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Finding Deterministic Solution from
Underdetermined Equation: Large-Scale

Performance Variability Modeling
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Xin Li, Member, IEEE

Abstract—The aggressive scaling of integrated circuit technol-
ogy results in high-dimensional, strongly-nonlinear performance
variability that cannot be efficiently captured by traditional
modeling techniques. In this paper, we adapt a novel L0-norm
regularization method to address this modeling challenge. Our
goal is to solve a large number of (e.g., 104–106) model coefficients
from a small set of (e.g., 102–103) sampling points without over-
fitting. This is facilitated by exploiting the underlying sparsity of
model coefficients. Namely, although numerous basis functions
are needed to span the high-dimensional, strongly-nonlinear
variation space, only a few of them play an important role
for a given performance of interest. An efficient orthogonal
matching pursuit (OMP) algorithm is applied to automatically
select these important basis functions based on a limited number
of simulation samples. Several circuit examples designed in a
commercial 65 nm process demonstrate that OMP achieves up
to 25× speedup compared to the traditional least-squares fitting
method.

Index Terms—Integrated circuit, performance modeling, pro-
cess variation.

I. Introduction

AS INTEGRATED circuit (IC) technologies scale to 65 nm
and beyond, process variation becomes increasingly crit-

ical and makes it continually more challenging to create a
reliable, robust design with high yield [3]. For analog/mixed-
signal circuits designed for sub-65 nm technology nodes, para-
metric yield loss due to manufacturing variation becomes a
significant or even dominant portion of the total yield loss.
Hence, process variation must be carefully considered within
today’s IC design flow.

Unlike most digital circuits that can be efficiently analyzed
at gate level (e.g., by statistical timing analysis [4], [5]),
analog/mixed-signal circuits must be modeled and simulated
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at transistor level. To estimate the performance variability of
these circuits, response surface modeling (RSM) has been
widely applied [6]–[13]. The objective of RSM is to approx-
imate the circuit performance (e.g., delay, gain, and so on)
as an analytical (either linear or nonlinear) function of device
parameters (e.g., VTH , TOX, and so on). Once response surface
models are created, they can be used for various purposes, e.g.,
efficiently predicting performance distributions [8].

While RSM was extensively studied in the past, the follow-
ing two trends in advanced IC technologies suggest a need to
revisit this area.

1) Strong nonlinearity: as process variation becomes rela-
tively large, simple linear RSM is not sufficiently accu-
rate [8]. Instead, nonlinear (e.g., quadratic) models are
required to accurately predict performance variability.

2) High dimensionality: random device mismatch becomes
increasingly important due to technology scaling [3]. To
accurately model this effect, a large number of random
variables must be utilized, rendering a high-dimensional
variation space [9]–[13].

The combination of these two recent trends results in a
large-scale RSM problem that is difficult to solve. For instance,
as will be demonstrated in Section V, more than 104 inde-
pendent random variables must be used to model the device-
level variation of a simplified SRAM critical path designed
in a commercial 65 nm CMOS process. To create a quadratic
model for the critical path delay, we must determine a 104×104

quadratic coefficient matrix including 108 coefficients.
Most existing RSM techniques [9]–[13] rely on least-

squares (LS) fitting. They solve model coefficients from an
over-determined linear equation and, hence, the number of
sampling points must be equal to or greater than the number
of model coefficients. Since each sampling point is created
by expensive transistor-level simulation, such high simula-
tion cost prevents us from fitting high-dimensional, strongly-
nonlinear models where a great number of sampling points
are required. While the existing RSM techniques have been
successfully applied to small-size or medium-size problems
(e.g., 10–1000 model coefficients), they are ill-equipped to
address the modeling needs of today’s analog/mixed-signal
system where 104–106 model coefficients must be solved. The
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challenging issue is how to make RSM affordable for such a
large problem size.

