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Real-Time Robust Signal Space Separation
for Magnetoencephalography
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Abstract—In this paper, we develop a robust signal space sep-
aration (rSSS) algorithm for real-time magnetoencephalography
(MEG) data processing. rSSS is based on the spatial signal space
separation (SSS) method and it applies robust regression to auto-
matically detect and remove bad MEG channels so that the results
of SSS are not distorted. We extend the existing robust regression
algorithm via three important new contributions: 1) a low-rank
solver that efficiently performs matrix operations; 2) a subspace
iteration scheme that selects bad MEG channels using low-order
spherical harmonic functions; and 3) a parallel computing im-
plementation that simultaneously runs multiple tasks to further
speed up numerical computation. Our experimental results based
on both simulation and measurement data demonstrate that rSSS
offers superior accuracy over the traditional SSS algorithm, if the
MEG data contain significant outliers. Taking advantage of the
proposed fast algorithm, rSSS achieves more than 75× runtime
speedup compared to a direct solver of robust regression. Even
though rSSS is currently implemented with MATLAB, it already
provides sufficient throughput for real-time applications.

Index Terms—Magnetoencephalography (MEG), robust regres-
sion, signal space separation.

I. INTRODUCTION

FOR decades, great efforts have been made to study hu-
man brain and find its underlying principles to learn, pro-

cess, and store information from outside world. Magnetoen-
cephalography (MEG) can noninvasively measure the magnetic
fields generated by neural activities [1]. Because of its superior
temporal resolution [2], [3], MEG is considered as a promis-
ing neuroimaging method that is complementary to electroen-
cephalography (EEG) and functional magnetic resonance imag-
ing (fMRI), and it has been applied to both neuroscience stud-
ies [4]–[7] and clinical applications [8].

MEG signals are extremely weak (typically 50–500 fT) [1],
as compared to external interferences. Many techniques have
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been proposed to measure and process MEG signals to enhance
SNR. For instance, superconducting quantum interference de-
vices (SQUIDs) [9], [10] are used to detect weak MEG sig-
nals, and magnetically shielded rooms are designed to reduce
interferences [11]–[13]. In addition to these hardware-based ap-
proaches, a number of signal processing algorithms, such as
signal space projection (SSP) [14] and signal space separation
(SSS) [15]–[17], have been developed to further improve SNR
by “software magnetic shielding”. Taking SSS as an example, it
creates two subspaces corresponding to brain signals and inter-
ferences, respectively. As such, interferences can be efficiently
removed from the recorded MEG data. Other than interference
reduction, SSS can also be applied to coordinate alignment [16],
movement compensation [16], and dc field measurement [18].

While SSS was extensively studied in the past, existing SSS
algorithms [15]–[17] mainly focus on off-line data analysis. In
this paper, we aim to develop a new real-time SSS tool to facili-
tate online processing of MEG data. Such a real-time capability
is of great importance for a number of neuroscience studies, e.g.,
brain–computer interface (BCI) [5], [7], since it enables active
feedback from human subjects during the experiment. It also
allows neuroscience researchers to deploy dynamic experiment
paradigms and determine optimal stimulus on the fly. Extend-
ing SSS to real time, however, is not trivial, primarily due to the
following two reasons.

1) Runtime: A real-time SSS implementation must be suffi-
ciently fast to maintain high throughput and small latency.
The sampling frequency of MEG is typically 1 kHz or
even higher. Hence, one SSS run must be finished within
at least 1 ms.

2) Robustness: As a spatial filtering technique, SSS is sensi-
tive to “bad channels” that are saturated or contain large
nonmagnetic interferences [15]–[17]. Spurious interfer-
ences are often observed for these bad channels, and they
can substantially distort SSS results. Traditionally, bad
channels are detected and removed by statistically analyz-
ing the recorded MEG data over a timing window (e.g., a
few seconds). Such a channel-screening scheme was im-
plemented in the MaxFilter software developed by Elekta
Neuromag. This approach, however, does not fit the need
of real-time processing, as it results in large latency that
prevents us from generating the SSS results in a short time
(e.g., within a few milliseconds).

The combination of these two issues renders a challenging
problem of real-time SSS implementation. Simply applying ex-
isting SSS algorithms cannot achieve the goal of real-time pro-
cessing. Instead, new algorithms and tools must be developed
to address this open problem.
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In this paper, we propose a new robust SSS (rSSS) algo-
rithm that is particularly tuned for real-time applications. rSSS
borrows the concept of robust regression [25] to automatically
detect and remove bad MEG channels based on the residual
of the spherical harmonic expansion of SSS. For instance, if
a channel shows extremely large residual, it is likely to con-
tain significant, possibly nonmagnetic, interference and, hence,
a small weight should be assigned to it when calculating the
spherical harmonic expansion. By applying robust regression,
the weight values of all channels can be quickly determined by
solving a nonlinear optimization problem.

In addition, to address the runtime issue, we extend the ex-
isting robust regression algorithm via three important new con-
tributions: 1) a low-rank solver that performs robust regression
with efficient matrix operations; 2) a subspace iteration scheme
that accurately determines the weight values of all MEG chan-
nels using low-order spherical harmonic functions; and 3) a
parallel computing implementation that exploits multi-core mi-
croprocessors [19], [20] to further speed up numerical compu-
tation. As will be demonstrated by the experimental results in
Section V, the combination of these proposed techniques sig-
nificantly reduces the runtime (by 75×) for our real-time rSSS.
Even though rSSS is currently implemented with MATLAB, it
is already sufficiently fast for real-time applications.

The remainder of this paper is organized as follows. In Sec-
tion II, we review the important background for SSS. We pro-
pose our new rSSS algorithm in Section III and discuss several
implementation issues in Section IV. The efficiency of rSSS
is demonstrated by both simulation and measurement data in
Section V. Finally, we conclude in Section VI.

II. BACKGROUND

Consider an MEG acquisition system where all SQUID coils
are located in a source-free region. In this case, the magnetic field
B(r) can be represented as the gradient of a scalar potential V (r)
that is free of singularity and harmonic in the volume containing
the coils [15], [16], [27]

B(r) = −µ0 · ∇V (r) (1)

where µ0 stands for the permeability of free space and the
symbol “·” denotes multiplication. The harmonic potential V (r)
satisfies the Laplace’s equation

∇2V (r) = 0. (2)

In a spherical coordinate system, the solution V (r) of (2) can be
approximated as the expansion of spherical harmonic functions

V (r) =
L In∑
l=1

l∑
m=−l

αlm · Ylm (θ, ϕ)
rl+1

+
LO u t∑
l=1

l∑
m=−l

βlm · rl · Ylm (θ, ϕ) (3)

where LIn and LOut determine the expansion order, αlm and
βlm represent the expansion coefficients,

Ylm (θ, ϕ) =

√
2l + 1

4π
· (l − m)!
(l + m)!

