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ABSTRACT 
The aggressive technology scaling has made it increasingly 
difficult to design high-performance, high-density SRAM circuits. 
In this paper, we propose a new SRAM design methodology that 
is referred to as maximum-information storage system (MISS). 
Unlike most traditional SRAM circuits that are designed for 
maximum cell density, MISS aims to maximize the information 
density (i.e., the number of information bits per unit area). 
Towards this goal, an information model is derived to 
quantitatively measure the information bits stored in a given 
SRAM system. In addition, a convex optimization framework is 
developed to optimize SRAM cells to achieve maximum 
information storage. Our design example in a commercial 65nm 
CMOS process demonstrates that MISS achieves more than 3.5× 
area reduction over the traditional SRAM design, while storing 
the same amount of information. Furthermore, two real-life signal 
processing examples show that given the same area constraint, 
MISS can increase signal-to-noise ratio by more than 30 dB 
compared to the traditional SRAM system. 
 
1. INTRODUCTION 

On-chip embedded storage device (i.e., SRAM) is a critical 
component that plays an important role in defining the overall 
system performance of today’s large-scale integrated circuits [1]. 
An SRAM bit cell is typically designed with minimum-size 
transistors in order to minimize silicon area. However, these small 
transistors make SRAM extremely sensitive to large-scale process 
variations (e.g., random dopant fluctuations) posed by nanoscale 
IC technology [2]-[4]. For this reason, SRAM design has been 
identified as one of the major bottlenecks for future IC technology 
scaling. 

To address this technical challenge, a large number of 
statistical analysis and optimization algorithms have been 
proposed to facilitate robust SRAM design at advanced 
technology nodes [5]-[14]. The key idea is to accurately predict 
both symmetric and random variations for SRAM circuits so that 
design margins can be minimized to improve performance and/or 
reduce area. While these existing techniques rely on different 
statistical algorithms, all of them share the same design goal: 
• High cell robustness: Each SRAM cell is designed with 

nearly zero failure probability in order to guarantee high 
parametric yield for the entire SRAM system. 

• High cell density: Subject to the aforementioned robustness 
constraint, each SRAM cell is designed with minimum area in 
order to maximize cell density. 

These two objectives have been considered as the “golden 
standard” and have never been changed during the past several 
decades. However, as the non-idealities at nanoscale technology 
pose enormous challenges for SRAM design, they also suggest an 
immediate need to re-think this fundamental design strategy in 
order to meet today’s manufacturing reality. 

In this paper, we propose a completely new design 
methodology, referred to as Maximum-Information Storage 
System (MISS), for SRAM circuits. The key idea is not to 
maximize the traditional cell density that is measured by the 
number of SRAM cells per unit area. Instead, we propose to 
maximize the information density (i.e., the number of information 
bits per unit area). Note that these two density metrics are 
equivalent, if and only if all SRAM cells have zero failure 
probability. In this case, one SRAM cell stores one bit of 
information. However, as each SRAM cell can possibly fail with 
nanoscale manufacturing technology, the proposed information 
density is substantially different from the traditional cell density. 
It offers a radically new paradigm for optimal SRAM design. 

The proposed information density measures the amount of 
information stored in a unit-area SRAM system. Maximum-
information storage cannot be achieved by simply maximizing 
cell robustness. Note that a reduced failure rate of SRAM cell 
always comes with an area penalty, e.g., by increasing transistor 
size or by adding extra redundancy. If SRAM cells are over-
designed to achieve nearly zero failure probability, only few bit 
cells (hence, only few information bits) can be stored within a unit 
area. It, in turn, fails to offer maximum-information storage. In 
many application-specific cases, zero failure probability is not 
required. As will be demonstrated by the signal processing 
examples in Section 6, a number of “unimportant” SRAM cells 
can fail to work and they have negligible impact on the final 
signal-to-noise ratio. 

On the other hand, continually increasing the number of 
SRAM cells within a unit area does not lead to maximum-
information storage either. If an SRAM cell is designed with 
small-size transistors, it results in a high failure probability. In this 
case, the information stored in SRAM is not maximized, as a 
failed bit cell cannot store any information. These observations 
imply an important fact that the traditional SRAM design strategy 
for maximum cell robustness/density may not be optimal. The 
challenging issue here is how to optimally design the proposed 
MISS system (e.g., determine the silicon area and failure 
probability for each SRAM cell) to achieve maximum information 
density. 

Towards this goal, a number of new CAD algorithms and 
design methodologies are developed in this paper to facilitate 
optimal MISS design. First, an analytical model is derived from 
information theory [21], [23] to quantitatively measure the 
information bits stored in a given SRAM system where each bit 
cell is subject to a given failure probability. Such an information 
model enables us to quickly compare different SRAM designs and 
assess their optimality based on information density. 