In this paper, we proposed a novel RSM technique that aims
to solve a large number of (e.g., 104–106) model coefficients
from a small set of (e.g., 102–103) sampling points without
over-fitting. While numerous basis functions must be used to
span the high-dimensional, strongly-nonlinear variation space,
not all these functions play an important role for a given per-
formance of interest. In other words, although there are a large
number of unknown model coefficients, many of these coef-
ficients are close to zero, rendering a unique sparse structure.
Taking the 65 nm SRAM in Section V as an example, the delay
variation of its critical path can be accurately approximated by
around 40 basis functions, even though the SRAM circuit con-
tains 21 310 independent random variables. However, we do
not know the right basis functions in advance; these important
basis functions must be automatically selected by a “smart”
algorithm based on a limited number of simulation samples.

Our proposed RSM algorithm borrows the recent advance of
statistics [14]–[19], [22], [27] to explore the underlying spar-
sity of model coefficients. It applies L0-norm regularization
[14] to find the unique sparse solution (i.e., the model coef-
ficients) of an underdetermined equation. Importantly, several
theoretical studies from the statistics community prove that
with some general assumptions, the L0-norm regularization
approach guarantees to find all model coefficients with high
accuracy [14]–[19].

An important contribution of this paper is to apply an
efficient orthogonal matching pursuit (OMP) algorithm [19]
to solve the L0-norm regularization problem. For our RSM
application, OMP empirically shows superior modeling accu-
racy over the statistical regression (STAR) algorithm proposed
in [1] and the least angle regression (LAR) algorithm proposed
in [2]. Compared to STAR and LAR, OMP reduces modeling
error by 1.5–5× with negligible computational overhead, as
will be demonstrated by the numerical examples in Section V.

The remainder of this paper is organized as follows. In Sec-
tion II, we review the background on response surface mod-
eling, and then describe the L0-norm regularization scheme
in Section III. The OMP algorithm is used to efficiently
determine all model coefficients in Section IV. The efficacy
of OMP is demonstrated by several numerical examples in
Section V, followed by the conclusion in Section VI.

II. Background

Given N process parameters X = [x1 x2 ... xN ]T, the process
variations �X = X − X0, where X0 contains the mean values
of X, are often modeled as the random variables that are
jointly normal [6]–[13]. In such cases, principal component
analysis (PCA) [20] can be applied to find a set of independent
factors �Y = [�y1 �y2 ... �yN ]T to represent the original
correlated random variables. To analyze the variability of a
circuit performance f, the following response surface model is
used to approximate f as the linear combination of M basis
functions [9]–[13], [21], [22], [27]:

f (�Y ) ≈
M∑

m=1

αm · gm (�Y ) (1)

where {αm; m = 1, 2, ..., M} are the model coefficients, and
{gm(�Y ); m = 1, 2, ..., M} are the basis functions (e.g., linear
and quadratic polynomials).

The performance function f (�Y ) is a local perturbation
of its nominal value. To approximate such a local variation
effect, we apply polynomial basis functions in this paper,
similar to other traditional techniques [9]–[12]. Without loss of
generality, we further assume that the basis functions {gm(�Y );
m = 1, 2, ..., M} are normalized and orthogonal

+∞∫
−∞

gi (�Y ) · gj (�Y ) · pdf (�Y ) · d (�Y ) =

{
1 (i = j)
0 (i �= j)

(2)

where pdf (�Y ) is the joint probability density function of
�Y . Since the random variables in �Y are independent and
standard normal after PCA, the basis functions {gm(�Y ); m =
1, 2, ..., M} can be found by the expansion of Hermite series
[24] and, therefore, are referred to as Hermite polynomials.
For example, if we consider the simple 1-D case, the Hermite
polynomials can be expressed as [24]

g1 (�y) = 1 g2 (�y) = �y g3 (�y) = 1√
2

· (
�y2 − 1

) · · · .

(3)
Extending (3) to the 2-D case yields [24]

g1 (�y1, �y2) = 1 g2 (�y1, �y2) = �y1

g3 (�y1, �y2) = �y2 g4 (�y1, �y2) = 1√
2

· (
�y2

1 − 1
)

g5 (�y1, �y2) = �y1�y2 · · ·
.

(4)
High-dimensional Hermite polynomials can also be con-
structed by using the formulas presented in [24]. The afore-
mentioned representation of orthogonal polynomials facili-
tates us to develop an efficient numerical algorithm for re-
sponse surface modeling, as will be discussed in detail in
Section IV.