·Plm (cos θ) · eimϕ (4)

is the normalized spherical harmonic function, r, θ, and ϕ are the
spherical coordinates, Plm (cos θ) denotes the associated Legen-
dre function, and i stands for the imaginary unit. In this paper,
we use the symbol M to represent the total number of spherical
harmonic functions in (3). It is easy to verify that M is equal to
L2

In + 2LIn + L2
Out + 2LOut , as shown in [15] and [16].

The spherical harmonic functions in (4) have complex values.
In practice, V (r) is real-valued. We can also construct a real-
valued expansion for V (r) by using cos(mϕ) and sin(mϕ) to
replace exp(imϕ) [21]

Ylm (θ, ϕ) =




√
2l + 1

4π
· (l − m)!
(l + m)!

· Plm (cos θ) · cos (mϕ) ,

(m ≥ 0)

√
2l + 1

4π
· (l − m)!
(l + m)!

· Plm (cos θ) · sin (mϕ) ,

(m < 0) .
(5)

In what follows, we will always use the real-valued spherical
harmonic functions to illustrate the mathematical formulations
of SSS and rSSS.

Given N MEG channels, we represent the measured signal
vector ψ ∈ RN ×1 corresponding to each of the terms in (3).
Denote the signal vectors corresponding to Ylm (θ, ϕ)/rl+1 and
rlYlm (θ, ϕ) as alm ∈ RN ×1 and blm ∈ RN ×1 , respectively. We
have

ψ =
L In∑
l=1

l∑
m=−l

αlm · alm +
LO u t∑
l=1

l∑
m=−l

βlm · blm . (6)

Equation (6) can be rewritten as the matrix form

ψ = S · x = [SIn SOut ] ·
[

xIn
xOut

]
(7)

where SIn and SOut contain the corresponding vectors alm and
blm , respectively, and xIn and xOut contain the corresponding
coefficients αlm and βlm , respectively.

Equation (7) contains N linear equations for M problem
unknowns, i.e., S ∈ RN ×M , x ∈ RM ×1 , and ψ ∈ RN ×1 . For
a typical SSS implementation, the expansion order is set to
LIn = 8 and LOut = 4 in (3), resulting in M = 104 spherical
harmonic functions in total [15], [16]. On the other hand, the
Elekta Neuromag system contains N = 306 MEG channels
and, hence, (7) is overdetermined. SSS finds the least squares
solution x of (7) by minimizing the objective function g(x)

g (x) =
1
2
· ‖ε‖2

2 =
1
2
·

N∑
n=1

ε2
n (8)

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 13,2010 at 15:58:30 UTC from IEEE Xplore.  Restrictions apply. 



1858 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 57, NO. 8, AUGUST 2010

where the residual ε ∈ RN ×1 is equal to

ε = ψ − S · x (9)

‖ε‖2 denotes the L2-norm of the vector ε, and εn is the nth
element of ε. It has been shown that SInxIn corresponds to
brain signals and SOutxOut represents interferences. Once the
least squares solution x is solved by QR decomposition [26],
the external interferences can be efficiently removed by leaving
out the component SOutxOut . More details of SSS can be found
in [15] and [16].

The traditional SSS algorithm relies on least squares regres-
sion. Its results can be substantially distorted by the bad channels
that are saturated or contain large nonmagnetic interferences. To
address this issue, the MaxFilter software developed by Elekta
Neuromag implemented a channel screening routine to detect
and remove bad channels by statistically analyzing the recorded
MEG data over a timing window (e.g., a few seconds). Such an
approach, however, is not applicable to real-time applications,
as it results in large latency that prevents us from generating the
SSS results in a short time (e.g., within a few milliseconds). It,
in turn, motivates us to propose a new rSSS algorithm to detect
bad channels in real time.

III. ROBUST SIGNAL SPACE SEPARATION

A. Mathematical Formulation

The traditional SSS uses least squares regression to mini-
mize the objective function g(x) in (8) where g(x) quadratically
increases with the residual {|εn |, n = 1, 2, . . . , N} for all chan-
nels. If the nth channel has an extremely large residual |εn |, it
can significantly impact g(x) and the least squares solution x of
(7) will be particularly tuned to reduce |εn |.

In practice, however, a large residual |εn | typically implies
that the nth channel is an outlier. For example, it can be sat-
urated or distorted by large interferences from SQUID coils
and/or electronics. In this case, simply minimizing the residual
|εn | does not lead to the solution of interest. Instead, we should
ignore |εn | so that the interferences in the nth channel do not
distort the SSS result. Since (7) is overdetermined, a meaning-
ful solution x can still be found, even if a few bad channels
are removed. In other words, the over-determined equation (7)
contains redundant information and, hence, the MEG signals of
the bad channels can be predicted from the other channels using
SSS.

The proposed rSSS algorithm borrows the robust regression
idea from statistics [25] to redefine the objection function g(x)
in (8) so that a large residual at the outlier is not overpenalized.
In particular, the objective function g(x) is changed to

g (x) =
N∑

n=1

ρ (εn ) (10)

where ρ(εn ) defines the error penalty of the nth channel. There
are many possible ways to define ρ(εn ), as long as it satisfies
the following properties [25]: 1) ρ(εn ) ≥ 0; 2) ρ(εn = 0) = 0;
3) ρ(εn ) = ρ(−εn ); and 4) ρ(εn ) ≥ ρ(εm ) for any |εn | ≥ |εm |.

Fig. 1. Two objective function examples for robust regression. (a) Huber
function in (11) where k = 1.34. (b) Bisquare function in (12) where k = 4.69.

For least-squares regression, we simply have ρ(εn ) = 0.5 · ε2
n .

For robust regression, the Huber function

ρ (εn ) =




1
2
· ε2

n (|εn | ≤ k)

k · |εn | −
1
2
· ε2

n , (|εn | > k)
(11)

and the bisquare function

ρ (εn ) =




{
1
6
·
{

1 −
[
1 −

(εn

k

)2
]3

}
, (|εn | ≤ k)

k2

6
, (|εn | > k)

(12)
are two important objective functions that have been widely
used in the literature. In (11) and (12), k is a constant that can be
either manually specified by a user or statistically determined
by the data [25]. Fig. 1(a) and (b) plots the Huber function (k =
1.34) and the bisquare function (k = 4.69), respectively. Note
that for an increasingly large residual |εn |, both the Huber func-
tion and the bisquare function increase much more slowly than
the quadratic function that is used for least squares regression.
In other words, a large residual is much less penalized than
that in least-squares regression. This is the reason why robust
regression is not sensitive to outliers. If a proper objection func-
tion ρ(εn ) is used, the result solved by robust regression can
be almost independent of outliers. In Section IV, we will con-
struct a unique objective function ρ(εn ) for rSSS so that the
proposed signal space separation is both robust (i.e., insensitive
to outliers) and efficient (i.e., low computational complexity).

