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ABSTRACT 
In this paper, we propose a new technique to accurately 
decompose process variation into two different components: (1) 
spatially correlated variation, and (2) uncorrelated random 
variation. Such variation decomposition is important to identify 
systematic variation patterns at wafer and/or chip level for process 
modeling, control and diagnosis. We demonstrate that spatially 
correlated variation carries a unique sparse signature in frequency 
domain. Based upon this observation, an efficient sparse 
regression algorithm is applied to accurately separate spatially 
correlated variation from uncorrelated random variation. An 
important contribution of this paper is to develop a fast numerical 
algorithm that reduces the computational time of sparse regression 
by several orders of magnitude over the traditional 
implementation. Our experimental results based on silicon 
measurement data demonstrate that the proposed sparse regression 
technique can capture spatially correlated variation patterns with 
high accuracy. The estimation error is reduced by more than 3.5× 
compared to other traditional methods. 
 
1. INTRODUCTION 

With the continued scaling of CMOS technology, process 
variation has become a critical issue for design and manufacture 
of integrated circuits [1]-[4]. Large-scale performance variability 
has been observed for integrated circuits fabricated at advanced 
technology nodes, resulting in significant parametric yield loss. 
For this reason, accurate process characterization and modeling is 
required in order to fully understand the variation sources and, 
hence, facilitate robust circuit design to achieve high parametric 
yield [15]. 

Towards this goal, identifying and modeling systematic 
variation patterns is of great importance. Once the systematic 
variation sources are found, it is possible to optimize the 
manufacturing process and/or modify the circuit design to 
improve yield. Traditionally, systematic variation patterns are 
often determined by calculating the averaged variation from a 
large number of wafers and/or chips [3]-[4]. As such, uncorrelated 
random variation can be statistically removed. These traditional 
approaches, however, suffer from several major limitations. First, 
it requires a large number of measured wafers/chips to accurately 
eliminate the impact of uncorrelated random variation. In practice, 
the number of available wafers/chips can be limited (e.g., in low-
volume production). Second, the systematic variation patterns 
must be identical for all tested wafers/chips. If a number of 
wafers/chips carry a different systematic variation pattern (e.g., 
due to manufacturing equipment drift) or contain a lot of missing 
data (e.g., due to measurement error), they can substantially bias 
the estimation result. 

It has been demonstrated in the literature that systematic 
variation often presents a unique spatial pattern [3]. Namely, 
systematic variation is spatially correlated. For example, it has 
been observed in [5] that the spatial correlation in gate length is 

partially caused by the systematic variation due to lithography. 
Motivated by these observations, we propose a new technique to 
uncover systematic variation patterns by decomposing process 
variation into two different components: (1) spatially correlated 
variation, and (2) uncorrelated random variation. In other words, 
by removing the uncorrelated random variation component, the 
remaining spatially correlated variation will accurately represent 
the systematic variation of interest. 

Our proposed technique is based upon an important fact that 
spatially correlated variation and uncorrelated random variation 
present completely different signatures in frequency domain. 
Namely, spatially correlated variation typically carries a unique 
sparse structure in frequency domain [6]-[8], implying that it can 
be accurately represented by a small number of dominant DCT 
(i.e., discrete cosine transform) coefficients. On the other hand, 
uncorrelated random variation has a white frequency spectrum 
and the corresponding DCT coefficients are evenly distributed 
over all frequencies. By exploring the unique sparsity in 
frequency domain, we derive a sparse regression formulation to 
identify the dominant frequency-domain components and, hence, 
approximate the spatially correlated systematic variation. 

Another important contribution of this paper is to borrow the 
Simultaneous Orthogonal Matching Pursuit (S-OMP) method 
from the statistics community [11] to solve the aforementioned 
sparse regression problem. A number of implementation details 
are carefully considered in order to further tune the S-OMP 
method to fit the need of our specific application. In particular, 
several new numerical algorithms are developed and integrated 
with S-OMP to substantially reduce the computational time for 
large-scale wafer/chip-level data analysis. Our key idea is to 
explore the special properties of DCT (e.g., orthogonality of DCT 
basis functions) [16] to simplify the numerical operations that are 
required by S-OMP. 

The proposed variation decomposition technique has been 
validated by using the measurement data of contact plug 
resistance collected from 24 test chips in a 90 nm CMOS process. 
As will be demonstrated by the experimental results in Section 5, 
the proposed sparse regression approach reduces the estimation 
error by more than 3.5× compared to other traditional methods. In 
addition, our improved S-OMP algorithm achieves more than 
600× speed-up over the traditional implementation. 

The remainder of this paper is organized as follows. In 
Section 2, we first derive the mathematical formulation for the 
proposed variation decomposition problem and then describe the 
S-OMP algorithm in Section 3. Next, we develop several fast 
numerical algorithms to implement S-OMP in Section 4. The 
efficacy of the proposed method is demonstrated by several 
examples in Section 5. Finally, we conclude in Section 6. 
 