In general, the unknown model coefficients in (1) can be
determined by solving the following linear equation at K
sampling points:

M∑
m=1

αm · gm

(
�Y (k)

)
= f (k) (k = 1, 2, · · · , K) (5)

where �Y (k) and f (k) are the values of �Y and f (�Y ) at
the kth sampling point, respectively. Equation (5) can be
equivalently represented as the following matrix form:

M∑
m=1

αm · Gm = G · α = F (6)

where

Gm =
[

gm

(
�Y (1)

)
gm

(
�Y (2)

) · · · gm

(
�Y (K)

) ]T
(7)

G =
[

G1 G2 · · · GM

]
(8)

α =
[

α1 α2 · · · αM

]T
(9)

F =
[

f (1) f (2) · · · f (K)
]T

. (10)



LI: FINDING DETERMINISTIC SOLUTION FROM UNDERDETERMINED EQUATION: LARGE-SCALE PERFORMANCE VARIABILITY MODELING 1663

In (6)–(10), the vector Gm ∈ RK contains the sampling points
for the mth basis function gm(�Y ). It can be conceptually
considered as the basis vector associated with gm(�Y ).

Most existing RSM techniques [9]–[13] attempt to solve the
LS solution for (6). Hence, the number of samples (K) must be
equal to or greater than the number of coefficients (M). It, in
turn, becomes intractable, if M is large (e.g., 104–106). For this
reason, the traditional RSM techniques are limited to small-
size or medium-size problems (e.g., 10–1000 model coeffi-
cients). In this paper, we propose a novel RSM algorithm that
aims to create high-dimensional, strongly-nonlinear response
surface models (e.g., 104–106 model coefficients) from a small
set of (e.g., 102–103) simulation samples without over-fitting.

III. L0 -Norm Regularization

Unlike the traditional RSM techniques that solve model
coefficients from an over-determined equation, we focus on
the non-trivial case where the number of samples (K) is less
than the number of coefficients (M). Namely, there are fewer
equations than unknowns, and the linear system in (6) is
underdetermined. In this case, the solution α (i.e., the model
coefficients) is not unique, unless additional constraints are
added.

In this paper, we will explore the sparsity of α to uniquely
determine its value. Our approach is motivated by the obser-
vation that while a large number of basis functions must be
used to span the high-dimensional, strongly-nonlinear varia-
tion space, only a few of them are required to approximate
a specific performance function. In other words, the vector α

in (6) only contains a small number of non-zeros. However,
we do not know the exact locations of these non-zeros. In
what follows, we will utilize a novel L0-norm regularization
scheme [14]–[19], [22], [27] to find the non-zeros of α so
that the solution of the underdetermined equation (6) can be
uniquely solved.

To illustrate the idea of L0-norm regularization, we formu-
late the following optimization to solve the sparse solution α

for (6)

minimize
α

‖G · α − F‖2
2

subject to ‖α‖0 ≤ λ
(11)

where || • ||2 and || • ||0 stand for the L2-norm and L0-
norm of a vector, respectively. The L0-norm ||α||0 equals the
number of non-zeros in the vector α. It measures the sparsity
of α. Therefore, by directly constraining the L0-norm, the
optimization in (11) attempts to find a sparse solution α that
minimizes the sum of squared residuals.

The parameter λ in (11) explores the tradeoff between the
sparsity of the solution α and the minimal value of the cost
function ||G · α − F ||22. For instance, a large λ will result in a
small cost function, but meanwhile it will increase the number
of non-zeros in α. It is important to note that a small cost
function does not necessarily mean a small modeling error.
Even though the minimal cost function value can be reduced
by increasing λ, such a strategy may result in over-fitting
especially because (6) is underdetermined. In the extreme case,
if λ is sufficiently large and the constraint in (11) is not active,

we can always find a solution α to make the cost function
exactly zero. However, such a solution is likely to be useless,
since it over-fits the given sampling points. In practice, the
optimal value of λ can be automatically determined by cross-
validation, as will be discussed in detail in Section IV.

While the aforementioned L0-norm regularization can effec-
tively guarantee a sparse solution α, the optimization in (11) is
non-deterministic polynomial-time (NP) hard [14]–[19], [22],
[27] and, hence, is extremely difficult to solve. In what follows,
we will describe an efficient heuristic algorithm to solve (11)
using OMP [19].