Once the objective function (10) is determined, the solution
x of the over-determined equation (7) can be solved by min-
imizing (10). Unlike least squares regression where x can be
efficiently found by QR decomposition [26], no closed-form
solution exists for robust regression. It must be treated as a
nonlinear optimization problem and numerically solved by an
iterative algorithm.

B. Iterative Solver

In this section, we describe an iteratively reweighted least
squares (IRLS) algorithm that was previously developed for
robust regression [22]. We show the details of this algo-
rithm, since the mathematical formulations will be reused in
Section IV-A to derive our own fast solver for rSSS.
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Given the linear equation ψ = S · x in (7), we first rewrite
the nth equation as

ψn = Sn · x, (n = 1, 2, . . . , N) (13)

where ψn is the nth element of ψ, Sn ∈ R1×M denotes the
nth row of S, and N is the total number of MEG channels.
Substituting (13) into (10) yields

g (x) =
N∑

n=1

ρ (ψn − Sn · x). (14)

If g(x) is continuously differentiable and x is the optimal
solution that minimizes (14), the gradient ∂g/∂x should be
zero, implying

∂g

∂x
=

∂

∂x

N∑
n=1

ρ (ψn − Sn · x)

= −
N∑

n=1

[
ϕ (ψn − Sn · x) · ST

n

]
= 0 (15)

where ϕ(εn ) = dρ(εn )/dεn is the derivative of ρ(εn ). Define
the weight w(εn ) = ϕ(εn )/εn and (15) can be rewritten as

N∑
n=1

[
w (εn ) · (ψn − Sn · x) · ST

n

]
= 0 (16)

or equivalently
N∑

n=1

[
ST

n · w (εn ) · Sn

]
· x =

N∑
n=1

[
ST

n · w (εn ) · ψn

]
. (17)

Equation (17) can be further represented as the matrix form(
ST · W · S

)
· x = ST · W · ψ (18)

where W = diag[w(ε1), w(ε2), . . . ,w(εN )] ∈ RN ×N is a
diagonal matrix.

For least squares regression, the weight W is simply an iden-
tity matrix, since its diagonal elements are all equal to one:
ϕ(εn ) = dρ(εn )/dεn = εn and w(εn ) = ϕ(εn )/εn = 1. In this
case, (18) becomes (ST · S) · x = ST · ψ, and its solution x =
(ST · S)−1 · (ST · ψ) is exactly the least squares solution of the
over-determined equation (7). Note that least squares regression
treats all channels equally, as the same weight {w(εn ) = 1, n =
1, 2, . . . , N} is assigned to all of them.

Unlike least squares regression, the weight W strongly de-
pends on the residual ε for robust regression. For example, the
weight w(εn ) is

w (εn ) =
{

1, (|εn | ≤ k)

k/|εn |, (|εn | > k)
(19)

for the Huber function and it is

w (εn ) =
{

[1 − (εn/k)2 ]2 , (|εn | ≤ k)

0, (|εn | > k)
(20)

for the bisquare function. Fig. 2(a) and (b) plot the weight w(εn )
for the Huber function (k = 1.34) and the bisquare function
(k = 4.69), respectively. Studying Fig. 2, we can make two
important observations. First, w(εn ) is between zero and one.
This is always true, as long as the objection/weight function

Fig. 2. Two weight function examples for robust regression. (a) Huber function
in (19) where k = 1.34. (b) Bisquare function in (20) where k = 4.69.

is properly scaled. Second, w(εn ) decreases as |εn | increases.
It implies that if the nth channel has a large residual |εn |, a
small weight w(εn ) will be assigned to it. In other words, this
channel is considered as an outlier and its residual will not be
overpenalized during robust regression. In the extreme case,
if |εn | exceeds the value k for the bisquare function in (20),
w(εn ) becomes exactly zero, implying that the nth channel is
completely removed. From this point of view, the weight matrix
W in (18) plays an important role in detecting and removing
bad MEG channels for the proposed rSSS algorithm.

It should also be noted that since W is a nonlinear function of
ε = ψ − S · x, (18) is not simply a linear equation of x. Hence,
no closed-form solution exists. To solve (18), we start from W=
I, where I stands for the identity matrix. Given this initial value
of W, we solve (18) to get an estimate of x. Next, we update W
based on the residual ε = ψ −S ·x, and then calculate x by (18)
again. These two steps are repeatedly applied to update W and
x, until convergence is reached. Since this iterative algorithm
repeatedly solves (18) that can be conceptually considered as
weighted least-squares regression, it is referred to as the IRLS
method in [22]. Algorithm 1 summarizes the major steps of
the proposed rSSS algorithm, where IRLS is used to solve the
robust regression problem.

Algorithm 1: Robust Signal Space Separation
1) Follow the traditional SSS method to formulate the over-

determined equation (7).
2) Select an appropriate objective function ρ(εn ) and deter-

mine the corresponding weight function w(εn ).
3) Find the least-squares solution of (7): x(0) =

(ST · S)−1 · (ST · ψ). Set the iteration index p = 1.
4) Calculate the residual: ε(p) = ψ − S · x(p−1) and update

the weight matrix W(p) .
5) Substitute W(p) into (18) and solve the linear equation:

x(p) = [ST · W(p) · S]−1 · [ST · W(p) · ψ].
6) If ‖x(p) − x(p−1)‖2 < δ, where δ is a user-defined tol-

erance, stop iteration. Otherwise, p = p + 1 and go to
Step 4.

The computational cost of Algorithm 1 is dominated
by Step 5, i.e., solving the linear equation: x(p) = [ST ·
W(p) · S]−1 · [ST · W(p) · ψ]. Given S ∈ RN ×M and W(p) ∈
RN ×N , [ST ·W(p) ·S] is an M ×M matrix. In a typical imple-
mentation of SSS, M is equal to 104, as shown in Section II. In
other words, within each iteration of Algorithm 1, we must solve
a linear equation with M = 104 unknowns. Even though the
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matrix ST · W(p) · S is positive-definite [22], [25] and, hence,
the linear equation can be solved by Cholesky decomposi-
tion [26], the computational cost is proportional to O(M 3).
In the following section, we will propose several novel tech-
niques to reduce the computational cost so that the proposed
rSSS algorithm is of practical utility for real-time applications.

