3

c

l̂1

l̂2

l̂3

(c) c⊕ l̂1⊕ l̂2⊕

l̂3

Figure 6: Construction of a zonotope by Minkowski

addition of line segments.

5.1 Transient Analysis
The algorithm for the reachable set computation when

the reference signal is initially leading is presented in Al-
gorithm 1. An interesting property of the PLL is that the
number of cycles required for locking is identical when the
absolute value of the initial phase difference is equal and the
corresponding initial voltages are symmetric with respect to
the voltages in the completely locked state. We refer to this
property as symmetric locking time which makes it sufficient
to compute the reachable set only for the case when the ref-
erence signal is initially leading. For the symmetric locking,
we additionally require that IUP

i = −IDW
i and IUP

p = −IDW
p ,

which can be relaxed for reachability analysis by choosing
the intervals for IUP

i + IDW
i and IUP

p + IDW
p large enough

such that their center is 0. The proof for symmetric locking
is omitted due to space limitations.

For simulation purposes, the values of both phases are
needed to determine the time for turning the charge pumps
on and off. In contrast, the discrete-time model for reacha-
bility analysis does not require the exact timing for switch-
ing the charge pump values; it is sufficient to keep only the
phase difference x4 = Φv − Φref as a state variable for the
reachability computations.

Algorithm 1 Reachable set computation when reference
signal is leading at t = 0

Input: Initial set R0, system matrix A, input set U , input
set Ũ for both active
parameters: tcycle, ∆Φlock, υ, υ

Output: Rklock

k = 0; P =
[
0 0 0 1

]

while |PRk| > ∆Φlock do

ton = min(|PRk−1|)/υ, ton = max(|PRk−1|)/υ
Compute Γ(t) for t ∈ {ton, td, (tcycle − ton)}; see (2)
Compute Θ for ∆ton = ton − ton; see Theorem 4.1

Compute M̃(∆ton); see (9)
˜̃Rk+1 = eAtonR̃k ⊕ Γ(ton)c⊕ eA(tcycle−ton)Γ(ton)U

R̃k+1 = (eA (tcycle−ton) ⊕Θ(∆ton))
˜̃Rk+1

⊕Γ(tcycle − ton)c⊕ eA(tcycle−ton−td)M̃(∆ton)Γ(td)Ũ

Rk = R̃k ⊕Θ(∆ton)R̃k (consideration of lagging)
k := k + 1

end while

klock = k − 1

5.2 Invariant Computation
Once the reachable set fulfills the locking condition |PRk| ≤

∆Φlock (see Algorithm 1), it remains to check if this con-
dition is fulfilled indefinitely. A straightforward procedure

would be to check after each cycle if Rk+1 ⊆ Rk, meaning
that Rk is an invariant. Checking Rk+1 ⊆ Rk is computa-
tionally expensive. This is because for this check, zonotopes
have to be represented by polytopes and the enclosure check
for polytopes is computationally expensive [1].

For this reason, we use the following alternative procedure
illustrated in Fig. 7. First, the reachable set computations
are continued for ̺ extra cycles after a reachable set ful-
fills the locking condition in cycle klock, see Fig. 7. Next,
the reachable set Rklock+̺ is overapproximated by an axis-
aligned box denoted by I. This leads to an overapproxi-
mation for the subsequent reachable sets, so ̺ should be
chosen large enough such that all the subsequent sets ful-
fill the locking condition. Once a reachable set represented
by a zonotope is enclosed by I (which is computationally
cheap to detect), one can conclude that the PLL is locked
indefinitely. This procedure is formalized in Algorithm 2.

Algorithm 2 Invariant computation

Input: Rklock+̺, klock, ̺, ∆Φlock.
Output: locked

I = box(Rklock+̺)
Rklock+̺ = I
k = klock + ̺
locked = 0; P =

[
0 0 0 1

]

while |PRk| ≤ ∆Φlock & locked==0 do

Compute Rk+1 as shown in Algorithm 1

locked=

{

1, if Rk+1 ⊆ I

0, otherwise

k = k + 1
end while

kfinal = k − 1

−4 −2 0 2 4

x 10
−4

0.3495

0.35

0.3505

(Φ
v
−Φ

ref
)/2π in [rad]

v
i i

n
 [

V
]

∆Φlock

I

Rkfinal

Rklock+̺

∪
kfinal

i=klock+̺Ri

Rklock

Figure 7: Reachable sets of different stages of the

invariant computation.