IV. Orthogonal Matching Pursuit

Given the underdetermined linear equation (6), OMP [19]
applies a heuristic algorithm to identify a small set of (say,
λ) important basis functions and use them to approximate
the performance function f (�Y ). For other non-critical basis
functions gm(�Y )’s, the corresponding coefficients αm’s are
set to zero. If the number of selected basis functions (i.e., λ)
is substantially less than the total number of basis functions
(i.e., M), the resulting solution α is sparse. In this section, we
describe the OMP algorithm at a level that is intuitive to the
CAD community. More mathematical details of OMP can be
found in [19].

A. Basis Function Selection

A critical component of the OMP algorithm is to identify
a subset of important basis functions that significantly impact
the performance function f (�Y ). OMP uses the inner product
between f (�Y ) and gm(�Y ) to measure the importance of the
basis function gm(�Y )

〈f, gm〉 =

+∞∫
−∞

f (�Y ) · gm (�Y ) · pdf (�Y ) · d (�Y ) . (12)

In other words, if a basis function gm(�Y ) is highly correlated
with f (�Y ), it has a strong impact on f (�Y ).

Since the basis functions {gm(�Y ); m = 1, 2, ..., M} are
normalized and orthogonal, the inner product defined in (12)
is exactly equal to the model coefficient αm

〈f, gm〉 =

+∞∫
−∞

[
M∑
i=1

αigi (�Y )

]
·gm (�Y ) ·pdf (�Y ) ·d (�Y )

=
M∑
i=1

αi ·
+∞∫

−∞
gi (�Y ) · gm (�Y ) · pdf (�Y ) · d (�Y )

= αm

.

(13)
This is the reason why the inner product in (12) can be used
as a good criterion to measure the importance of each basis
function. Namely, if the inner product 〈f, gm〉 (i.e., αm) is
far away from zero, the corresponding basis function gm(�Y )
should be selected to approximate the performance function
f (�Y ).
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In practice, we do not know the analytical form of f (�Y )
and, hence, the integration in (12) must be numerically com-
puted from a set of sampling points. To this end, unlike the
traditional response surface modeling techniques that generate
sampling points by design of experiment [25], we randomly
draw K sampling points {(�Y (k), f (k)); k = 1, 2, ..., K}
based on the probability density function pdf (�Y ). The inner
product 〈f , gm〉 in (12) is approximated as [26]

ρm =
1

K
·

K∑
k=1

f (k) · gm

(
�Y (k)

)
=

1

K
· GT

m · F (14)

where Gm ∈ RK and F ∈ RK are defined in (7) and (10),
respectively.

According to (12) and (13), we notice that (14) is a statistic
estimator of αm, i.e., it gives an estimation of the unknown
coefficient value αm. Such an estimation, however, is not
highly accurate, as the estimator ρm in (14) is calculated
from random sampling data {(�Y (k), f (k)); k = 1, 2, ..., K}
that may contain large fluctuations [1], [26]. For this reason,
the OMP algorithm does not simply use the estimator ρm

in (14) to determine the value of the model coefficient αm.
Instead, the inner product estimated by (14) is only used to
identify important basis functions and the model coefficients
are consequently solved by least-squares fitting for these
important basis functions. In addition, to further improve the
accuracy of basis function selection, OMP applies an iterative
algorithm to select a single most important basis function at
each iteration step. This iterative algorithm will be discussed
in detail in the next subsection.

B. Iterative Algorithm

Given the underdetermined linear equation (6), OMP it-
eratively selects the important basis functions based on the
criterion shown in Section IV-A. It calculates the inner product
values {ρm; m = 1, 2, ..., M} as defined in (14), and then
find the basis vector Gs1 [or equivalently, the basis function
gs1(�Y )] that is most correlated with F, i.e., |ρs1| takes the
largest value. Note that only a single basis vector is selected
at this moment. Once Gs1 is identified, OMP approximates F
in the direction of Gs1

F ≈ αs1 · Gs1 (15)

where the coefficient αs1 is determined by solving the follow-
ing least-squares fitting problem:

minimize
αs1

‖αs1 · Gs1 − F‖2
2 . (16)

Next, OMP removes the component αs1 × Gs1 from F and
calculates the residual

Res = F − αs1 · Gs1. (17)

Based on (17), OMP further identifies the next important basis
vector Gs2 by calculating the inner product values between the
residual Res and all basis vectors {Gm; m = 1, 2, ..., M}

ξm =
1

K
· GT

m · Res. (18)

Fig. 1. OMP calculates the model coefficients α1 and α2 for a 2-D example:
F = α1G1 + α2G2.