2. VARIATION DECOMPOSITION 

Let g(x, y) be a two-dimensional function representing the 
spatial variation of interest, where x and y denote the coordinate of 
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a spatial location within the two-dimensional plane. The spatial 
variation g can be the device-level threshold voltage variation 
within a chip, chip-level leakage current variation on a wafer, etc. 
In practice, the spatial variation g is measured at a finite number 
of spatial locations. Therefore, without loss of generality, the 
spatial coordinates x and y can be labeled as integer numbers: x ∈ 
{1,2,...,P} and y ∈ {1,2,...,Q}, as shown in [6]-[8]. If the spatial 
variation g is measured for multiple chips and/or wafers, it can be 
represented by a set of two-dimensional functions: {g(l)(x, y); l = 
1,2,…L}, where L denotes the total number of wafers/chips. In 
this paper, we aim to decompose each spatial variation function 
g(l)(x, y) into two different components: 
1 ( )( ) ( )( ) ( )( ) ( )Llyxryxsyxg lll ,,2,1,,, =+=  (1) 
where {s(l)(x, y); x = 1,2,...,P, y = 1,2,...,Q} and {r(l)(x, y); x = 
1,2,...,P, y = 1,2,...,Q} stand for the spatially correlated variation 
and the uncorrelated random variation, respectively. 

As demonstrated in [6]-[8], the spatial variation {g(l)(x, y); x = 
1,2,...,P, y = 1,2,...,Q} can be mapped to frequency domain by a 
two-dimensional linear transform such as discrete cosine 
transform (DCT) [16]: 
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In (2), {G(l)(u, v); u = 1,2,...,P, v = 1,2,...,Q} represents the DCT 
coefficients (i.e., the frequency-domain components) of the spatial 
variation function g(l)(x, y). Equivalently, the function {g(l)(x, y); x 
= 1,2,...,P, y = 1,2,...,Q} can be represented as the linear 
combinations of {G(l)(u, v); u = 1,2,...,P, v = 1,2,...,Q} by inverse 
discrete cosine transform (IDCT): 
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Due to the linearity of DCT [16], the DCT coefficients {G(l)(u, 
v); u = 1,2,...,P, v = 1,2,...,Q} can be further decomposed into two 
different components: 
6 ( ) ( ) ( )( ) ( )( ) ( )LlvuRvuSvuG lll ,,2,1,,, =+=  (6) 
where {S(l)(u, v); u = 1,2,...,P, v = 1,2,...,Q} and {R(l)(u, v); u = 
1,2,...,P, v = 1,2,...,Q} denote the DCT coefficients of the spatially 
correlated variation s(l)(x, y) and the uncorrelated random variation 
r(l)(x, y) defined in (1). Once S(l)(u, v) and R(l)(u, v) are found, s(l)(x, 
y) and r(l)(x, y) can be determined by IDCT, similar to the case in 
(5). 

To accurately solve the decomposition problem in (6), we first 
need to analyze the signatures of S(l)(u, v) and R(l)(u, v) in the DCT 
domain. As is demonstrated in [6]-[8], the DCT coefficients S(l)(u, 
v) (corresponding to spatially correlated variation) are typically 
sparse, i.e., many of these coefficients are close to 0. In other 
words, there exist a small number of (say, λ(l) where λ(l) << PQ) 
dominant DCT coefficients to satisfy: 
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where D(l) denotes the set of the indices of the dominant DCT 
coefficients for S(l)(u, v). Eq. (7) simply implies that the total 
energy of all DCT coefficients {S(l)(u, v); u = 1,2,...,P, v = 
1,2,...,Q} are almost equal to the energy of the dominant DCT 
coefficients {S(l)(u, v); (u, v) ∈ D(l)}. 

On the other hand, uncorrelated random variation can be 
characterized as white noise [17] and evenly distributed among all 
frequencies. Therefore, given the set of indices D(l), the following 
equation holds: 
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Because of the inequality λ(l) << PQ, we have λ(l)/PQ << 1 in (8). 
If the value of λ(l) is sufficiently small (i.e., the DCT coefficients 
of spatially correlated variation are sufficiently sparse), the left-
hand side of (8) is approximately zero and the following 
inequality holds: 
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Based on these assumptions, an accurate approximation of the 
DCT coefficients S(l)(u, v) (corresponding to spatially correlated 
variation) can be expressed as: 
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In other words, we simply approximate S(l)(u, v) by the dominant 
DCT coefficients {G(l)(u, v); (u, v) ∈ D(l)}.Comparing (6) and (10), 
it can be further proven that the approximation error of (10) is 
given by: 
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Given the assumptions in (7) and (9), the error terms in (11) are 
almost negligible. 

In practice, however, Eq. (10) cannot be directly used for 
variation decomposition because of two reasons. First, the index 
set of dominant DCT coefficients D(l) is not known in advance and 
it must be estimated from the measurement data. Second, if the 
spatial variation g(l)(x, y) is not measured at all locations, it is not 
possible to directly calculate G(l)(u, v) from (2). In many practical 
applications, measurement error and manufacturing defect can 
result in missing data at a number of spatial locations, as is 
demonstrated in the literature [3], [8]. These observations, hence, 
motivate us to derive an efficient Simultaneous Orthogonal 
Matching Pursuit (S-OMP) algorithm [11] to determine S(̃l)(u, v) 
in (10) for accurate variation decomposition. 
 