6. NUMERICAL RESULTS
In this section we apply Algorithms 1 and 2 to verify

a 27GHz PLL designed in 32nm CMOS SOI technology.
The parameters of the PLL and the reachable set com-
putation are listed in Table 1. The PLL considered here
employs a simple initialization circuitry that sets the inte-
gral and proportional path voltages to common-mode levels
at power up and whenever the division ratio is changed.
This reduces locking time and aids the formal verification
by reducing the uncertainty on the initial node voltages.

664

With the initialization, the initial range of node voltages
are vi(0) ∈ [0.34, 0.36], and vp1(0), vp(0) ∈ [−0.01, 0.01]. We
normalize the phases to [0, 1], and we normalize the time to
microseconds. The phase range of Φv is split into 5 subin-
tervals Φi

v(0) ∈ −0.1·[i, i−1], where i = 1 . . . 5, and without
loss of generality we assume Φref (0) = 0. Because of sym-
metry, all possible initial phase differences are considered.
The number of Taylor terms chosen depends on the time
horizon. For Γ(tcycle − ton), 30 Taylor terms are used and
10 Taylor terms are used for all other computations.

The reachable set starting with the initial phase difference
Φ1

v(0) is shown for the first 200 cycles in Fig. 8 for projec-
tions onto four different pairs of state variables. The sets
computed to prove locking are shown in Fig. 7. Note that
the voltages in Fig. 8 are as high as 10 [V] since charge pump
saturation is not yet considered.

Table 2 shows the clock cycles it takes for the PLL to
achieve locking for varying initial phase errors. The 1st and
the 2nd columns show the results from reachability analy-
sis. The 3rd column shows the maximum lock time obtained
from 30 behavioral simulations with randomly varying ini-
tial phase errors and charge pump currents. Table 2 demon-
strates that our reachability analysis efficiently provides an
upper bound on the worst-case lock time in the presence of
random phase error and charge pump current variations.

The computation times for the reachability analysis start-
ing at different initial sets of phase differences are listed in
Table 3. It can be seen that the results are obtained in less
than a minute. The average computation time of the reach-
ability analysis for a single cycle is around 27 [ms], which is
only slightly longer than 24 [ms] required for a simulation of
one cycle of the behavior model in MATLAB. All computa-
tions mentioned so far have been performed on an Intel i7
processor with 1.6 GHz and 6 GB memory. Simulating the
behavioral model in VerilogA for a particular initial condi-
tion requires only 2 [ms] per cycle on an Intel Xeon CPU
with 2.53GHz, which is an order of magnitude faster than
reachability analysis. However, reachability analysis is still
competitive if we consider that the VerilogA model needs
to be simulated for thousands of Monte Carlo samples to
capture random initial conditions and parameter variations.

Table 1: Parameters
PLL model Reachable set comp.

name value unit name value
fref 27 MHz max zonotope
f0 26.93e3 MHz order o 100
N 1000 — ω1 0
Ki 200 MHz/V ω1 0.7
Kp 25 MHz/V ω3 -4
Ii [9.9,10.1]e-6 A ω3 12
Ip [495,505]e-6 A ̺ 100
Ci 25e-12 F
Cp1 6.3e-12 F
Cp3 2e-12 F
Rp2 50e3 Ohm
Rp3 8e3 Ohm
td 50e-12 s

7. CONCLUSIONS
This paper presents a method for verifying PLL locking

0.4 0.5 0.6 0.7

0

5

10

v
i
 in [V]

v
p

1 in
 [

V
]

initial set

(a) Projection onto vi, vp1.

0.4 0.5 0.6

−0.4

−0.2

0

0.2

v
i
 in [V]

(Φ
v
 −
 Φ

re
f)
/2
π
 in
 [
ra
d
]

initial
set

(b) Projection onto vi,
(Φv −Φref)/(2π).

0 5 10

0

5

10

v
p1

 in [V]

v
p
 in

 [
V

]

initial set

(c) Projection onto vp1, vp.