IV. IMPLEMENTATION ISSUES

The proposed rSSS approach is made practically feasible for
real-time applications by applying several novel techniques to
reduce computational time. In this section, we discuss the details
of these methods.

A. Low-Rank Solver

The proposed low-rank solver aims to incrementally update
the matrix ST · W(p) · S in Step 5 of Algorithm 1 so that the
linear equation: x(p) = [ST · W(p) · S]−1 · [ST · W(p) · ψ]
can be solved with low computational cost. While the weight
matrix W(p) is changed in each iteration of Algorithm 1, most
MEG channels should be good in practice and their weight
values should be close to one. In other words, there are only
a few outliers for which the corresponding diagonal elements
in W(p) deviate from one. Our proposed low-rank solver is
built upon this observation. It consists of two key compo-
nents: 1) a unique weight function w(εn ) that appropriately
distinguishes good and bad channels; and 2) a low-rank up-
date scheme that efficiently solves the linear equation: x(p) =
[ST · W(p) · S]−1 · [ST · W(p) · ψ].

1) Weight Function Construction: One important compo-
nent of the proposed low-rank solver is to construct an appro-
priate weight function w(εn ) so that w(εn ) is equal to one for
good channels (i.e., small residual |εn |) and zero for bad chan-
nels (i.e., large residual |εn |). The Huber function in Fig. 2(a)
assigns w(εn ) = 1 for good channels, but its weight does not
quickly decay to zero for bad channels. Hence, a bad channel
may not be completely removed. On the other hand, the bisquare
function in Fig. 2(b) assigns w(εn ) = 0 for bad channels, but it
only yields w(εn ) = 1 for εn = 0. In practice, even a good chan-
nel will not exactly have zero residual, primarily due to random
physical interferences and/or approximation errors of the spher-
ical harmonic expansion. Therefore, if the bisquare function is
used, all diagonal elements of the weight matrix W(p) must be
updated in each iteration. It would be impossible to efficiently
apply a low-rank update in this case.

Given these observations, we propose to combine the Huber
function and the bisquare function to construct a modified bi-
square weight function

w (εn ) =




1, (|εn | ≤ k1)[
1 −

(
εn − k1

k2 − k1

)2
]2

, (k1 < |εn | ≤ k2)

0, (|εn | > k2)
(21)

where k1 and k2 are two constants. In our implementation,
the values of k1 and k2 are fixed: k1 = 1.72 and k2 = 4.69,

Fig. 3. The modified bi-square weight function in (21) where k1 = 1.72 and
k2 = 4.69 results in w(εn ) = 1 for good channels and w(εn ) = 0 for bad
channels.

respectively. Since the residual ε = ψ − S · x may vary in
different cases, we always normalize the linear equation ψ =
S · x by a constant λ. Namely, we divide both sides of the
equation by λ. The value of λ is equal to the standard deviation
of the residual ε = ψ − S · x over all channels calculated
from the least-squares solution. In other words, the normalized
residual (ψ − S · x)/λ has unit variance so that we can use the
same k1 and k2 in different cases.

Fig. 3 plots the modified bi-square weight function (k1 =
1.72 and k2 = 4.69, respectively). Comparing Figs. 2 and 3,
we would find that the modified bisquare function results in
w(εn ) = 1 for good channels (similar to the Huber function) and
w(εn ) = 0 for bad channels (similar to the bisquare function). It,
in turn, facilitates us to both accurately remove bad channels and
efficiently apply low-rank update for matrix operations. Next,
we will discuss the low-rank update algorithm in detail.

2) Low-Rank Update: To formulate the low-rank update for
ST · W(p) · S in Step 5 of Algorithm 1, we rewrite the matrix
W(p) as

W(p) = I + [W(p) − I] (22)

where I stands for the identity matrix. As previously discussed,
if the modified bisquare function in (21) is used to calculate the
weight, we expect that most diagonal elements of the matrix
W(p) are equal to one. Hence, the matrix W(p) − I is low rank,
i.e., it only contains a few nonzero elements on the diagonal.
To explicitly represent this low-rank structure, we define the set
{Qj , W(p)

Qj,Qj �= 1}. Namely, it contains the indexes {Qj} at

which the (Qj , Qj )th element of W(p) − I is nonzero. Define:

V(p)=




SQ1

SQ2
...


 ∆(p)=



W(p)

Q1,Q1 − 1

W(p)
Q2,Q2 − 1

. . .




(23)
where SQj ∈ R1×M denotes the Qj th row of the matrix S
in (7). In (23), the matrix ∆(p) is much smaller than W(p)

− I, as it removes all zero diagonal elements of W(p) − I.
In our MEG experiments, the dimension of ∆(p) is typically
around 5–20. There are typically less than five channels that are
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obviously bad (e.g., saturated). Their weight values are close
to zero. Other than these bad channels, we often observe 5–15
additional channels with weight close to, but not exactly equal
to, one. These channels contain noise, but they still carry useful
information about the magnetic field.

Substituting (22) and (23) into ST · W(p) · S yields

ST · W(p) · S = ST · S + ST · [W(p) − I] · S
= ST · S + V(p)T · ∆(p) · V(p) (24)

where V(p)T · ∆(p) · V(p) is a low-rank matrix. According to
the Sherman–Morrison–Woodbury formula [26], the inverse of
ST · W(p) · S can be exactly represented as

[ST · W(p) · S]−1 = [ST · S]−1 − [ST · S]−1 · V(p)T

· {[∆(p) ]−1+V(p) · [ST · S]−1 · V(p)T }−1 · V(p) · [ST · S]−1.

(25)

Therefore, the solution x(p) in Step 5 of Algorithm 1 can be
written as

x(p) = (ST · S)−1 · [ST · W(p) · ψ] − (ST · S)−1 · V(p)T

· {[∆(p) ]−1 + V(p) · (ST · S)−1 · V(p)T }−1

· V(p) · (ST · S)−1 · [ST · W(p) · Ψ]. (26)

Even though (26) looks much more complicated than its orig-
inal form: x(p) = [ST · W(p) · S]−1 · [ST · W(p) · ψ], it
is computationally efficient due to two reasons. First, the ma-
trix ST · S is independent of the recorded MEG signals. It is
uniquely determined by spherical harmonic functions. As long
as the head position is fixed, ST · S is fixed. In other words, if
we do not consider real-time head movement, ST · S does not
vary over time. Hence, the inverse (ST · S) −1 can be precom-
puted, when the head position is measured at the beginning of an
MEG experiment. Once (ST · S) −1 is known, its multiplication
with other matrices and vectors in (26) can be easily calculated
without solving any linear equation in real time.

