
 

 

 
 
 
 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are  
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, to republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
DAC'11, June 5-10, 2011, San Diego, California, USA  
Copyright © 2011 ACM 978-1-4503-0636-2/11/06...$10.00 

 1

Rethinking Memory Redundancy: Optimal Bit Cell Repair for 
Maximum-Information Storage 

Xin Li 
Electrical & Computer Engineering Department, Carnegie Mellon University 

5000 Forbes Avenue, Pittsburgh, PA 15213 
xinli@ece.cmu.edu 

 
ABSTRACT 
SRAM design has been a major challenge for nanoscale 
manufacturing technology. We propose a new bit cell repair 
scheme for designing maximum-information memory system 
(MIMS). Unlike the traditional memory repair that attempts to 
replace all failed bit cells by redundant columns and/or rows, we 
propose to repair the important bits (e.g., the most significant bit) 
only so that the information density (i.e., the number of 
information bits per unit area) is maximized. Towards this goal, 
an efficient statistical algorithm is derived to efficiently estimate 
the information density and then optimize the memory system for 
maximum-information storage. Our experimental results 
demonstrate that with a traditional 6-T SRAM cell designed in a 
commercial 45nm CMOS process, the proposed MIMS design can 
successfully operate at an extremely low power supply voltage 
(i.e., 0.6 V) and improve the signal-to-noise ratio (SNR) by more 
than 20 dB compared to the traditional SRAM design. 

Categories and Subject Descriptors 
B.7.2 [Integrated Circuits]: Design Aids – Verification 

General Terms 
Algorithms 

Keywords 
Integrated Circuit, Process Variation, Memory 
 
1. INTRODUCTION 

Static random access memory (SRAM) is a critical component 
for today’s large-scale integrated systems [1]. An SRAM bit cell 
is often carefully designed to achieve: (1) nearly zero failure 
probability, and (2) maximal cell density. Since SRAM is 
extremely sensitive to large-scale process variations (e.g., random 
dopant fluctuations), it becomes increasingly difficult to design 
robust SRAM cells with today’s nanoscale IC technology [1]-[10]. 
Hence, there is an immediate need to re-think the fundamental 
design strategy in order to meet today’s manufacturing reality. 

Recently, a new SRAM design methodology, referred to as 
maximum-information storage system, has been developed in [11]. 
The key idea is not to maximize the traditional cell density that is 
measured by the number of SRAM cells per unit area. Instead, the 
information density (i.e., the number of information bits per unit 
area) is maximized. The efficacy of maximum-information 
storage has been successfully demonstrated for several important 
applications. However, the design methodology proposed in [11] 

must use different SRAM cells with different transistor sizes. It, in 
turn, results in prohibitively high design cost, because designing 
and qualifying an SRAM cell requires a large amount of efforts 
with multiple silicon re-spins. 

Motivated by this observation, we propose a completely new 
design methodology for Maximum-Information Memory System 
(MIMS) by exploring bit cell redundancy. Unlike the traditional 
SRAM repair scheme that aims to replace all failed bit cells by 
redundant columns and/or rows, we propose to distinguish 
different bit cells according to their levels of importance. For 
instance, considering the application-specific cases such as signal 
processing and numerical computation, the most significant bit 
(MSB) is more important than the least significant bit (LSB) when 
storing numerical data. Hence, the MSB should be better 
protected to achieve a smaller failure rate than the LSB in order to 
minimize the information loss. In other words, we do not attempt 
to fix all failed bit cells, since a zero failure rate is not necessary 
in many practical applications. As will be demonstrated by an 
image processing example in Section 4, a number of 
“unimportant” bit cells (e.g., the LSB of a pixel) can fail to work 
and they have negligible impact on the overall signal-to-noise 
ratio (SNR). By focusing on the important bits, we can reserve 
less redundant cells and, hence, use more bit cells for information 
storage. It, in turn, increases the information bits that we can store 
within a unit area. 