0 5 10

−0.4

−0.2

0

0.2

v
p
 in [V]

(Φ
v
 −
 Φ

re
f)
/2
π
 in
 [
ra
d
]

initial set

(d) Projection onto vp,
(Φv −Φref)/(2π).

Figure 8: Reachable sets of the first 200 cycles. Sim-

ulation results of each cycle are plotted by dots.

Table 2: Required cycles for locking
reachability analysis simulation

cycles to gua- cycles (max.) cycles
Φv(0) rantee locking to reach I to reach I
[−0.5,−0.4] 2039 1845 1271
[−0.4,−0.3] 1981 1787 1225
[−0.3,−0.2] 1908 1714 1173
[−0.2,−0.1] 1811 1616 1086
[−0.1, 0] 1652 1457 994

using efficient reachability analysis. Efficient reachability
computations are achieved using a discrete-time linear model
with uncertain parameters and continuization to eliminate
the complexity of switching. In contrast to applying a clas-
sical reachability approach, the intersection of guard sets
can be dropped. As a consequence, only operations on sets
remain for using zonotopes, which have a maximum com-
plexity of O(n3) with respect to the system dimension n.
The verification of locking does not require any Lyapunov
function to show convergence. For future work, we plan to
consider saturations of charge pumps and varactor nonlin-
earities. We are also looking at other applications of conti-
nuization for hybrid systems where the transition time can
be accurately overapproximated by a linear function of the
state plus uncertainty.

Acknowledgments
The authors acknowledge the support of the NSF Award
CCF0926181 and the C2S2 Focus Center, one of six research
centers funded under the Focus Center Research Program

Table 3: Computation times of the PLL. Computed

number of cycles equals the left column of Table 2.

Φv(0) ∈ −0.1· [5, 4] [4, 3] [3, 2] [2, 1] [1, 0]
Comp. times in [s] 55.0 54.4 53.5 47.8 42.9

665

(FCRP), a Semiconductor Research Corporation entity.

8. REFERENCES
[1] M. Althoff. Reachability Analysis and its Application

to the Safety Assessment of Autonomous Cars.
Dissertation, Technische Universität München, 2010.
http://nbn-
resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-
20100715-963752-1-4.

[2] E. Asarin, T. Dang, G. Frehse, A. Girard,
C. Le Guernic, and O. Maler. Recent progress in
continuous and hybrid reachability analysis. In Proc.
of the 2006 IEEE Conference on Computer Aided
Control Systems Design, pages 1582–1587, 2006.

[3] E. Clarke, A. Donzé, and A. Legay. On
simulation-based probabilistic model checking of
mixed-analog circuits. Formal Methods in System
Design, 36:97–113, 2010.

[4] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. MIT Press, 2000.

[5] T. Dang, A. Donzé, and O. Maler. Verification of
analog and mixed-signal circuits using hybrid system
techniques. In Alan J. Hu and Andrew K. Martin,
editors, FMCAD, volume 3312 of Lecture Notes in
Computer Science, pages 21–36. Springer, 2004.

[6] W. Denman, B. Akbarpour, S. Tahar, M. H. Zaki, and
L. C. Paulson. Formal verification of analog designs
using MetiTarski. In Formal Methods in
Computer-Aided Design, pages 93 – 100, 2009.

[7] G. Frehse. PHAVer: Algorithmic verification of hybrid
systems past HyTech. International Journal on
Software Tools for Technology Transfer, 10:263–279,
2008.

[8] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton,
R. Ray, O. Lebeltel, R. Ripado, A. Girard, T. Dang,
and O. Maler. SpaceEx: Scalable verification of hybrid
systems. In Proc. of the 23rd International Conference
on Computer Aided Verification, LNCS 6806, pages
379–395. Springer, 2011.

[9] G. Frehse, B. H. Krogh, and R. A. Rutenbar. Verifying
analog oscillator circuits using forward/backward
abstraction refinement. In Georges G. E. Gielen,
editor, DATE, pages 257–262. European Design and
Automation Association, Leuven, Belgium, 2006.

[10] F. M. Garder. Phaselock Techniques. John Wiley,
Hoboken NJ, third edition edition, 2005.