Once Gs2 is known, OMP approximates F in the directions of
both Gs1 and Gs2

F ≈ αs1 · Gs1 + αs2 · Gs2. (19)

In (19), the coefficients αs1 and αs2 are found by solving the
following optimization problem:

minimize
αs1,αs2

‖αs1 · Gs1 + αs2 · Gs2 − F‖2
2 . (20)

It is important to note that αs1 calculated by (16) may be
different from that calculated by (20). In other words, every
time when a new basis function is selected, OMP re-calculates
all model coefficients to minimize the sum of squared residu-
als. This re-calculation step is required, because even though
the basis functions {gm(�Y ; m = 1, 2, ..., M} are orthogonal
as defined in (2), the basis vectors {Gm; m = 1, 2, ..., M} are
not necessarily orthogonal, i.e., GT

i · Gj �= 0 (i �= j), due to
random sampling. Hence, the new basis function selected at
the current iteration step may change the model coefficient
values calculated at previous iteration steps.

The aforementioned iteration for basis function selection
and least-squares fitting continues until a sufficient number
of (i.e., λ) important basis vectors are identified. Algorithm 1
summarizes the major iteration steps of OMP.

To intuitively understand the OMP algorithm, we consider
the 2-D example shown in Fig. 1. In this example, there
are two basis vectors G1 and G2. The vector G2 has a
stronger correlation with F than the vector G1. Hence, G2

is first selected to approximate F, i.e., F ≈ α2·G2, where
α2 is determined by least-squares fitting. The residual of the
approximation is Res = F −α2·G2, which is orthogonal to the
basis vector G2, i.e., GT

2 · Res = 0.
Next, the inner product values between the residual Res and

both basis vectors G1 and G2 are calculated. Since GT
2 · Res

is equal to zero, the vector G1 is now selected and F is
approximated as F ≈ α1 · G1 + α2 · G2, where α1 and α2

are calculated to minimize the sum of squared residuals:
||α1 · G1 +α2 · G2 −F ||22. In this example, since only two basis
vectors G1 and G2 are used to span the 2-D space, OMP stops
at the second iteration step. If more than two basis vectors are
involved, OMP will continue to add extra basis vectors to the
“most important” set until the termination criterion is satisfied.

It is important to note that even though OMP is a heuristic
algorithm to solve the L0-norm regularization problem in (11),
the quality of its solution is guaranteed according to several
theoretical studies from the statistics community [19]. Roughly
speaking, if the M-dimensional vector α contains P non-zeros
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Algorithm 1 : Orthogonal Matching Pursuit (OMP)

1. Start from the linear equation G · α = F in (6) and a
given integer number λ representing the total number
of basis vectors that should be selected.

2. Set the residual Res = F, the basis vector set � = {},
and the iteration index p = 1.

3. Calculate the inner product values {ξm; m = 1, 2, ..., M}
between Res and all basis vectors {Gm; m = 1, 2, ..., M}
using (18).

4. Select the basis vector Gs that has the largest |ξs|.
5. Update � by � = � ∪ {s}.
6. Approximate F by the linear combination of {Gi; i ∈ �},

i.e., the important basis vectors that are already selected:

F ≈
∑
i∈�

αi · Gi (21)

where the model coefficients are determined by least-
squares fitting

minimize
αi,i∈�

∥∥∑
i∈� αi · Gi − F

∥∥2
2 . (22)

7. Calculate the residual:

Res = F −
∑
i∈�

αi · Gi. (23)

8. If p < λ, p = p + 1 and go to Step 3. Otherwise, go to
Step 9.

9. For any Gi that is not selected (i.e., i /∈ �), the
corresponding coefficient αi is set to 0.

(P << M) and the linear equation G · α = F in (6) is well-
conditioned, the actual solution α can be almost uniquely
determined (with a probability nearly equal to one) from K
sampling points, where K is in the order of O(P · log M)
[19]. While this theoretical result does not precisely give the
number of required sampling points, it presents an important
scaling trend. Namely, K (the number of sampling points)
is a logarithmic function of M (the number of unknown
coefficients). It, in turn, provides the theoretical foundation
that by solving the sparse solution of an underdetermined
equation, a large number of model coefficients can be uniquely
determined from a small number of sampling points.