3. S-OMP ALGORITHM 

In this section, we describe the S-OMP algorithm in detail. To 
this end, we first show a simplified version of S-OMP, referred to 
as Orthogonal Matching Pursuit (OMP) [12], where only the 
measurement data from a single wafer/chip are considered. Next, 
we derive the full S-OMP algorithm [11] that explores the 
correlation among multiple wafers/chips to further improve the 
accuracy for variation decomposition. 
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3.1 Orthogonal Matching Pursuit 
The objective of OMP is to determine the index set D(l) so that 

a small number of dominant DCT coefficients can be identified to 
approximate the spatially correlated variation in (10). 
Mathematically, our variation decomposition problem can be 
formulated as the following optimization: 
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where ||•||2 and ||•||0 stand for the L2-norm (i.e., the square root of 
the summation of the squares of all elements) and the L0-norm 
(i.e., the number of non-zero elements) of a vector respectively, 
and: 
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In (12)-(16), the vector B(l) represents the measurement data 
collected from M(l) different spatial locations {(x(l),m, y(l),m); m = 
1,2,…,M(l)} of the lth wafer/chip, the vector η(l) contains the 
unknown DCT coefficients for the spatially correlated variation 
that we want to extract, and the matrix A(l) defines the linear 
transform to map the DCT coefficients from the frequency 
domain to the spatial domain. The optimization in (12) attempts to 
use a small number of (i.e., λ(l)) dominant DCT coefficients to 
approximate the measurement data B(l) with least-squares error. 

Studying (12), we would have two important observations. 
First, if the number of measured samples (i.e., M(l)) is equal to the 
total number of DCT coefficients (i.e., PQ), the matrix A(l) 
represents the IDCT matrix and it is a full-rank square matrix. On 
the other hand, if M(l) is less than PQ (e.g., due to missing data), 
the matrix A(l) contains M(l) rows taken from the IDCT matrix and 
it is not simply a square matrix. 

In general, solving the optimization in (12) is not trivial, since 
the problem is NP-hard. OMP [12] is an efficient greedy 
algorithm to approximate the solution of (12). It was recently 
adopted by the CAD community for large-scale performance 
modeling [9]. In this paper, we further extend the OMP algorithm 
to our application of variation decomposition. In what follows, we 
briefly review the major steps of the OMP algorithm. More details 
on OMP can be found in the literature [9], [12]. 

The key idea of OMP is to iteratively use the inner product to 
identify a small number of important DCT coefficients. Towards 
this goal, we re-write the matrix A(l) by its column vectors: 
17 ( ) ( ) ( ) ( )[ ]PQllll AAAA ,2,1,=  (17) 
where each column vector A(l),i can be conceptually viewed as a 
basis vector associated with the DCT coefficient η(l),i. The inner 
product <B(l), A(l),i> measures the “correlation” between the 
measurement data B(l) and the basis vector A(l),i. A strong 
correlation between B(l) and A(l),i implies that the basis vector A(l),i 

(hence, the DCT coefficient η(l),i) is an important component to 
approximate B(l). 

Based on this idea, OMP applies an iterative process to find a 
set of important basis vectors, as summarized in Algorithm 1. At 
each iteration, OMP performs two major operations. First, it 
selects the basis vector A(l),s that is most “correlated” to the 
residual Res(l). Second, the DCT coefficients associated with all 
selected basis vectors are solved by least-squares fitting. 

It should be noted that Algorithm 1 relies on a given input 
parameter λ(l). In practice, the value of λ(l) is not known in advance. 
However, it can be accurately estimated by cross-validation, as 
will be discussed in detail in Section 3.3. 

Algorithm 1: Orthogonal Matching Pursuit (OMP) 
1. Start from the optimization problem in (12) with a given 

integer λ(l) specifying the total number of basis vectors. 
2. Initialize the residual Res(l) = B(l), the set Ω(l) = {}, and the 

iteration index p = 1. 
3. Select the new basis vector A(l),s according to the following 

criterion: 
18 ( ) ( ) slls
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4. Update Ω(l)  by Ω(l) = Ω(l)∪{s}. 
5. Solve the least-squares fitting: 
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6. Calculate the residual: 
20 ( ) ( ) ( ) ( )

( )
∑
Ω∈

⋅−=
li

ililll ABRes ,, η . (20) 

7. If p < λ(l), p = p + 1 and go to Step 3. 
8. For any i ∉ Ω(l), set η(l),i = 0. 
 
3.2 Simultaneous OMP 

While the spatially correlated variation for multiple 
wafers/chips can be extracted by independently performing OMP, 
this method is clearly not optimal since it ignores the strong 
correlation among different wafers/chips. Such strong correlation 
exists, if these wafers/chips are produced by the same 
manufacturing line and, hence, a significant portion of systematic 
variation can be shared [8]. In this sub-section, we further extend 
the OMP algorithm and derive an efficient Simultaneous 
Orthogonal Matching Pursuit (S-OMP) algorithm [11] so that the 
aforementioned correlation information can be used to improve 
the accuracy of variation decomposition. 

As demonstrated in [8], if multiple wafers share similar spatial 
variation patterns, the corresponding DCT coefficients are 
strongly correlated. In this case, dominant DCT coefficients can 
be found at a number of common frequencies shared by all wafers. 
A similar observation can be made at chip level, where the 
systematic variation of a chip is often characterized by layout-
dependent patterns. Since multiple chips share the same layout 
design, their systematic variation is expected to share similar 
spatial patterns. Hence, the dominant DCT coefficients associated 
with chip-level systematic variation should be distributed over a 
set of common frequencies shared by multiple chips. 