To make the proposed MIMS system of practical utility, a 
number of architecture-level parameters (e.g., the number of 
redundant columns and/or rows) must be optimally determined to 
maximize the information density. For instance, if too much 
redundancy is allocated for bit cell repair, only few bit cells 
(hence, only few information bits) can be stored within a given 
area. On the other hand, if too little redundancy is reserved, the 
failure of the important bits cannot be appropriately repaired and, 
therefore, maximum-information storage cannot be achieved 
either. The challenging issue here is how to optimally design 
memory redundancy with an optimal bit cell repair scheme for our 
proposed MIMS system. 

In this paper, an efficient statistical algorithm is developed to 
quantitatively measure the information density for a given SRAM 
design where the bit cells are optimally repaired. Our proposed 
algorithm is derived from the theories of order statistics [14]. It 
allows us to optimally integrate memory redundancy for bit cell 
repair and then efficiently predict the information density of the 
entire memory system. This, in turn, enables us to quickly 
compare and optimize different memory architectures to 
maximize the information density for data storage. 

In order to fully demonstrate the efficacy of the proposed 
MIMS system, an image processing example is extensively 
studied in Section 4. Our experimental results demonstrate that 
with a traditional 6-T SRAM cell designed in a commercial 45nm 
CMOS process, the proposed MIMS design can successfully 
operate at an extremely low power supply voltage (i.e., 0.6 V) and 
deliver a superior SNR (i.e., 26.9 dB). In this example, MIMS is 
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able to improve the SNR by more than 20 dB compared to the 
traditional SRAM design. It is expected that, as SRAM cells 
become more sensitive to process and environmental variations 
due to technology scaling, the benefit of the proposed MIMS 
system will be more pronounced in the near future. 
 
2. BACKGROUND 

Similar to [11], we consider an SRAM system that is 
particularly designed for the data cache of signal processing or 
numerical computation applications. Without loss of generality, 
we assume that the SRAM cells are used to store the real-valued 
data within the interval [0, 1]. Any real-valued number can be 
mapped to this interval after appropriate shifting and scaling. In 
this case, a numerical number x can be represented by a set of 
binary digits {xn; n = 1,2,…} where xn � {0, 1}: 

1 �
��

�

� ��
1

2
n

n
n xx . (1) 

In practice, we always use a finite number of (say, N) digits 
{xQ

n; n = 1,2,…,N}, where xQ
n � {0, 1}, to approximate x. The set 

of digits {xQ
n; n = 1,2,…,N} represents a word and N denotes the 

word length. Such an approximation is referred to as quantization 
in digital signal processing [12]: 

2 �
�

� ��
N

n

Q
n

nQ xx
1

2  (2) 

3 	�� Qxx  (3) 
where xQ represents the quantized value and 	 denotes the 
quantization noise. The power of 	 is equal to [12]: 

4 
 � NE ��� 4
12
12	  (4) 

where E(�) stands for the expected value of a random variable. 
In addition to the quantization noise 	 in (3), bit cell failure is 

another important noise source in today’s SRAM system. When 
the binary digits {xQ

n; n = 1,2,…,N} are stored in an SRAM, the 
stored value {yQ

n; n = 1,2,…,N} can be different from {xQ
n; n = 

1,2,…,N}, since each bit cell can possibly fail. In other words, the 
stored value: 

5 �
�

� ��
N

n

Q
n

nQ yy
1

2  (5) 

can be different from the actual quantized value xQ. The bit cell 
failure can be conceptually considered as an additive noise for the 
quantized value xQ [11]: 
6 
�� QQ yx  (6) 
where 

7 �
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n
n

n

1
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  (7) 

stands for the “equivalent” noise caused by bit cell failure, and 
n 
� {�1,0,1} represents the error of the nth bit. 

Combining (3) and (6) yields: 
8 
	 ��� Qyx . (8) 
Eq. (8) implies an important fact that when storing a numerical 
number x by N bits in an SRAM, two additive noise terms are 
introduced: (1) 	 due to quantization error, and (2) 
 due to bit cell 
failure. The total noise power is equal to [11]: 
9 
 � 
 �22 
	 EEPNOISE �� . (9) 
On the other hand, if the numerical number x is uniformly 

distributed over [0, 1], its energy is equal to [11]: 

10 
12
1

�SIGP . (10) 

Hence, the signal-to-noise ratio (SNR) is [11]: 
11 
 � 
 � 
 �� �22

1010 log1012log10 
	 EESNR ������ . (11) 
It has been shown in [11] that maximum-information storage can 
be achieved by maximizing the signal-to-noise ratio. The 
aforementioned noise model is summarized in Figure 1. 