C. Cross-Validation

The OMP algorithm (i.e., Algorithm 1) relies on a user-
defined λ, i.e., the total number of basis functions that should
be selected. In practice, λ is not known in advance. The
appropriate value of λ must be determined by considering
the following two important issues. First, if λ is too small,
OMP will not select a sufficient number of basis functions to
approximate the performance function f (�Y ), thereby leading
to large modeling error. On the other hand, if λ is too large and
OMP uses too many basis functions to approximate f (�Y ),
it will result in over-fitting which again prevents us from
extracting an accurate performance model. Hence, in order
to achieve the best modeling accuracy, we must accurately
estimate the modeling error for different λ values and then
find the optimal λ to minimize modeling error.

Fig. 2. 4-Fold cross-validation partitions the data set into four groups and
modeling error is estimated from four independent runs.

However, given a limited number of sampling points, ac-
curately estimating modeling error is not a trivial task. To
avoid over-fitting, we cannot simply measure the modeling
error from the same sampling data that are used to calculate the
model coefficients. Instead, modeling error must be measured
from an independent data set. Cross-validation is an efficient
method for model validation that has been widely used in
the statistics community [22], [27]. A Q-fold cross-validation
partitions the entire data set into Q groups, as shown by
the example in Fig. 2. Modeling error is estimated from Q
independent runs. In each run, one of the Q groups is used
to estimate the modeling error and all other groups are used
to calculate the model coefficients. Different groups should
be selected for error estimation in different runs. As such,
each run results in an error value εq (q = 1, 2, ..., Q) that
is measured from a unique group of sampling points. In
addition, when a model is trained and tested in each run, non-
overlapped data sets are used so that over-fitting can be easily
detected. The final modeling error is computed as the average
of {εq; q = 1, 2, ..., Q}, i.e., ε = (ε1 + ε2 + ... + εQ)/Q.

In our case, the OMP algorithm is used to iteratively select
important basis functions and calculate model coefficients for
different λ values during each cross-validation run. Next, the
modeling error associated with each run is estimated, resulting
in {εq(λ); q = 1, 2, ..., Q}. Note that εq is not simply a
value, but a 1-D function of λ. Once all cross-validation
runs are complete, the final modeling error is calculated as
ε(λ) = [ε1(λ) + ε2(λ) + ... + εQ(λ)]/Q, which is again a 1-D
function of λ. The optimal λ is then determined by finding the
minimal value of ε (λ).

The major drawback of cross-validation is the need to
repeatedly extract the model coefficients for Q times. However,
for our circuit modeling application, the overall computational
cost is dominated by the transistor-level simulation that is
required to generate sampling data. Hence, the computational
overhead by cross-validation is almost negligible, as will be
demonstrated by our numerical examples in Section V.

V. Numerical Examples

In this section, we demonstrate the efficacy of OMP using
several circuit examples designed in a commercial 65 nm
process. For each example, two independent random sampling
sets, called training set and testing set respectively, are gen-
erated using Cadence Spectre. The training set is used for
coefficient fitting (including cross-validation), while the testing
set is used for model validation. All numerical experiments are
performed on a 2.8 GHz Linux server.
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Fig. 3. Simplified circuit schematic of a two-stage operational amplifier.

For testing and comparison, four different performance
modeling techniques are implemented: LS fitting [21], STAR
[1], LAR [2], and the proposed OMP. LS aims to solve an
over-determined linear equation in (6) by minimizing the sum
of squared residuals. STAR is similar to OMP. It applies the
same inner product criterion to iteratively select the important
basis functions. However, unlike Step 6 of Algorithm 1, STAR
directly uses the inner product in (18) to determine the model
coefficient of the selected basis function at each iteration step.
Finally, LAR relaxes the L0-norm ‖α‖0 in (11) by L1-norm
‖α‖1, i.e., the summation of the absolute values of all elements
in α. After ‖α‖0 is replaced by ‖α‖1, (11) can be re-formulated
as a convex optimization problem and efficiently solved by an
iterative algorithm that is referred to as least angle regression
in [16].