Based upon these observations, we propose to model the 
spatial variation of multiple wafers/chips by a shared index set D 
for dominant DCT coefficients. Namely, we assume: 
21 ( ) ( ) ( ) DDDD L ==== 21 . (21) 
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Consequently, the sizes of the sets {D(l); l = 1,2,…,L}, i.e., {λ(l); l 
= 1,2,…,L}, are identical and can be modeled by a single 
parameter λ: 
22 ( ) ( ) ( ) λλλλ ==== L21 . (22) 

With (21)-(22) in mind, we re-visit the OMP algorithm (i.e., 
Algorithm 1) where a set of dominant DCT coefficients are 
selected to approximate the spatially correlated systematic 
variation. At each iteration of Algorithm 1, a single DCT basis 
vector is chosen according to the inner product in (18). For S-
OMP, since the index set of dominant DCT coefficients is shared 
for L different wafers/chips as shown in (21), we use the linear 
combination of multiple inner products as a quantitative criterion 
for basis vector selection: 
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Eq. (23) is expected to be more accurate than (18), since it is less 
sensitive to the random noise caused by uncorrelated random 
variation and/or measurement error. In other words, by adding the 
inner products over L wafers/chips, the impact of random noise is 
reduced and the spatial pattern associated with systematic 
variation can be accurately detected. This is the fundamental 
reason why S-OMP is preferred over OMP, if the spatially 
correlated systematic variation shares similar patterns across 
multiple wafers/chips. Algorithm 2 summarizes the major steps of 
the aforementioned S-OMP algorithm. Note that S-OMP is an 
extended version of OMP (i.e. Algorithm 1). If there is only one 
wafer/chip (i.e., L = 1), S-OMP is exactly equivalent to OMP. 

Algorithm 2: Simultaneous OMP (S-OMP) 
1. Start from the optimization problem in (12) for L wafers/chips 

l ∈ {1,2,…,L} with a given integer λ specifying the total 
number of basis vectors. 

2. Initialize the set Ω = {}, and the iteration index p = 1. 
3. For each l ∈ {1,2,…,L}, set the residual Res(l) = B(l). 
4. Select the new basis vector s according to (23). 
5. Update Ω by Ω = Ω∪{s}. 
6. For each l ∈ {1,2,…,L}, solve the least-squares fitting in (19). 
7. Calculate the residual for l ∈ {1,2,…,L} by using (20). 
8. If p < λ, p = p + 1 and go to Step 4. 
9. For any i ∉ Ω, set η(l),i = 0. 
 
3.3 Cross-Validation 

The S-OMP algorithm (i.e., Algorithm 2) relies on a user 
defined parameter λ to control the number of dominant DCT 
coefficients that should be selected. In practice, λ is not known in 
advance. The appropriate value of λ must be determined by 
considering the following two important issues. First, if λ is too 
small, S-OMP cannot select a sufficient number of basis vectors 
to represent the spatially correlated variation, thereby leading to 
large modeling error. On the other hand, if λ is too large, S-OMP 
can incorrectly select too many DCT coefficients and some of 
these coefficients are associated with uncorrelated random 
variation, instead of spatially correlated systematic variation. It, 
again, results in large modeling error due to over-fitting. In order 
to achieve the best accuracy, we must accurately estimate the 
modeling error for different λ values and then find the optimal λ 
with minimum error. 

In this paper, we adopt the cross-validation method [18] to 
estimate the modeling error for our variation decomposition 
application. An F-fold cross-validation partitions the entire data 
set into F groups. Modeling error is estimated according to the 

cost function in (12) from F independent runs. In each run, one of 
the F groups is used to estimate the modeling error and all other 
groups are used to calculate the DCT coefficients. Note that the 
training data for coefficient estimation and testing data for error 
estimation are not overlapped. Hence, over-fitting can be easily 
detected. In addition, different groups should be selected for error 
estimation in different runs. As such, each run results in an error 
value εf (f = 1,2,...,F) that is measured from a unique group of data 
points. The final modeling error is computed as the average of {εf; 
f = 1, 2,...,F}, i.e., ε = (ε1 + ε2 + ... + εF)/F. 
 
4. IMPLEMENTATION DETAILS 

While Algorithm 2 summarizes the major steps of S-OMP for 
variation decomposition, a number of implementation details must 
be carefully considered in order to make the S-OMP algorithm 
computationally efficient for large-scale problems. In this section, 
we derive several efficient numerical algorithms to address the 
aforementioned issue related to computational cost. 
 
4.1 Inner Product Computation 

It can be easily observed from Algorithm 2 that the 
computational cost is dominated by two steps: the inner product 
computation in Step 4 and the least-squares fitting in Step 6. In 
this sub-section, we first derive an efficient numerical algorithm 
to calculate the inner product values in (23). We will discuss the 
numerical algorithm for least-squares fitting in the next sub-
section. 

In order to appropriately select the basis vectors by (23), the 
inner product <Res(l), A(l),i> must be calculated for all basis vectors 
i ∈ {1,2,…,PQ} and all wafers/chips l ∈ {1,2,…,L}. If the inner 
product values are simply calculated by vector-vector 
multiplications, the computational cost is in the order of O(LP2Q2). 
Note that the computational cost quadratically increases with the 
problem size PQ. Hence, the aforementioned implementation can 
quickly become computationally intractable, as the problem size 
increases. 