To maximize the stored information, different strategies 
should be applied to minimize different noise sources. For 
example, to reduce the quantization noise 	, we should increase 
the word length (i.e., N) and, hence, the number of bit cells for 
information storage. On the other hand, to minimize the noise 
 
caused by bit cell failure, extra redundancy should be reserved to 
repair failed bit cells, thereby reducing the number of bit cells that 
can be used to store information. For this reason, the two noise 
terms 	 and 
 represent two conflicting performance metrics. For a 
given area, reducing 	 will simultaneously increase 
, and vice 
versa. The open question here is how to optimally explore the 
trade-off between 	 and 
 to maximize the information that can be 
stored. In what follows, we will derive an information model that 
allows us to quickly calculate the SNR in (11) and efficiently 
explore the design trade-off for different memory architectures. 
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Figure 1.  Two additive noise terms, 	 due to quantization error 
and 
 due to bit cell failure, are modeled when storing a real-
valued number x. 
 
3. MIMS DESIGN 

The proposed MIMS design is facilitated by a combination of 
two new techniques: (1) an optimal bit cell repair scheme, and (2) 
an efficient algorithm for information modeling and optimization. 
In this section, we will describe these techniques in detail. 
 
3.1 Optimal Bit Cell Repair 

Figure 2 shows the block diagram of a typical SRAM array 
with MR rows and MC columns. For the traditional SRAM repair, 
if one column (or row) of the SRAM array contains failed bit cells, 
it will be replaced by another redundant column (or row) without 
bit cell failure. The objective of the traditional SRAM repair is to 
fix all failed bit cells by using redundancy. The repair is 
successful if and only if there are a sufficient number of redundant 
columns/rows to replace all failed bit cells. The traditional SRAM 
repair scheme does not distinguish the levels of importance for 
different bit cells. For example, when storing a numerical number, 
the MSB is much more important than the LSB. Hence, the MSB 
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should be better protected to achieve a smaller failure rate than the 
LSB in order to minimize the information loss. 

MC columns

MR
rows

 
Figure 2.  A typical SRAM array with MR rows and MC columns. 

Motivated by this observation, we propose a completely 
different SRAM repair scheme in this paper. Given the SRAM 
array in Figure 2, we use each row to store a single quantized 
numerical number xQ (i.e., a word). Different columns in the same 
row are used to store different bits of xQ. To enable optimal 
SRAM repair, we count the number of failed bit cells {NFj; j = 
1,2,…,MC} for each column. Next, we sort all columns based on 
{NFj; j = 1,2,…,MC}. The important bits of the numerical data 
should be stored in the columns with a small number of failed 
cells. For instance, the MSB should be assigned to the column that 
is associated with the minimal value of {NFj; j = 1,2,…,MC}. As 
such, the information loss due to bit cell failure is minimized. 

It is important to emphasize that the proposed SRAM repair 
scheme carries the following two important features. 
� Not all failed bit cells are repaired. It is possible that there 

remain a number of failed bit cells, after the repair is made. 
Most likely, these failed cells do not represent the important 
bits of the numerical data. Hence, they will have negligible 
impact on the overall SNR. 

� Not all columns are used for data storage. In other words, the 
word length N can be less than the number of columns MC. If 
a column has too many failed bit cells, it cannot be used to 
store any useful information. 
The percentage of the non-used columns can be conceptually 

viewed as a quantitative measure of memory redundancy. In most 
traditional SRAM designs, the redundancy is around 10%. For our 
proposed MIMS system, however, the optimal redundancy value 
depends on a number of other design parameters (e.g., the bit cell 
failure rate, the number of columns and rows, etc.), as will be 
demonstrated by our experimental results in Section 4. 