A. Two-Stage Operational Amplifier

Fig. 3 shows the simplified circuit schematic of a two-
stage operational amplifier (OpAmp) that contains an on-chip
current source for biasing. In this example, we aim to model
four performance metrics: “gain,” “bandwidth,” “power,” and
“offset,” considering both inter-die and intra-die variations of
MOS transistors and layout parasitics. After PCA based on
foundry data, 630 independent random variables are extracted
to model these variations.

1) Linear Performance Modeling: Fig. 4 shows the error
for four different modeling techniques: LS fitting [21], STAR
[1], LAR [2], and the proposed OMP. To achieve the same
accuracy, STAR, LAR, and OMP require much less training
samples than LS, because they solve the unknown model
coefficients from an underdetermined equation by exploiting
the underlying sparsity of model coefficients. In this example,
such a sparse structure exists, since the variability of each
circuit-level performance metric is dominated by a few device-
level variation sources. For instance, the offset of the OpAmp
is mainly determined by the device mismatches of the input
differential pair in Fig. 3.

Studying Fig. 4, we would notice that STAR, LAR, and
OMP yield different modeling accuracy, given the same num-
ber of training samples. Even though all these three modeling
techniques build sparse performance models, they rely on
different algorithms to select the important basis functions
and/or determine the model coefficients, as mentioned at the
beginning of this section. In this example, OMP offers better
accuracy (up to 1.5–5× error reduction) than STAR, as shown
in Fig. 4. Remember that once an important basis function is

Fig. 4. Linear modeling error decreases, as the number of training samples
increases. (a) Gain. (b) Bandwidth. (c) Power. (d) Offset.

TABLE I

Linear Performance Modeling Cost for Operational Amplifier

LS [21] STAR [1] LAR [2] OMP
# of training samples 1200 600 600 600
Simulation cost (s) 16 140 8070 8070 8070
Fitting cost (s) 2.6 1.2 44.2 26.4
Total cost (s) 16 142 8071 8114 8096

selected by STAR, it simply uses the inner product in (18) to
determine the corresponding model coefficient. On the other
hand, OMP optimally solves the unknown model coefficients
of all selected basis functions by least-squares fitting, as shown
in Step 6 of Algorithm 1. For this reason, even though both
STAR and OMP apply the same inner product criterion for
basis function selection, OMP results in superior modeling
accuracy over STAR.

Compared to LAR, OMP also shows slightly improved
modeling accuracy in most cases. However, there are a few
examples where LAR outperforms OMP, as shown in Fig. 4(b).
In general, LAR and OMP apply different heuristics to solve
the L0-norm regularization problem in (11). To the best of our
knowledge, there is no theoretical evidence to prove that one
method is always better than the other.

Table I summarizes the modeling cost for all four modeling
techniques: LS, STAR, LAR, and OMP. The overall computa-
tional cost for performance modeling consists of two portions:
1) simulation cost (i.e., the cost of running a transistor-level
simulator to generate all sampling points in the training set),
and 2) fitting cost (i.e., the cost of solving all model coef-
ficients from the sampling points). For our circuit modeling
application, the computational cost is dominated by transistor-
level simulation. Therefore, even though OMP takes more
time to fit all model coefficients than LS, it still achieves 2×
runtime speedup over LS in this example.

2) Quadratic Performance Modeling: To further improve
modeling accuracy, we select 200 most important device-level
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TABLE II

Quadratic Performance Modeling Error for Operational

Amplifier

LS [21] STAR [1] LAR [2] OMP
Gain 4.21% 8.03% 5.77% 4.39%
Bandwidth 3.84% 5.36% 4.11% 2.94%
Power 1.52% 4.37% 1.69% 1.17%
Offset 3.69% 9.15% 2.94% 1.88%