For this reason, an efficient numerical algorithm for inner 
product computation is needed in order to reduce the 
computational cost. Towards this goal, we first re-write the inner 
product <Res(l), A(l),i> as: 
24 ( ) ( ) ( ) ( )l
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For each l ∈ {1,2,…,L}, we need to calculate (24) for each basis 
vector, i.e., i ∈ {1,2,…,PQ}. The results can be expressed by the 
following matrix-vector multiplication: 
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In other words, by calculating the matrix-vector multiplication in 
(25), we are able to obtain the inner product values for all (i.e., 
PQ) basis vectors. 

If the measurement of the lth wafer/chip does not contain any 
missing data, the matrix A(l) in (25) represents the IDCT matrix 
and it is a full-rank square matrix, as defined in (13). In this case, 
since DCT/IDCT is an orthogonal transform [16], A(l)

T = A(l)
−1 is 

exactly the DCT matrix. Namely, calculating the inner product 
values in (25) is equivalent to performing DCT on the residual 
Res(l). Similar to fast Fourier transform (FFT), there exists a 
number of fast algorithms for DCT/IDCT. The computational cost 
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of these fast algorithms is in the order of O(PQ⋅log(PQ)) [16]. 
Therefore, by using a fast DCT algorithm, the computational cost 
for Step 4 of Algorithm 2 is reduced from O(LP2Q2) to 
O(LPQ⋅log(PQ)). 

The aforementioned fast DCT algorithm is applicable, if and 
only if there is no missing data and, hence, the matrix A(l) is a full-
rank square matrix. If a number of missing data exist (e.g., due to 
measurement error), we can construct an augmented vector Res*

(l) 
∈ RPQ where the elements corresponding to missing data are 
simply filled with zeros. Mathematically, the augmented vector 
Res*

(l) can be represented as: 

26 ( ) ( )
( )
⎥
⎦

⎤
⎢
⎣

⎡
⋅=

0
* l

ll
Res

WRes  (26) 

where W(l) is a permutation matrix to map the residual Res(l) and 
the zero vector to the appropriate elements in Res*

(l). 
Applying DCT to the augmented vector Res*

(l) yields: 

27 ( )
( )
⎥
⎦

⎤
⎢
⎣

⎡
⋅⋅=⋅

0)(
*** l

l
T

l
T Res

WAResA  (27) 

where A* represents the IDCT matrix and, hence, A*T is the DCT 
matrix. Remember that the matrix A(l) in (13) contains M(l) rows 
taken from the IDCT matrix A*. Hence, the matrix A*T⋅W(l) in (27) 
can be re-written as: 

28 ( ) ( ) ( )[ ]T
l

T
ll

T AAWA ~* =⋅  (28) 

where the matrix A(l̃) contains the PQ − M(l) rows of A* that are not 
included in A(l) due to missing data. Substituting (28) into (27), we 
have: 

29 ( ) ( ) ( )[ ] ( )
( ) ( )l
T
l

lT
l

T
ll

T ResA
Res

AAResA ⋅=⎥
⎦

⎤
⎢
⎣

⎡
⋅=⋅

0
~** . (29) 

Note that the DCT results in (29) are exactly equal to the inner 
product values in (25). It, in turn, demonstrates that by filling the 
missing data with zeros, we can efficiently calculate the inner 
product values by using a fast DCT algorithm. In this case, the 
computational cost for Step 4 of Algorithm 2 is again reduced 
from O(LP2Q2) to O(LPQ⋅log(PQ)). 

In addition to the reduction in computational cost, the 
aforementioned fast algorithm based on DCT can also efficiently 
reduce the memory consumption. Note that the direct matrix-
vector multiplication in (25) requires to explicitly form a dense 
matrix A(l) with about P2Q2 entries. While it is possible to 
calculate each inner product in (24) one by one without forming 
the matrix A(l), such an approach leads to large computational time 
since each column of A(l) must be repeatedly formed during the 
iterations of Algorithm 2. For these reasons, the direct approach 
based on matrix-vector multiplication or vector-vector 
multiplication is expensive in either memory consumption or 
computational time. On the other hand, our proposed method only 
needs to form the augmented vector Res*

(l) in (26) with PQ entries. 
A fast DCT algorithm can be applied to Res*

(l) without explicitly 
building the DCT matrix in memory, thereby significantly 
reducing the memory consumption for large-scale problems. 
 
4.2 Least-Squares Fitting 

In addition to inner product computation, least-squares fitting 
is another computationally expensive operation that is required by 
Step 6 of Algorithm 2. The goal is to solve the optimization 
problem in (19). In this sub-section, we will develop an efficient 
numerical algorithm to reduce the computational cost of (19). 

We first re-write (19) for the lth wafer/chip at the pth iteration 

step: 

30 
( ) ( )

( ) ( ) ( ) ( ) ( )
2

2,,
,

minimize lplpl BA
pl

−⋅η
η

 (30) 

where the matrix A(l),(p) contains p column vectors selected from 
A(l) and the vector η(l),(p) contains the DCT coefficients 
corresponding to these selected basis vectors. The relation 
between A(l),(p) and A(l) can be further expressed as: 
31 ( ) ( ) ( ) ( ) ( ) ( )[ ]plplpl AAWA ~,,=⋅  (31) 
where W(p) is a permutation matrix, and the matrix A(l),(p̃) contains 
the basis vectors that are not included in A(l),(p). 