To make the aforementioned SRAM repair of practical utility, 
statistical analysis is required to quantitatively assess the quality 
(e.g., the SNR) of a given memory system and then optimally 
determine the design parameters (e.g., the redundancy value) by 
comparing and optimizing different memory architectures to 
achieve maximum-information storage. In the next sub-section, 
we will develop a new statistical algorithm to address these issues. 
 
3.2 Information Modeling and Design Optimization 

As shown in (11), the SNR depends on two different terms: (1) 
E(	2) due to quantization error, and (2) E(
2) due to bit cell failure. 
The power of the quantization noise can be simply calculated by 
(4). Hence, the major focus of this sub-section is to estimate the 
noise power E(
2). 

Give (7), we have: 
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where |
i| � {0,1} indicates whether the ith bit is failed (|
i| = 1) or 
not (|
i| = 0). Eq. (12) provides an upper bound of the noise power 
E(
2). In order to estimate E(
2) in (12), we must calculate the 
second-order statistics E(|
i|�|
j|) where i,j � {1,2,…,N}. Such 
statistical estimation is not trivial due to two reasons. First, all 
columns in the SRAM array are sorted according to the number of 
failed bit cells during memory repair. Such a sorting process can 
substantially change the failure rate of each bit cell. For example, 
since the MSB is assigned to the column that has the minimal 
number of failed bit cells, the “effective” failure rate of MSB 
should be much smaller than the failure rate of a bit cell without 
repairing. Second, it is well-known that the failure probability of 
an SRAM cell is extremely small (e.g., less than 10�5). Such a 
small failure rate cannot be efficiently estimated by a brute-force 
Monte Carlo analysis, since an extremely large number of (e.g., 
106~107) random samples are needed in order to accurately 
estimate the failure rate, thereby resulting in prohibitively high 
computational cost [4]-[9]. 

These observations motivate us to develop a new statistical 
analysis algorithm to efficiently calculate the second-order 
statistics E(|
i|�|
j|) in (12). Our proposed method is derived from 
the theories of order statistics [14]. It calculates E(|
i|�|
j|) by a 
number of analytical equations and, therefore, achieves orders of 
magnitude more efficiency than a brute-force Monte Carlo 
analysis. 
 
A. Information Modeling 

Since the proposed SRAM repair scheme maps each column 
of the memory array to one bit of the numerical data based on 
{NFj; j = 1,2,…,MC} (i.e., the number of failed bit cells in each 
column), we need to first study the statistics of {NFj; j = 
1,2,…,MC}. To this end, we define the following Bernoulli 
random variables {�ij; i = 1,2,…,MR, j = 1,2,…,MC} to model the 
failure events of the bit cells: 

13 
 � 
 �

 ���

�
 
!

��
�

�
01
1

ij

ij
ijp

�"
�"

�  (13) 

where �ij = 1 indicates a failed bit cell at the ith row and jth 
column of the SRAM array, p(�) represents the probability of a 
random variable, and " is the failure probability of the bit cell 
(without repairing). In this paper, we assume that all bit cells 
share the same failure probability and their failure events are 
mutually independent, before the repair is applied. This 
assumption is valid, if the bit cell failure is mainly caused by 
random device mismatches, as is demonstrated by many previous 
works [2]-[10]. 

Given (13), the number of failed bit cells in the jth column is 
equal to: 

14 �
�

�
RM

i
ijFjN

1

� . (14) 

It is easy to verify that NFj in (14) satisfies binominal distribution. 
Its probability mass function (PMF) and cumulative distribution 
function (CDF) are equal to [13]: 

15 
 � 
 � 
 �R
kMkR

NF Mk
k

M
kpmf R �������

�

�
��
�

�
� � 01 ""  (15) 

16 
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kcdf R �������
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��
�
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�

� 01
0

"" . (16) 

Since the probability distributions for {NFj; j = 1,2,…,MC} are 
identical, we do not include the subscript “j” in (15)-(16). While 
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the distribution of NFj is easy to calculate, we need to further sort 
{NFj; j = 1,2,…,MC}, yielding: 
17 
 � 
 � 
 �CMFFF NNN ��� �21 . (17) 
In other words, given the random variables {NFj; j = 1,2,…,MC}, 
we sort their sample values in ascending order. The sorted random 
variables {NF(j); j = 1,2,…,MC} are referred to as order statistics in 
the literature [14]. 