TABLE III

Quadratic Performance Modeling Cost for Operational

Amplifier

LS [21] STAR [1] LAR [2] OMP
# of training samples 25 000 1000 1000 1000
Simulation cost (s) 336 250 13 450 13 450 13 450
Fitting cost (s) 51 562 92 1449 1174
Total cost (s) 387 812 13 542 14 899 14 624

process parameters based on the magnitude of the linear model
coefficients. Next, we create quadratic performance models
using these critical process parameters. In this example, the
200-dimensional quadratic model contains 20 301 unknown
coefficients. Tables II and III show the accuracy and cost
for the aforementioned quadratic modeling, respectively. As
shown in Table II, OMP reduces the modeling error by
1.5–3×, compared to STAR and LAR. In addition, compared
to LS, OMP reduces the computational time from 4 days
to 4 h (24× speedup) while achieving similar accuracy, as
shown in Table III.

In this example, even though there are 20 301 basis func-
tions in total, OMP automatically selects less than 100 im-
portant basis functions for all performance functions (in par-
ticular, 88 basis functions for “gain,” 95 basis functions for
“bandwidth,” 96 basis functions for “power,” and 98 basis
functions for “offset”). It, in turn, implies that the quadratic
performance modeling problem studied in this example is
profoundly sparse. Such a sparse structure is the necessary
condition to make OMP feasible and efficient in this example.

B. SRAM Read Path

Shown in Fig. 5 is the simplified circuit schematic of an
SRAM read path that contains cell array, replica path for
self-timing, and sense amplifier. In this example, both inter-
die and intra-die variations are considered. After PCA based
on foundry data, 21 310 independent random variables are
extracted to model these variations.

We aim to model the read delay from the word line (WL)
to the sense amplifier output (Out). Since the read delay is
primarily determined by the transistors and interconnects on
the read path, we expect to observe a sparse structure for
the delay model in this example. Namely, a large number of
model coefficients will be close to zero, if the corresponding
basis functions are associated with the local device mismatches
outside the read path. Hence, the SRAM circuit in Fig. 5 offers
a good example for us to test the efficacy of the proposed
performance modeling technique.

For testing and comparison, Table IV shows the linear per-
formance modeling error and cost for four different techniques:

Fig. 5. Simplified circuit schematic of an SRAM read path.

TABLE IV

Linear Performance Modeling Error and Cost for SRAM Read

Path

LS [21] STAR [1] LAR [2] OMP
Modeling error 9.78% 6.34% 4.94% 4.09%
# of training samples 25 000 1000 1000 1000
Simulation cost (s) 728 250 29 130 29 130 29 130
Fitting cost (s) 13856.1 26.5 338.3 169.7
Total cost (s) 742 106 29 156 29 468 29 300

Fig. 6. Large number of model coefficients of SRAM read delay are close
to zero (estimated by OMP).

LS fitting, STAR, LAR, and the proposed OMP. As shown in
Table IV, OMP is most accurate among these four methods.
In addition, compared to LS, OMP reduces the computational
time from 8.5 days to 8.2 h (25× speedup).

Fig. 6 further shows the magnitude of the linear model
coefficients estimated by OMP. Studying Fig. 6, we would
notice that even though there are 21 311 basis functions in
total, only 36 basis functions are selected and their correspond-
ing model coefficients are non-zero. These 36 basis functions
are automatically identified by OMP to accurately capture the
delay variation. This sparse structure is the essential necessary
condition that makes the proposed OMP technique applicable
to this example.

VI. Conclusion

In this paper, we proposed a novel L0-norm regulariza-
tion scheme to efficiently create high-dimensional linear and
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nonlinear performance models for nanoscale circuits. The
proposed method was facilitated by exploiting the unique
sparse structure of model coefficients. An efficient OMP
algorithm was used to solve the proposed L0-norm regulariza-
tion problem. Several numerical examples demonstrated that,
compared to least-squares fitting, OMP achieves up to 25×
runtime speedup without surrendering any accuracy. Further-
more, compared to the STAR algorithm proposed in [1] and
the LAR algorithm proposed in [2], OMP reduces modeling
error by 1.5–5× with negligible computational overhead for
our tested examples. However, we should point out that LAR
and OMP apply different heuristics to solve the L0-norm
regularization problem in (11). To the best of our knowledge,
there is no theoretical evidence to prove that one method is
always better than the other.
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