The least-squares solution η(l),(p) of (30) satisfies the following 
normal equation [19]: 
32 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) )(,,,, l

T
plplpl

T
pl BAAA ⋅=⋅⋅ η . (32) 

Traditionally, the solution η(l),(p) of (32) is solved by QR 
decomposition [19]: 
33 ( ) ( ) ( ) ( ) ( ) ( )plplpl RQA ,,, ⋅=  (33) 
where Q(l),(p) is an M(l)-by-p matrix with orthonormal columns and 
R(l),(p) is a p-by-p upper triangular matrix. Substituting (33) into 
(32) yields: 
34 ( ) ( ) ( ) ( ) ( ) ( ) )(,,, l

T
plplpl BQR ⋅=⋅η . (34) 

In (34), since R(l),(p) is upper triangular, η(l),(p) can be solved by 
back substitution. The computational cost of the aforementioned 
least-squares fitting is dominated by the QR decomposition step 
and it is in the order of O(M(l)·p2). 

The traditional least-squares solver based on QR 
decomposition is not computationally efficient for large-scale 
problems. An alternative way to solve (30) is based on an iterative 
algorithm that is referred to as the LSQR method [13]. LSQR 
relies on the bi-diagonalization process of the matrix A(l),(p). 
During its iterations, LSQR generates a sequence of solutions to 
approximate η(l),(p). These solutions are exactly identical to the 
results calculated by the conjugate gradient method [19] for the 
normal equation in (32). However, unlike the conjugate gradient 
method that suffers from numerical issues when solving (32), 
LSQR aims to directly solve (30) in order to improve numerical 
stability. The details of LSQR can be found in [13]. 

When applying LSQR, it is not necessary to explicitly form 
the matrix A(l),(p). Instead, only the matrix-vector multiplications 
A(l),(p)·α and A(l),(p)

T·β, where α is a p-by-1 vector and β is an M(l)-
by-1 vector, are required. These matrix-vector multiplications can 
be efficiently calculated by applying a fast numerical algorithm. 
In what follows, we will show the mathematical formulation of 
our proposed fast algorithm. 

First, to efficiently compute A(l),(p)·α, we construct an 
augmented vector α* ∈ RPQ: 

35 ( ) ⎥
⎦

⎤
⎢
⎣

⎡
⋅=

0
* α

α pW  (35) 

where W(p) is the permutation matrix defined in (31). We 
conceptually consider the augmented vector α* as a set of DCT 
coefficients and apply IDCT to it: 

36 ( ) ⎥
⎦

⎤
⎢
⎣

⎡
⋅⋅=⋅

0
*** α

α pWAA  (36) 

where A* denotes the IDCT matrix as defined in (27). On the other 
hand, we can derive the following equation from (28): 

37 ( )
( )

( )⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⋅=

l

l
l A

A
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* . (37) 

Substituting (37) into (36) yields: 

166



 

38 ( )
( ) ( )

( ) ( )
⎥
⎦

⎤
⎢
⎣

⎡
⋅

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⋅
⋅

⋅=⋅
0~

** α
α

pl

pl
l WA

WA
WA . (38) 

In (38), A(l)⋅W(p) can be represented as two sub-matrices as shown 
in (31). If we similarly re-write A(l̃)⋅W(p) as two sub-matrices: 

39 ( ) ( ) ( ) ( ) ( ) ( )[ ]plplpl AAWA ~,
~

,
~~ =⋅  (39) 

Eq. (38) becomes: 
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Since W(l) is a permutation matrix, Eq. (40) is equivalent to: 
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Eq. (41) reveals an important fact that the matrix-vector 
multiplication A(l),(p)·α can be efficiently computed by applying 
IDCT to the augmented vector α*. The value of A(l),(p)·α is 
determined by selecting the appropriate elements from the IDCT 
result A*·α*. If a fast IDCT algorithm is applied [16], the 
computational cost of the aforementioned matrix-vector 
calculation is in the order of O(PQ⋅log(PQ)). 

Next, we consider the other matrix-vector multiplication 
A(l),(p)

T·β that is required by the LSQR algorithm. Similarly, we 
first construct an augmented vector β* ∈ RPQ: 

42 ( ) ⎥
⎦

⎤
⎢
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⎡
⋅=

0
* β

β lW  (42) 

where W(l) is the permutation matrix defined in (26). We apply 
DCT to the augmented vector β*: 

43 ( ) ⎥
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β l
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where A*T is the DCT matrix as defined in (27). Substituting (37) 
into (43) yields: 
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Based on (31), Eq. (44) can be further re-written as: 
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Hence, the matrix-vector multiplication A(l),(p)
T·β can be calculated 

by applying DCT to the augmented vector β*. The value of 
A(l),(p)

T·β is determined by selecting the appropriate elements from 
the DCT result A*T·β*. The computational cost is in the order of 
O(PQ⋅log(PQ)). 

Finally, it is worth mentioning that similar to other iterative 
solvers, a good initial guess should be provided to LSQR to 
achieve fast convergence. If the initial guess is close to the actual 
solution, LSQR can reach convergence in a few iterations [13]. In 
this paper, LSQR is required at each iteration step of the S-OMP 
algorithm (i.e., Algorithm 2). When Algorithm 2 is applied, the 
solution from the previous iteration step can serve as a good initial 
guess for the current iteration step. By adopting such a heuristic, 
LSQR typically converges in 2~3 iterations in our tested examples. 
 