For our proposed MIMS system, NF(j) represents the number 
of failed bit cells for the jth column after the repair is made. The 
statistical distribution of NF(j)  is completely different from that of 
NFj due to the sorting process applied during memory repair. 
Based on the theories of order statistics, the CDF of NF(j) can be 
written as [14]: 
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Once the CDF is known, the PMF of NF(j) can be easily calculated 
from (18): 
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The mean value of NF(j) (i.e., the average number of failed bit cells 
for the jth sorted column) is equal to: 

20 
 �� � 
 �
 ��
�

��
RM

k
jNFjF kpmfkNE

0

. (20) 

Based on (20), we can calculate the failure probability for the 
bit cells in the jth sorted column. To this end, we re-write NF(j) as: 

21 
 � 
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�

�
RM

i
jijFN

1

�  (21) 

where the random variables {�i(j); i = 1,2,…,MR} are used to 
model the failure events of the bit cells in the jth sorted column. 
They satisfy the following Bernoulli distribution: 
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where �i(j) = 1 indicates that the ith cell in the jth sorted column is 
failed. Eq. (21)-(22) are similar to (13)-(14) except that the 
random variables in (21)-(22) are associated with the failure 
events after the repair is made. 

Comparing (13)-(14) and (21)-(22), we can have two 
important observations. First, the failure probability "(j) in (22) is 
different from " in (13), since the repair process can substantially 
change the failure rate, as discussed at the beginning of this sub-
section. Second, for different bit cells in the same column, they 
share the same Bernoulli distribution. In other words, while 
different bit cells in different columns correspond to different 
failure probabilities, all bit cells in the same column share the 
same failure rate. Hence, combining (20)-(22), we have: 
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Substituting (20) into (23) yields: 
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From (22) and (24), we calculate the second-order moment of �i(j): 
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Since the jth sorted column is used to store the jth bit of the 
numerical data, the second-order moment E[�i(j)

2] in (25) exactly 
equals the expected value E(|
j|2) in (12): 
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Next, we should further calculate the second-order statistics 
E(|
i|�|
j|) (i # j) so that the noise power E(
2) in (12) can be fully 
estimated. For this purpose, we need to calculate the joint 
probability distribution for NF(i)  and NF(j). Based on the theories 
of order statistics [14], the joint CDF of NF(i) and NF(j), where 0 � i 
< j � MC, can be expressed as (27) at the bottom of this page. Here, 
we only consider the cases for i < j, because cdfNF(i)(j)(ki,kj) is 
equal to cdfNF(j)(i)(kj,ki). Once the CDF is known, we can calculate 
the joint PMF by (28), and then the expected value: 
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On the other hand, substituting (21) into E[NF(i)�NF(j)] yields: 
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Remember that all bit cells in the same column share the same 
distribution. Hence, we have: 
31 
 � 
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 �jiEMNNE jnimRjFiF #���� ��2 . (31) 
Combining (29) and (31) results in: 
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The expected value E[�m(i)��n(j)] in (32) exactly equals to E(|
i|�|
j|) 
in (12): 
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Substituting (26) and (33) into (12), we can estimate the upper 
bound of the noise power E(
2) due to bit cell failure. It, in turn, 
facilitates us to estimate the SNR in (11) that provides a 
quantitative measure of the amount of information stored in a 
memory system. 
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Algorithm 1 summarizes the major steps of the 
aforementioned flow for information modeling. Starting from a 
set of given design parameters (e.g., array size, word length, etc.), 
Algorithm 1 first calculates the power of the quantization error 
E(	2) by using (4). Next, it applies the analytical equations (26) 
and (33) to calculate the second-order statistics E(|
i|�|
j|) where i,j 
� {1,2,…,N}, and then the noise power E(
2) in (12). Finally, 
combining (4) and (12) yields the SNR in (11). 