Second, to calculate x in (26), we need to solve the linear
equation: {[∆(p)]−1+V(p) · (ST · S)−1 · V(p)T }−1 · V(p) ·
(ST · S)−1 · [ST · W(p) · ψ]. The matrix ∆(p) is diagonal and,
hence, its inverse is easy to calculate. As ∆(p) and V(p)

vary from iteration to iteration, the matrix [∆(p)]−1 +
V(p) · (ST · S)−1 · V(p)T must be repeatedly factorized at
each iteration step to solve the linear equation: {[∆(p)]−1 +
V(p) · (ST ·S)−1 ·V(p)T}−1 ·V(p) · (ST ·S)−1 · [ST ·W(p) ·ψ].
However, the size of [∆(p)]−1 + V(p) · (ST · S)−1 · V(p)T

is small—it equals the number of nonzero diagonal ele-
ments of W(p) − I, which is typically around 5–20 in
our MEG experiments. In addition, the matrix [∆(p)]−1 +
V(p) · (ST · S)−1 · V(p)T is symmetric and, hence, it can be
efficiently factorized by the LDLT factorization [26].

Because of these reasons, computing (26) is much cheaper
than directly solving the original linear equation: x(p) =
[ST · W(p) · S]−1 · [ST · W(p) · ψ]. As will be demonstrated
by the experimental examples in Section V, the proposed low-
rank solver achieves significant runtime speedup (more than
20×) over a direct solver. Hence, it is a key technology to facil-

itate real-time rSSS, where latency and throughput are of great
importance.

B. Subspace Iteration

Subspace iteration is another technique that further reduces
the computational cost of rSSS. It is motivated by the fact that the
dominant energy of MEG signals can be captured by the low-
order spherical harmonic functions in (3). Therefore, we can
use low-order spherical harmonic functions only to calculate
the weight matrix W and identify bad channels.

The proposed subspace iteration method consists of two steps.
First, the matrix S in (7) is constructed by using low-order
harmonic functions. For example, if we set LIn = 5 and LOut =
4 for the expansion (3), the matrix S in (7) will contain M = 59
harmonic functions. Note that the number of harmonic functions
(i.e., M ) is substantially reduced, compared to the traditional
case LIn = 8, LOut = 4, and M = 104. Since (7) contains
less unknown coefficients, solving the over-determined linear
equation using robust regression becomes less expensive. Next,
once the weight matrix W is calculated from the low-order
spherical harmonic functions, high-order harmonic functions
are added to the matrix S and the weighted least squares problem
in (18) is solved. The computation in this second step is cheap,
since no additional iteration is applied to recalculate the weight
matrix W.

The aforementioned method runs the iterations of rSSS (i.e.,
Algorithm 1) in the subspace spanned by low-order spherical
harmonic functions. Hence, it is referred to as subspace itera-
tion in this paper. The runtime speedup achieved by subspace
iteration will be demonstrated by our experimental examples in
Section V.

C. Parallel Computing

A modern microprocessor typically consists of several or even
hundreds of CPU cores [19], [20]. These cores can simultane-
ously process different input data or even run different programs
with completely different instructions. To take advantage of this
parallel computing capability, we implement the proposed rSSS
algorithm in MATLAB with multiple parallel tasks. In particu-
lar, since rSSS is a spatial filtering technique, it handles MEG
signals at different times independently. We map the recorded
MEG signals to different CPU cores and run rSSS separately,
as shown in Fig. 4. Although such a parallel computing strat-
egy does not reduce latency, it helps to increase throughput.
More discussions on latency and throughput will be presented
in Section V-C, along with the experimental results.

V. EXPERIMENTAL RESULTS

In this section, we demonstrate the efficiency of the pro-
posed rSSS algorithm using both simulation and measurement
data. For both SSS and rSSS, we set LIn = 8 and LOut =
4 for the spherical harmonic expansion in (3). In addition, a
set of low-order spherical harmonic functions with LIn = 5 and
LOut = 4 are used for the subspace iteration scheme proposed in
Section IV-B.
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Fig. 4. An example of the proposed parallel rSSS implementation, where
MEG signals are mapped to four different CPU cores to improve throughput.

Fig. 5. SSS and rSSS results for simulation data. (a) One-hundred current
dipoles and one magnetic dipole used in the simulation example. (b) Simulated
MEG signals of all channels for the Elekta Neuromag 306-channel MEG system.
(c) Exact and SSS-predicted MEG signals generated by the current dipoles
(relative error = 19.29%). (d) Exact and rSSS-predicted MEG signals generated
by the current dipoles (relative error = 2.79%).

A. Simulation Data

Fig. 5(a) shows our simulation setup where 100 current
dipoles are distributed on the surface of a sphere with the radius
r = 6 cm. These current dipoles are used to model the neu-
ral activities inside the brain. In addition, a magnetic dipole is
placed far away from the origin in order to model the external
interference. Similar simulation setup was used to evaluate the
efficiency of SSS in the past [15], [16], [23]. For this simulation
example, we know the exact magnetic field, which enables us
to fully compare the accuracy of the traditional SSS and the
proposed rSSS.

Given the aforementioned setup for current and magnetic
dipoles, we calculate the MEG signals of all channels for the
Elekta Neuromag 306-channel MEG system. This MEG system
contains 204 gradiometers and 102 magnetometers. To mimic
the effect of bad channels, we inject an interference 5 × 10−11

T/m at channel 77 (a randomly selected gradiometer). Fig. 5(b)

plots the MEG signals (including the injected interference) for
all channels.

Next, we run two signal space separation algorithms to
estimate the MEG signals generated by the current dipoles:
1) the traditional SSS based on least-squares regression; and
2) the proposed rSSS using robust regression. Fig. 5(c) shows
the exact solution and the SSS result. The relative error of SSS
is 19.29%, where the error is defined as

‖ΨIn − Ψ̃In‖2/‖Ψ̃In‖2 . (27)

In (27), ψIn ∈ RN ×1 and ψ̃In ∈ RN ×1 represent the estimated
solution and the exact solution, respectively, and N is the total
number of MEG channels. Note that the traditional SSS is not
able to accurately recover the MEG signals in this example. Most
importantly, even though we only inject interference to a single
channel, the interference propagates to many other channels
after SSS. In other words, if the bad channel is not properly
identified and removed, the spatial filtering done by SSS can
yield wrong results for a large number of MEG channels.

On the other hand, Fig. 5(d) shows the exact MEG signals
and the rSSS result. Studying Fig. 5(d), one would find that the
proposed rSSS algorithm accurately predicts the MEG signals
at all channels. The relative error is 2.79%. We further verify
that rSSS automatically assigns w(εn ) = 0 to channel 77 and
w(εn ) = 1 to all other channels. It, in turn, implies that the bad
channel is successfully detected and removed in this example.