5. NUMERICAL EXAMPLES 

In this section, we demonstrate the efficacy of our proposed 
variation decomposition algorithm using several examples. All 
numerical experiments are performed on a 2.8GHz Linux server. 
 

5.1 Measurement Data for Contact Plug Resistance 
We consider the contact plug resistance measurement data 

collected from 24 test chips in a 90 nm CMOS process. Each chip 
contains 36,864 test structures (i.e., contacts) arranged as a 
144×256 array, as described in [10]. Among these 24 test chips, 
three of them contain missing data due to external measurement 
error. The number of failed measurements are 2936, 864 and 8 for 
these three chips, respectively. 
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                        (a)                                                    (b) 
Figure 1.  (a) Measured contact plug resistance (normalized) of a 
144×256 array for one of the 24 test chips. (b) Discrete cosine transform 
(DCT) coefficients (magnitude) of the measured contact plug resistance 
for the same test chip. 

Figure 1(a) shows the measured contact plug resistance 
(normalized) from one of the 24 test chips. Studying Figure 1(a), 
we would notice that there is a unique spatial pattern due to layout 
dependency. However, the spatial pattern is not clearly visible 
because of the large-scale uncorrelated random variation found in 
this example. 

Figure 1(b) further shows the DCT coefficients (magnitude) 
of the measured contact plug resistance for the same test chip. 
Note that there only exist a small number of dominant DCT 
coefficients with large magnitude. These DCT coefficients are 
distributed over a small number of frequencies, representing a 
unique signature of the layout-dependent systematic variation in 
frequency domain. All other DCT coefficients are small in 
magnitude and have a white frequency spectrum (i.e., evenly 
distributed over all frequencies). They correspond to the 
uncorrelated random variation that we observe from Figure 1(a). 
These observations demonstrate the important fact that the 
spatially correlated systematic variation can be extracted by 
identifying the dominant DCT coefficients in frequency domain. 
 
A. Variation Decomposition 

We apply the proposed S-OMP algorithm (i.e. Algorithm 2) to 
extract the layout-dependent systematic variation of all test chips. 
The extracted systematic variation of the chip in Figure 1(a) is 
shown in Figure 2(a). Comparing Figure 2(a) with Figure 1(a), we 
would notice that the spatial pattern of systematic variation 
becomes clear, after S-OMP is applied. Such a spatial variation 
pattern can serve as an important basis for diagnosing the sources 
of systematic variation. 

In this example, the systematic variation is mainly caused by 
different layout patterns regularly distributed over the entire chip. 
To verify the layout dependency, we plot the spatial distribution 
of different layout patterns in Figure 2(b) where there exist 55 
layout patterns in total and different layout patterns are shown in 
different colors. Note that Figure 2(b) perfectly matches Figure 
2(a). It, in turn, demonstrates that the aforementioned layout 
dependency is the dominant source for the extracted systematic 
variation in Figure 2(a).  
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                        (a)                                                     (b) 
Figure 2.  (a) Extracted layout-dependent systematic variation 
(normalized) of contact plug resistance. (b) Spatial distribution of different 
contact layout patterns in the test chip. 
 
B. Runtime Comparison 

To demonstrate the efficiency of the fast numerical algorithms 
proposed in Section 4, we implement three different versions of 
OMP/S-OMP where the inner product and the least-squares fitting 
are calculated by different methods. In the first implementation, 
the inner product is directly computed by (24) and the least-
squares fitting is directly computed by the QR decomposition in 
(33)-(34). In the second implementation, the traditional inner 
product calculation is replaced by the fast algorithm proposed in 
Section 4.1. Finally, in the third implementation, both the inner 
product and the least-squares fitting are calculated by the fast 
algorithms proposed in Section 4. 

For testing and comparison purposes, we first run the OMP 
algorithm (i.e., Algorithm 1) with the aforementioned three 
implementations. Table 1 shows the computational time for the 
proposed variation decomposition of a single test chip. Note that 
the fast algorithm for inner product computation achieves 73× 
speed-up and the fast least-squares fitting further brings 8.8× 
speed-up. The overall speed-up achieved by our proposed fast 
algorithms is 647×, compared to the traditional direct 
implementation. 

Table 1.  Computational time of variation decomposition for a 
single chip by OMP 

Inner product Least-squares fitting CPU time (Sec.) 
Direct Direct 2.88×106 
Fast Direct 3.93×104 
Fast Fast 4.45×103 

Table 2.  Computational time of variation decomposition for 24 
chips by S-OMP 

Inner Product Least-squares fitting CPU time (Sec.) 
Fast Direct 5.20×106 
Fast Fast 1.97×105 

 
Next, we run S-OMP for all 24 test chips and Table 2 

compares the computational time for two different 
implementations. Once S-OMP is applied to all test chips, the 
computational time increases significantly. The simple 
implementation with direct inner product calculation and least-
squares fitting is not computationally feasible. Hence, its result is 
not shown in Table 2. In this example, the proposed fast algorithm 
for least-squares fitting achieves 26.3× speed-up over the direct 
implementation. 
 