Algorithm 1: Information Modeling of MIMS 
1. Start from a set of given design parameters for an SRAM 

array, including the number of rows MR, the number of 
columns MC, the word length N, and the bit cell failure 
probability " (without repairing). 

2. Compute the power of the quantization error E(	2) by using 
(4). 

3. Calculate the functions pmfNF(k) and cdfNF(k) in (15)-(16), 
before the repair scheme is applied. 

4. Calculate the functions cdfNF(j)(k) and pmfNF(j)(k) in (18)-(19) 
and the second-order moment E(|
j|2) in (26) for j � 
{1,2,…,N}. 

5. Calculate the functions cdfNF(i)(j)(ki,kj) and pmfNF(i)(j)(ki,kj) in 
(27)-(28) and the expected value E(|
i|�|
j|) in (33) for i,j � 
{1,2,…,N} and i # j. 

6. Estimate the upper bound of the noise power E(
2) due to bit 
cell failure by using (12). 

7. Estimate the SNR in (11). 
 
B. Design Optimization 

Algorithm 1 provides an efficient way to estimate the SNR for 
a given memory system. As shown in [11], maximum-information 
storage can be achieved by maximizing the SNR in (11). Hence, 
SNR can be used as a quantitative measure of design optimality to 
compare different memory systems. In other words, given the 
statistical algorithm developed in Section 3.2A, we can explore a 
number of design parameters (e.g., the number of rows MR, the 
number of columns MC, the word length N, etc.) to maximize the 
information density of data storage. As will be demonstrated by 
an image processing example in Section 4, the optimal value of 
these design parameters strongly depends on the technology node 
(e.g., the device-level variability) and the environmental setup 
(e.g., the power supply voltage). Significant information loss will 
occur, if the memory system is not optimally designed. 
 
4. NUMERICAL EXAMPLES 

In this section, we demonstrate the efficacy of the proposed 
MIMS system by using an image processing example. Given a 6-
T SRAM cell designed in a commercial 45nm CMOS process, we 
apply Monte Carlo analysis (i.e., importance sampling [4], [7]) to 
estimate the failure rate " of the SRAM cell due to process 
variations. Such a Monte Carlo analysis is repeatedly performed at 
different power supply voltages, since we are interested in the 
behavior of the SRAM with reduced supply voltage for low-
power operations. Table 1 shows the failure rate " as a function of 
the power supply voltage VDD. 

Next, two different SRAM designs are implemented for 
testing and comparison purposes. First, a traditional memory array 
is created with MR = 64 rows and 10% column redundancy. In 
other words, if the memory array has MC columns in total, there 
are 10%&MC redundant columns reserved for memory repair. 
Hence, the word length N is equal to 90%&MC. During the repair 
process, we count the number of failed bit cells for each column. 

The first N columns with the minimal number of failed bit cells 
are used for data storage. However, among these N columns, we 
do not distinguish the levels of importance for different bits. 
These N columns are randomly mapped to the N bits of the 
numerical data. 

On the other hand, we consider the optimal repair scheme for 
the proposed MIMS system. Similar to the previous case, the 
memory array has MR = 64 rows. For a given number of columns 
(i.e., MC), Algorithm 1 is applied to estimate the SNR in (11) for 
different values of the word length N. The optimal word length 
NOPT is then selected to achieve the maximal SNR. During the 
repair process, we count the number of failed bit cells for each 
column. The first NOPT columns with the minimal number of 
failed bit cells are used for data storage. In addition, these NOPT 
columns are optimally mapped to the different bits of the 
numerical data. The important bits are stored in the columns with 
a small number of failed bit cells. 