B. Measurement Data

In our experiment, a healthy human subject sits in a chair
with his head inside the MEG helmet. The subject is asked to
perform center-to-out movement with his right wrist. There are
four different movement directions in total: left, right, up and
down. Target images are generated by a computer and projected
to a non-magnetic screen in front of the subject to prompt the
movement direction. The sequence of movement targets is se-
lected randomly. One movement trial takes 2.2 seconds to com-
plete. The MEG signals of 480 independent trials are recorded
with 1 kHz sampling frequency using an Elekta Neuromag 306-
channel MEG system. At the beginning of the experiment, head
position indicator (HPI) signals are measured to find the head
position and then the origin of spherical harmonic expansion is
determined.

We select a single movement trial (out of 480 trials in total)
for which the recorded MEG signals contain spurious interfer-
ences. Such a movement trial possibly contains bad channels
and, hence, is a good example for us to study the efficiency
of the proposed rSSS method. For the purpose of testing and
comparison, both the traditional SSS and the proposed rSSS are
used to estimate the MEG signals generated by the neural ac-
tives inside the brain. Fig. 6(a) plots the MEG signals recovered
by both SSS and rSSS at t = 2.16 s. Here, we show the results
at this particular time point, since SSS and rSSS yield substan-
tially different solutions. The relative difference between these
two solutions is 53.96% where the difference is defined as

‖ΨIn SSS (t) − ΨIn rSSS (t)‖2/‖ΨIn rSSS (t)‖2 . (28)
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Fig. 6. SSS and rSSS results for measurement data. (a) MEG signals recovered
by SSS and rSSS at t = 2.16 s (relative difference = 53.96%). (b) Weight w(εn )
of all channels calculated by rSSS at t = 2.16 s. (c) Raw MEG signals recorded
by channel 2 (gradiometer) before applying SSS or rSSS.

In (28), ψIn SSS ∈ RN ×1 and ψIn rSSS ∈ RN ×1 represent the
solutions calculated by SSS and rSSS, respectively, and N is the
total number of MEG channels. In our experiment, we observe
that the relative difference between SSS and rSSS solutions is
typically around or below 10%. Hence, the large difference at
t = 2.16 s implies the existence of malfunctioning MEG chan-
nels and it provides a good example for us to compare SSS and
rSSS.

Fig. 6(b) plots the weight w(εn ) of all channels calculated by
rSSS at t = 2.16 s. Studying Fig. 6(b), we would notice that the
weight w(εn ) of channel 2 (gradiometer) is exactly 0, implying
that channel 2 is considered as a bad channel at t = 2.16 s.
In addition to channel 2, there are several other channels that
are “marginally” bad, i.e., the corresponding weight values are
between zero and one. The combination of all these bad channels
leads to the large difference between SSS and rSSS results, as
shown in Fig. 6(a). Fig. 6(c) plots the raw MEG signals recorded
by channel 2, before any spatial filtering (e.g., SSS or rSSS) is
applied. As labeled in Fig. 6(c), there is a sharp spike (i.e., large
spurious interference) at t = 2.16 s. This observation matches
the rSSS result. Namely, channel 2 is bad and should be ignored
at t = 2.16 s.

To further demonstrate the efficiency of rSSS, Fig. 7(a) shows
the raw MEG signals recorded by channel 86 (gradiometer)
and Fig. 7(b) plots the corresponding weight w(εn ) calculated
by rSSS for the same channel. Since rSSS is applied at each
time point, the weight w(εn ) is plotted as a function of time
in Fig. 7(b). Two important observations can be made from
Fig. 7(a) and (b). First, the recorded MEG signals contain spu-
rious interferences that occur at different times, as shown by the
sharp spikes in Fig. 7(a). We believe that the interferences are
caused by the electronics of MEG sensors. It appears from time
to time, implying that a channel is not constantly bad. Hence,

Fig. 7. MEG signals and rSSS results of channel 86 (gradiometer). (a) Raw
MEG signals recorded by channel 86 before applying SSS or rSSS. (b) Weight
w(εn ) of channel 86 calculated by rSSS.

TABLE I
COMPUTATIONAL TIME OF ONE RSSS RUN FOR DIFFERENT IMPLEMENTATIONS

we cannot identify good or bad channels at the beginning of
an experiment; instead, we must dynamically select bad chan-
nels on the fly. Second, the proposed rSSS successfully captures
the bad channels in this example. Comparing Fig. 7(a) and (b),
we would notice that the weight w(εn ) of channel 86 is auto-
matically set to zero, once the spurious interferences occur. It
demonstrates that the proposed rSSS algorithm using robust re-
gression is an efficient technique to accurately and dynamically
detect bad channels.

C. Computational Time

To test the runtime for rSSS and demonstrate the efficiency
of the proposed fast algorithms, we implement four different
versions of rSSS in MATLAB as listed in the following.

1) Direct solver: A direct Cholesky decomposition is used to
solve the linear equation in Step 5 of Algorithm 1.

2) Low-rank solver: The low-rank solver proposed in
Section IV-A is used to solve the linear equation in Step 5
of Algorithm 1.

3) Low-rank solver + Subspace iteration: Both the low-rank
solver (Section IV-A) and the subspace iteration scheme
(Section IV-B) are used to speed up numerical computa-
tion.

4) Low-rank solver + Subspace iteration + Parallel comput-
ing: All these three techniques discussed in Section IV are
integrated to achieve the smallest runtime. Four parallel
tasks are managed by MATLAB to increase throughput.

We run these four implementations on a Linux server with
four dual-core AMD 2.8 GHz Opteron processors. Table I shows
the computational time of one rSSS run for these four implemen-
tations. Note that more than 75× runtime speedup is achieved
by the proposed fast algorithms compared to a direct solver.
Even though the rSSS algorithm is currently implemented with
MATLAB, one rSSS run can be finished within 0.95 ms. If
the MEG sampling frequency is 1 kHz, i.e., one new signal
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vector per 1 ms, the throughput of our MATLAB implementa-
tion already meets the requirement of real-time processing.

On the other hand, since we run four parallel tasks simul-
taneously, the average latency of rSSS is around 0.95 × 4 =
3.8 ms. In a real-time MEG acquisition system, we also need
to consider the latency for data collection, data communication,
and other signal processing steps. Hence, the total latency will
be larger than 3.8 ms. In addition, the variation of latency (i.e.,
jitter) is also of great importance for many timing-critical appli-
cations [24]. All these open questions related to latency will be
further studied in our future research.