5.2 Synthetic Data for Contact Plug Resistance 

To further validate the accuracy of the proposed S-OMP 

algorithm, we create a set of synthetic data for contact plug 
resistance. Similar to the silicon measurement data shown in 
Section 5.1, the synthetic data set also contains 24 test chips, with 
a 144×256 array of test structures in each chip. 

Three different variation sources are modeled for the synthetic 
data set: (1) die-to-die variation (σ = 5%), (2) layout-dependent 
systematic variation (σ = 3.5%), (3) uncorrelated random variation 
(σ = 3.5%). The standard deviation of these variation sources is 
approximately equal to what is observed from the silicon 
measurement in Section 5.1. Since we exactly know the 
systematic variation for the synthetic data set, it enables us to 
quantitatively compare the accuracy of the proposed variation 
decomposition algorithm with several traditional techniques. 

50 100 144

50

100

150

200

250

X Axis

Y
 A

xi
s

 

 

0.95

1

1.05

 
0 50 100

0100200
0

0.2

0.4

0.6

0.8

1

X AxisY Axis

D
C

T
 C

oe
ff(

M
ag

)

 
                        (a)                                                     (b) 
Figure 3.  (a) Layout-dependent systematic variation (normalized) of 
contact plug resistance for one of the 24 test chips in the synthetic data 
set. (b) Discrete cosine transform (DCT) coefficients (magnitude) of the 
systematic variation for the same synthetic test chip. 

Figure 3(a) shows the layout-dependent systematic variation 
(normalized) of contact plug resistance for one of the 24 test chips 
in the synthetic data set. Figure 3(b) further shows the DCT 
coefficients (magnitude) of the systematic variation for the same 
synthetic test chip. Note that the DCT coefficients are sparse in 
frequency domain where most DCT coefficients are close to 0. 
 
A. Accuracy Comparison 

For testing and comparison purposes, we apply several 
different algorithms to extract the layout-dependent systematic 
variation in this example: (1) the proposed S-OMP algorithm (i.e., 
Algorithm 2), (2) the OMP algorithm (i.e., Algorithm 1), (3) the 
non-local means method [14], (4) the moving average method 
[16], (5) the Wiener filter method [16], (6) the Gaussian filter 
method [16], and (7) the wavelet thresholding method [16]. 
Except S-OMP and OMP, other methods are borrowed from the 
image processing community. To compare the accuracy of these 
different techniques, we define the average estimation error of 
systematic variation as: 
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where s(l)(x, y) and s̃(l)(x, y) denote the exact systematic variation 
and the estimated systematic variation for the lth chip, 
respectively. 

Table 3 shows the average estimation error for seven different 
algorithms. Studying the results in Table 3, we would have two 
important observations. First, our proposed S-OMP algorithm is 
more accurate than the simple OMP algorithm. Compared to 
OMP, S-OMP improves the accuracy by exploring the correlation 
information among different chips, as discussed in Section 3.2. 

168



 

Second, the proposed S-OMP algorithm achieves more than 3.5× 
error reduction over the traditional image processing techniques 
that have been widely applied for noise removal. Most image 
processing methods are particularly developed to capture the low-
frequency components of a 2-D image (e.g., by local smoothing). 
They cannot accurately capture the high-frequency DCT 
coefficients shown in Figure 3(b), thereby resulting in large error. 

Table 3.  Average estimation error of layout-dependent systematic 
variation for seven different algorithms 

Algorithm Error 
S-OMP (Algorithm 2) 0.67% 
OMP (Algorithm 1) 1.00% 
Non-local means [14] 2.44% 
Moving average [16] 3.00% 
Wiener filter [16] 3.11% 
Gaussian filter [16] 2.55% 
Wavelet thresholding [16] 3.06% 

 
B. Missing Data 

Finally, to further study the impact of missing data on our 
proposed S-OMP algorithm, we purposely introduce a number of 
missing data into the synthetic data set. The locations of these 
missing data are made identical to the silicon measurement data in 
Section 5.1. Namely, three chips contain missing data where the 
number of failed measurements are 2936, 864 and 8 respectively. 
With these missing data, the estimation error of S-OMP only 
increases by 0.01% for the chip with 2936 missing samples, and 
no notable change in estimation error is observed for other chips. 
Consequently, the change of average estimation error is almost 
negligible. In addition, we further randomly inject 10% and 20% 
missing samples to each synthetic chip. The average error of S-
OMP is 0.68% and 0.72% in these two cases, respectively. These 
observations, in turn, demonstrate an important fact that the 
proposed S-OMP algorithm is extremely robust to the missing 
data caused by measurement error. 
 
6. CONCLUSIONS 

In this paper, we propose a new technique to efficiently 
separate spatially correlated systematic variation from 
uncorrelated random variation. The proposed method is based 
upon the fact that spatially correlated variation typically carries a 
unique sparse signature in frequency domain and it can be 
accurately represented by a small number of dominant DCT 
coefficients. An efficient S-OMP algorithm is borrowed from the 
statistics community to accurately find these dominant DCT 
coefficients corresponding to systematic variation. In addition, a 
number of fast numerical algorithms are developed to make the 
computational cost tractable for large-scale data analysis problems. 
Our experimental results for contact plug resistance demonstrate 
that the proposed S-OMP algorithm achieves more than 3.5× error 
reduction compared to other traditional methods. The variation 
decomposition technique developed by this paper can be applied 
to a number of practical applications, including manufacturing 
process modeling, control and diagnosis. 
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