Table 1.  Failure rate of a 6-T 45nm SRAM cell as a function of 
the power supply voltage VDD 

VDD (V) 0.6 0.7 0.8 0.9 1.0 
Failure Rate 2.7&10�2 1.3&10�3 6.2&10�5 3.2&10�6 2.6&10�7 
 
4.1 Bit Cell Repair 

Figure 3(a) shows the SNR values, as the supply voltage VDD 
varies from 0.6 V to 1.0 V. In these experiments, the SRAM array 
size is set to 64 (rows) by 32 (columns). Note that the proposed 
MIMS system substantially improves the SNR by more than 100 
dB over the traditional SRAM design. Such a significant 
improvement is achieved due to two reasons. First, MIMS 
optimally maps the columns of the SRAM array to different bits 
of the numerical data by considering their levels of importance. 
Second, MIMS optimally determines the word length NOPT that 
maximizes the SNR. As shown in Figure 3(b), while the 
traditional SRAM design uses a fixed word length (i.e., N = 
90%&MC), the optimal word length NOPT determined by MIMS 
varies with the supply voltage VDD. For instance, if VDD is low and, 
hence, the failure rate of bit cells is large, MIMS selects a small 
word length NOPT so that a large number of SRAM columns can 
be reserved as redundant columns for bit cell repair. On the other 
hand, if VDD is high and the bit cells are unlikely to fail, MIMS 
increases the word length NOPT to minimize the quantization error 
which becomes the dominant noise power at a high VDD. 

Next, we further compare the two SRAM designs where the 
memory array is set to different sizes. Figure 4(a) shows the SNR 
values, as the number of SRAM columns MC varies from 16 to 32. 
In these experiments, the number of rows MR is set to 64 and the 
power supply voltage VDD is set to 0.6 V. Since VDD is low, each 
individual bit cell has a large failure rate. Studying Figure 4(a), 
we would find that the proposed MIMS design improves the SNR 
by up to 20 dB over the traditional SRAM system. Figure 4(b) 
further plots the word length N (traditional) or NOPT (MIMS) as a 
function of MC. Note that the optimal word length NOPT of MIMS 
is almost unchanged. It implies that as MC increases, more and 
more columns are used by MIMS for bit cell repair in order to 
minimize the noise power due to bit cell failure, thereby 
improving the SNR as shown in Figure 4(a). On the other hand, 
the traditional SRAM design increases the word length N with MC 
(i.e., N = 90%&MC). While such a strategy reduces the 
quantization noise, it does not help to repair the bit cell failure 
which contributes to the dominant information loss in this 
example. For this reason, the traditional SRAM design fails to 
improve the SNR, even if MC increases and a large number of 
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SRAM columns are available, as shown in Figure 4(a). 
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Figure 3.  Compare the traditional SRAM design and the proposed 
MIMS system at different supply voltages (MR = 64 and MC = 32): 
(a) SNR, and (b) word length N (traditional) or NOPT (MIMS). 
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Figure 4.  Compare the traditional SRAM design and the proposed 
MIMS system with different numbers of columns (MR = 64 and 
VDD = 0.6 V): (a) SNR, and (b) word length N (traditional) or NOPT 
(MIMS). 
 
4.2 Image Processing Application 

 
               (a)                                 (b)                             (c) 
Figure 5.  (a) original image, (b) image stored by the traditional 
SRAM design (SNR = 6.6 dB), and (c) image stored by the 
proposed MIMS system (SNR = 26.9 dB). 

Shown in Figure 5(a) is a benchmark example that has been 
widely used to test various image processing algorithms [15]. The 
image size is 512&512. It is in BMP format where each pixel is a 
numerical number. For testing and comparison, we store this BMP 
image in two different memory systems: (1) the traditional SRAM 
and (2) the proposed MIMS. For both memory designs, one 
SRAM array contains 64 rows and 32 columns, and it operates at 
VDD = 0.6 V. As shown in Figure 5(b), the traditional SRAM 
design results in a low SNR (i.e., 6.6 dB), particularly due to the 
large failure rate of bit cells at the low power supply voltage. On 
the other hand, the proposed MIMS system is able to significantly 
improve the SNR by more than 20 dB, as shown in Figure 5(c). In 
this example, even though the bit cells are not robustly designed 
for VDD = 0.6 V, MIMS is able to repair the important bits and, 
hence, provide a high SNR (i.e., 26.9 dB). 
 