[11] D. Grabowski, D. Platte, L. Hedrich, and E. Barke.
Time constrained verification of analog circuits using
model-checking algorithms. Electronic Notes in
Theoretical Computer Science, 153(3):37–52, 2006.

[12] S. Gupta, B. H. Krogh, and R. A. Rutenbar. Towards
formal verification of analog designs. In ICCAD, pages
210–217. IEEE Computer Society / ACM, 2004.

[13] W. Hartong, R. Klausen, and L. Hedrich. Formal
verification for nonlinear analog systems: Approaches
to model and equivalence checking. In R. Drechsler,
editor, Advanced Formal Verification, pages 205–245.
Springer US, 2004.

[14] T. Henzinger. Verification of Digital and Hybrid
Systems, volume 170 of NATO ASI Series F:
Computer and Systems Sciences, chapter The theory
of hybrid automata, pages 265–292. Springer, 2000.

[15] K. Jones, V. Konrad, and D. Nicković. Analog
property checkers: a DDR2 case study. Formal
Methods in System Design, 36:114–130, 2010.

[16] R. P. Kurshan and K. L. McMillan. Analysis of digital
circuits through symbolic reduction. IEEE Trans. on
CAD of Integrated Circuits and Systems,
10(11):1356–1371, 1991.

[17] S. Little, D. Walter, K. Jones, C. J. Myers, and
A. Sen. Analog/mixed-signal circuit verification using
models generated from simulation traces. Int. J.
Found. Comput. Sci., 21(2):191–210, 2010.

[18] S. Little, D. Walter, N. Seegmiller, C. J. Myers, and
T. Yoneda. Verification of analog and mixed-signal
circuits using timed hybrid Petri nets. In Proc. of the
2nd International Conference on Automated
Technology for Verification and Analysis, pages
426–440, 2004.

[19] O. Maler and D. Nickovic. Monitoring temporal
properties of continuous signals. In Yassine Lakhnech
and Sergio Yovine, editors, FORMATS/FTRTFT,
volume 3253 of Lecture Notes in Computer Science,
pages 152–166. Springer, 2004.

[20] G. Al Sammane, M. H. Zaki, Z. J. Dong, and
S. Tahar. Towards assertion based verification of
analog and mixed signal designs using PSL. In FDL,
pages 293–298. ECSI, 2007.

[21] G. Al Sammane, M. H. Zaki, and S. Tahar. A
symbolic methodology for the verification of analog
and mixed signal designs. In Rudy Lauwereins and Jan
Madsen, editors, DATE, pages 249–254. ACM, 2007.

[22] A. Singh and P. Li. On behavioral model equivalence
checking for large analog/mixed signal systems. In
Proc. of IEEE/ACM Int. Conf. on Computer-Aided
Design (ICCAD), pages 55–61, 2010.

[23] S. Steinhorst and L. Hedrich. Advanced methods for
equivalence checking of analog circuits with strong
nonlinearities. Formal Methods in System Design,
36(2):131–147, 2010.

[24] S. K. Tiwary, A. Gupta, J. R. Phillips, C. Pinello, and
R. Zlatanovici. First steps towards SAT-based formal
analog verification. In Proc. of the International
Conference on Computer-Aided Design, pages 1 –8,
2009.

[25] D. Walter, S. Little, C. Myers, N. Seegmiller, and
T. Yoneda. Verification of analog/mixed-signal circuits
using symbolic methods. Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions
on, 27(12):2223 –2235, December 2008.

[26] Z. Wang, N. Abbasi, R. Narayanan, M.H. Zaki,
G. Al Sammane, and S. Tahar. Verification of analog
and mixed signal designs using online monitoring. In
Mixed-Signals, Sensors, and Systems Test Workshop,
2009. IMS3TW ’09. IEEE 15th International, pages 1
–8, June 2009.

[27] M. H. Zaki, G. Al Sammane, S. Tahar, and G. Bois.
Combining symbolic simulation and interval
arithmetic for the verification of AMS designs. In
FMCAD, pages 207–215. IEEE Computer Society,
2007.

[28] M. H. Zaki, S. Tahar, and G. Bois. Formal verification
of analog and mixed signal designs: A survey.
Microelectronics Journal, 39(12):1395 – 1404, 2008.

666

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Table of Contents