VI. CONCLUSION

In this paper, we develop a new rSSS algorithm for real-time
interference reduction of MEG data. In particular, we propose
to incorporate robust regression with SSS in order to efficiently
detect and remove bad MEG channels in real time. Three dif-
ferent but complementary techniques, i.e., 1) a low-rank solver;
2) a subspace iteration scheme; and 3) a parallel computing im-
plementation, are developed to reduce the computational cost of
rSSS.

Our experimental results based on both simulation and mea-
surement data demonstrate that rSSS successfully detects and
removes bad MEG channels so that the results of SSS are not dis-
torted. In addition, the proposed fast algorithms achieve signifi-
cant (i.e., more than 75×) runtime speedup over a direct solver.
Even though rSSS is currently implemented with MATLAB, it
already provides sufficient throughput for real-time MEG signal
processing.

While the proposed rSSS method shows promising results,
there remain a number of open questions that should be further
studied in the future as listed in the following.

1) The proposed rSSS algorithm is efficient, if and only if a
limited number of MEG channels are simultaneously bad.
To successfully apply rSSS, the number of good MEG
channels must be greater than the number of spherical har-
monic functions M = L2

In + 2LIn + L2
Out + 2LOut . As a

result, redundant information exists and we can accurately
predict the MEG signals by removing bad channels. In our
experiments, there are 306 MEG channels in total and the
number of spherical harmonic functions is M = 104 (LIn
= 8 and LOut = 4, respectively). We typically observe
that less than 5 channels are obviously bad (e.g., satu-
rated) and 5–15 additional channels contain large noise.
In this case, the number of good MEG channels is much
greater than the number of spherical harmonic functions
and, hence, rSSS has been demonstrated with great effi-
ciency. It should be noted, however, that rSSS may fail to
work, if a large number of bad channels exist (e.g., most
SQUID coils are broken).

2) There are a number of practical cases where the sources
of external interferences are close to the SQUID coils for
MEG recording. Such sources may consist of stimulators,
magnetized EEG electrodes, etc. Similar to the traditional
SSS algorithm, the proposed rSSS method cannot accu-
rately separate brain signals from external interferences in

such cases. The spatiotemporal SSS method (tSSS) was
developed to address this important limitation [17]. tSSS
requires to analyze MEG data over a timing window and,
hence, it cannot be directly applied to real-time signal pro-
cessing. An important problem for future research is how
to integrate rSSS with tSSS for real-time applications.

3) The traditional SSS method can be used to correct the dis-
tortion caused by head movement during MEG recording
[16]. Such movement compensation may not be necessary
for cooperative healthy subjects. However, it is extremely
important for some special patient groups (e.g., small
children), if head movement is unavoidable. The proposed
rSSS (in particular, the low-rank solver discussed in
Section IV-A) relies on the assumption that head position
is fixed. Otherwise, the matrix (ST · S) −1 in (26) cannot
be precomputed and, hence, the rSSS problem cannot
be efficiently solved. As an important component of our
future research, we will further study efficient real-time
algorithms to handle movement compensation problems.

4) In our current implementation, the order of harmonic ex-
pansion is fixed (i.e., LIn = 8 and LOut = 4). When the
subspace iteration method is applied to bad channel detec-
tion in Section IV-B, LIn is further decreased to LIn = 5
to reduce computational cost. Ideally, the expansion order
LIn and LOut should be adaptively learned, since their
optimal values can vary from case to case. This adaptive
learning problem will be explored in our future research.

5) The proposed rSSS algorithm is implemented with MAT-
LAB, which enables us to quickly build a prototype tool
to validate the algorithm. However, MATLAB is not the
best way to implement real-time applications. As an im-
portant follow up work, we will focus on the development
of a real-time MEG acquisition and processing system
based on rSSS. Towards this goal, we will explore various
implementation options (both hardware and software) for
timing-critical applications, where latency and jitter are of
great importance.
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[11] V. Kelhä, J. Pukki, R. Peltonen, A. Penttinen, R. Ilmoniemi, and J. Heino,
“Design, construction, and performance of a large-volume magnetic
shield,” IEEE Trans. Magn., vol. 18, no. 1, pp. 260–270, Jan. 1982.

[12] G. Kajiwara, K. Harakawa, and H. Ogata, “High-performance magneti-
cally shielded room,” IEEE Trans. Magn., vol. 32, no. 4, pp. 2582–2585,
Jul. 1996.

[13] J. Zimmerman, “SQUID instruments and shielding for low-level magnetic
measurements,” J. Appl. Phys., vol. 48, no. 2, pp. 702–710, Feb. 1977.

[14] M. Uusitalo and R. Ilmoniemi, “Signal-space projection method for sepa-
rating MEG or EEG into components,” Med. Biol. Eng. Comput., vol. 35,
no. 2, pp. 135–140, 1997.

[15] S. Taulu and M. Kajola, “Presentation of electromagnetic multichannel
data: The signal space separation method,” J. Appl. Phys., vol. 97, Jun.
2005.

[16] S. Taulu, J. Simola, and M. Kajola, “Applications of the signal space
separation method,” IEEE Trans. Signal Process., vol. 53, no. 9, pp. 3359–
3372, Sep. 2005.

[17] S. Taulu and J. Simola, “Spatiotemporal signal space separation method
for rejecting nearby interference in MEG measurements,” Phys. Med.
Biol., vol. 51, no. 7, pp. 1759–1768, 2006.

[18] S. Taulu, J. Simola, and M. Kajola, “MEG recordings of DC fields using
the signal space separation method (SSS),” Neurol. Clin. Neurophysiol.,
vol. 35, Nov. 2004.

[19] J. Manferdelli, N. Govindaraju, and C. Crall, “Challenges and opportuni-
ties in many-core computing,” Proc. IEEE, vol. 96, no. 5, pp. 808–815,
May 2008.

[20] J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, and J. Phillips,
“GPU computing,” Proc. IEEE, vol. 96, no. 5, pp. 879–899, May 2008.

[21] J. Wikswo and K. Swinney, “A comparison of scalar multipole expan-
sions,” J. Appl. Phys., vol. 56, no. 11, pp. 3039–3049, Dec. 1984.

[22] D. O’Leary, “Robust regression computation using iteratively reweighted
least squares,” SIAM J. Matrix Anal. Appl., vol. 11, no. 3, pp. 466–480,
Jul. 1990.

[23] T. Song, K. Gaa, L. Cui, L. Feffer, R. Lee, and M. Huang, “Evaluation of
signal space separation via simulation,” Med. Biol. Eng. Comput., vol. 46,
no. 9, pp. 923–932, Sep. 2008.

[24] G. Schalk, D. McFarland, T. Hinterberger, N. Birbaumer, and J. Wolpaw,
“BCI2000: a general-purpose brain-computer interface (BCI) system,”
IEEE Trans. Biomed. Eng., vol. 51, no. 6, pp. 1034–1043, Jun. 2004.