5. CONCLUSIONS 

In this paper, we propose a new bit cell repair scheme for 
maximum-information memory system (MIMS). Our goal is to 

maximize the information density for data storage. The proposed 
technique results in an optimal SRAM design with maximal SNR 
for a number of application-specific cases such as signal 
processing and numerical computation. To optimally design the 
proposed MIMS system, a new statistical algorithm is developed 
to efficiently estimate the SNR and then optimize the design 
parameters (e.g., the number of rows MR, the number of columns 
MC, the word length N, etc.) to achieve maximum-information 
storage. Our experimental results demonstrate that even with a 
traditional 6-T SRAM cell designed in a commercial 45nm 
CMOS process, the proposed MIMS system can successfully 
operate at an extremely low power supply voltage (i.e., 0.6 V). It 
achieves more than 20 dB improvement in SNR compared to the 
traditional SRAM design. 
 
6. ACKNOWLEDGEMENTS 

The author acknowledges the support of the C2S2 Focus 
Center, one of six research centers funded under the Focus Center 
Research Program (FCRP), a Semiconductor Research 
Corporation entity. 
 
7. REFERENCES 
[1] B. Calhoun, Y. Cao, X. Li, K. Mai, L. Pileggi, R. Rutenbar and 

K. Shepard, “Digital circuit design challenges and opportunities 
in the era of nanoscale CMOS,” Proceedings of The IEEE, vol. 
96, no. 2, pp. 343-365, Feb. 2008. 

[2] A. Bhavanagarwala, X. Tang and J. Meindl, “The impact of 
intrinsic device fluctuations on CMOS SRAM cell stability,” 
IEEE JSSC, vol. 36, no. 4, pp. 658-665, Apr. 2001. 

[3] S. Mukhopadhyay, K. Kim, H. Mahmoodi and K. Roy, “Design 
of a process variation tolerant self-repairing SRAM for yield 
enhancement in nanoscaled CMOS,” IEEE JSSC, vol. 42, no. 6, 
pp. 1370-1382, Jun. 2007. 

[4] R. Kanj, R. Joshi and S. Nassif, “Mixture importance sampling 
and its application to the analysis of SRAM designs in the 
presence of rare failure events,” IEEE DAC, pp. 69-72, 2006. 

[5] A. Singhee and R. Rutenbar, “Statistical blockade: a novel 
method for very fast Monte Carlo simulation of rare circuit 
events, and its application,” IEEE DATE, pp. 16-20, 2007. 

[6] C. Gu and J. Roychowdhury, “An efficient, fully nonlinear, 
variability-aware non-Monte-Carlo yield estimation procedure 
with applications to SRAM cells and ring oscillators,” IEEE 
ASPDAC, pp 754-761, 2008. 

[7] L. Dolecek, M. Qazi, D. Shah and A. Chandrakasan, “Breaking 
the simulation barrier: SRAM evaluation through norm 
minimization,” IEEE ICCAD, pp. 322-329, 2008. 

[8] J. Wang, S. Yaldiz, X. Li and L. Pileggi, “SRAM parametric 
failure analysis,” IEEE DAC, pp. 496-501, 2009. 

[9] J. Jaffari and M. Anis, “Adaptive sampling for efficient failure 
probability analysis of SRAM cells,” IEEE ICCAD, pp. 623-
630, 2009. 

[10] A. Bansal, R. Singh, R. Kanj, S. Mukhopadhyay, J. Lee, E. 
Acar, A. Singhee, K. Kim, C. Chuang, S. Nassif, F. Heng and 
K. Das, “Yield estimation of SRAM circuits using virtual 
SRAM fab,” IEEE ICCAD, pp. 631-636, 2009. 

[11] X. Li, “Maximum-information storage system: concept, 
implementation and application,” IEEE ICCAD, pp. 39-46, 
2010. 

[12] A. Oppenheim, R. Schafer and J. Buck, Discrete-Time Signal 
Processing, 1999. 

[13] A. Papoulis and S. Pillai, Probability, Random Variables and 
Stochastic Processes, McGraw-Hill, 2001. 

[14] H. David and H. Nagaraja, Order Statistics, Wiley-Interscience, 
2003. 

[15] R. Gonzalez and R. Woods, Digital Image Processing, Prentice 
Hall, 2007. 

321

18.5