[25] P. Rousseeuw and A. Leroy, Robust Regression and Outlier Detection.
Hoboken, NJ: Wiley, 1987.

[26] G. Golub and C. Van Loan, Matrix Computations. Baltimore, MD:
Johns Hopkins Univ. Press, 1996.

[27] J. Jackson, Classical Electrodynamics. Hoboken, NJ: Wiley, 1999.

Chenlei Guo received the B.S. and M.S. degrees
in electronic engineering from Fudan University,
Shanghai, China, in 2005 and 2008, respectively.

He is currently at Microsoft Corporation, Red-
mond, WA, USA. His research interest includes
modeling biologically plausible computational visual
attention, object detection/recognition, and brain–
computer interface.

Xin Li (S’01–M’06) received the B.S. and M.S. de-
grees in electronics engineering from Fudan Univer-
sity, Shanghai, China, in 1998 and 2001, respectively,
and the Ph.D. degree in electrical and computer engi-
neering from Carnegie Mellon University, Pittsburgh,
PA, in 2005.

In 2005, he cofounded Xigmix Inc. to commercial-
ize his Ph.D. research, and was the Chief Technical
Officer until the company was acquired in 2007. He
is currently an Assistant Research Professor in the
Department of Electrical and Computer Engineering,

Carnegie Mellon University. Since 2009, he has the Assistant Director for FCRP
Focus Research Center for Circuit and System Solutions (C2 S2), a national con-
sortium of 13 research universities (Carnegie Mellon University, Massachusetts
Institute of Technology, Stanford University, University of California, Berkeley,
University of Illinois at Urbana-Champaign, University of Michigan, Columbia
University, University of California, Los Angeles, among others) chartered by
the U.S. semiconductor industry and the U.S. Department of Defense to work on
next-generation IC design challenges. His research interests include IC design
and neural signal processing.

Dr. Li was in the Technical Program Committee of International Confer-
ence on Computer-Aided Design during 2008 and 2009, the Technical Program
Committee of International Conference on Very-large-scale integration Design
in 2009, the Technical Program Committee of International Conference on
Image Theory and Applications in 2009, and the IEEE Outstanding Young Au-
thor Award Selection Committee in 2006. He received the Best Session Award
from Semiconductor Research Corporation Student Symposium in 2006, the
Best Paper Nomination from Design Automatic Conference in 2006, and the
IEEE/ACM William J. McCalla ICCAD Best Paper Award in 2004. He also re-
ceived the Inventor Recognition Awards from Focus Center Research Program
in 2006, 2007, and 2009.

Samu Taulu received the M.S. degree in technical
physics, in 2000, and the Ph.D. degree in biomedi-
cal engineering and computational science, in 2008,
both from Helsinki University of Technology (HUT),
Espoo, Finland.

He was at Brain Research Unit, Low Temperature
Laborator, HUT. He is currently a Senior Researcher
at Elekta Neuromag Oy, Helsinki, Finland, where
he is involved in mathematical method development
and project management for magnetoencephalogra-
phy (MEG) applications and software. He is engaged

in research as a Scientist in collaboration with the customers and other collab-
orators of Elekta Neuromag Oy, and also delivers lectures on applications of
electromagnetic measurements at HUT (called Aalto University since January
2010). The method developed by him and his colleagues at Elekta Neuromag
Oy includes the signal space separation method, which was initiated in 2001 by
the challenges of signal processing of the infant MEG measurements that were
carried out in the BioMag Laboratory, Helsinki University Central Hospital,
Finland. His research interests include signal processing of biomagnetic multi-
channel data, and modeling of MEG fields with applications in neural current
estimation and instrumentation design.

Dr. Taulu has been a member of the International Society for Advanced
Clinical MEG, since 2009. He received the Excellence Award at the 2005 MEG
Applications Conference.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 13,2010 at 15:58:30 UTC from IEEE Xplore.  Restrictions apply. 



1866 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 57, NO. 8, AUGUST 2010

Wei Wang received the M.Sc. degree in biomedical
engineering from the University of Tennessee Health
Science Center, Memphis, TN, in 2002, the M.D.
degree from Peking University Health Science Cen-
ter (formerly Beijing Medical University), Beijing,
China, in 1999, and the Ph.D. degree in Biomedical
Engineering from Washington University, St. Louis,
MO, in 2006.

He was a Senior Scientist at St. Jude Medical, Inc.,
Sylmar, CA. He is currently an Assistant Professor
in the Department of Physical Medicine and Reha-

bilitation and also involved in the Department of Bioengineering, University of
Pittsburgh, Pittsburgh, PA. He is also a Project Leader in the National Science
Foundation Quality of Life Technology Engineering Research Center, a joint
entity between University of Pittsburgh and Carnegie Mellon University. His
research interests include neural engineering, motor neuroprosthetics, brain–
computer interface, rehabilitation of movement disorders, and motor system
neurophysiology.

Douglas J. Weber (M’94) received the B.S. de-
gree in biomedical engineering from the Milwaukee
School of Engineering, Milwaukee, WI, in 1994, and
the M.S. and Ph.D. degrees in bioengineering from
Arizona State University, Tempe, in 2000 and 2001,
respectively.

He was a Postdoctoral Fellow (2001–2003) and
an Assistant Professor (2003–2005) in the Center
for Neuroscience, University of Alberta, Alberta,
Canada. He is currently an Assistant Professor in
the Department of Physical Medicine and Rehabili-

tation, University of Pittsburgh, Pittsburgh, PA. He is also a Faculty Member
in the Department of Bioengineering and the Center for the Neural Basis of
Cognition, University of Pittsburgh. His research interests include neural engi-
neering, including studies of motor learning and control of walking and reaching
with particular emphasis on applications to rehabilitation technologies and prac-
tice, functional electrical stimulation, activity-based neuromotor rehabilitation,
neural coding, and neural control of prosthetic devices. The research in his labo-
ratory has been concerned with development of somatosensory neural interfaces
to record from or stimulate primary afferent neurons in cats and humans, and
brain machine interface studies with magnetoencephalography and electrocor-
ticography in humans. His research is supported by the grants from the National
Institute of Biomedical Imaging and Bioengineering, the National Institute of
Neurological Diseases and Stroke, and the U.S. Army’s Telemedicine and Ad-
vanced Technology Research Center.

Dr. Weber has been a member of IEEE Engineering in Medicine and Biology
Society, since 1994 and a member of the Society for Neuroscience, since 1995.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 13,2010 at 15:58:30 UTC from IEEE Xplore.  Restrictions apply. 