Second, a convex optimization framework is developed to 
optimize the SRAM system to achieve maximum-information 
storage. Based on this optimal design methodology, the 
performance improvement offered by MISS is compared to the 
traditional SRAM design. While this paper does not focus on chip 
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tape-out and several detailed design issues are not explicitly 
discussed, our quantitative analyses in Section 5 show extremely 
promising results. The proposed MISS system achieves more than 
3.5× area reduction over the traditional SRAM design, while 
storing the same amount of information. 

Third, to fully demonstrate the efficacy of MISS in real-life 
applications, two signal processing examples are extensively 
studied. Our experimental results in Section 6 demonstrate that 
given the same area constraint, the proposed MISS system is able 
to increase signal-to-noise ratio by more than 30 dB, compared to 
the traditional SRAM design. It, in turn, provides strong evidence 
to support the bold move from the traditional design with 
maximum cell robustness/density to the proposed design with 
maximum information density. 

The remainder of this paper is organizing as follows. In 
Section 2, we briefly summarize the background of information 
theory, and then derive the information model for the proposed 
MISS system in Section 3. The detailed design methodology for 
MISS is discussed in Section 4, and a 65nm design example is 
shown in Section 5. Two signal processing applications are further 
studied in Section 6 to demonstrate the efficacy of MISS. Finally, 
we conclude in Section 7. 
 
2. BACKGROUND 

In this section, we briefly summarize the basic background on 
information theory. The concepts and theorems introduced here 
will be further used to derive the information model for SRAM 
circuits in Section 3. 

Definition 1: The differential entropy H(x) of a continuous 
random variable x with probability density function p(x) is defined 
as [21]: 
1 ( ) ( ) ( )∫

+∞

∞−

⋅⋅−= dxxpxpxH 2log . (1) 

The differential entropy H(x) depends on the distribution p(x). It 
measures the uncertainty (or equivalently, information) that the 
random variable x carries. If the entropy H(x) is large, the random 
variable x is highly uncertain and a large amount of information 
can be obtained by knowing its value. 

Based on Definition 1, it is easy to prove the following 
theorem for differential entropy. 

Theorem 1: If the continuous probability density function p(x) is 
scaled by a factor of k, the differential entropy will be increased 
by log2|k| [21]: 
2 ( ) ( ) kxHxkH 2log+=⋅ . (2) 

In other words, the differential entropy H(x) increases, if the 
variance of p(x) increases. This result is consistent with our 
intuition. Namely, a random variable with large variance is highly 
uncertain and, hence, it has large entropy. 

In addition to variance, the differential entropy H(x) also 
depends on the distribution of x. Even if two distributions p(x) and 
p(y) have the same variance, their entropy values H(x) and H(y) 
can be different. The following theorem proves that given a fixed 
variance, Gaussian distribution has the largest entropy value. 

Theorem 2: Among all continuous probability density functions 
where the mean is μ and the variance is σ2, the Gaussian 
distribution x ~ N(u, σ2) has the largest entropy value [23]: 
3 ( ) ( )2

2 2log
2
1 σπ ⋅⋅⋅= exH . (3) 

The differential entropy H(x) measures the information carried 
by a single random variable x. To study an information storage 
system, we must simultaneously consider two random variables: 
(1) the original data x, and (2) the stored (probably distorted) data 
y. In this case, we need to introduce the concept of conditional 
differential entropy. 

Definition 2: If x and y are two continuous random variables with 
joint probability density function p(x, y) and conditional 
probability density function p(x | y), the conditional differential 
entropy is defined as [21]: 
4 ( ) ( ) ( )∫

+∞

∞−

⋅⋅⋅−= dydxyxpyxpyxH |log,| 2
. (4) 

The conditional entropy H(x | y) measures the uncertainty of x 
conditioned on y. Namely, it tells us how much extra information 
is carried by x, if y is already known. 

Given Definition 2, it is straightforward to prove the 
following theorem. 

Theorem 3: Given two continuous random variables x and y, the 
following properties hold for conditional differential entropy [21]: 
5 ( ) ( )xHyxH ≤|  (5) 
6 ( ) ( )yxHyyxH || =+  (6) 
where the equality in (5) holds when x and y are independent. 

Intuitively, Eq. (5) simply means that knowing y helps to reduce 
the uncertainty of x, if x and y are correlated. On the other hand, 
Eq. (6) implies that once y is known, adding it to x does not 
introduce any extra uncertainty. 

Based on the definition of differential entropy and conditional 
differential entropy, we are now ready to define the mutual 
information between two random variables. 

Definition 3: If x and y are two continuous random variables, the 
mutual information between x and y is defined as [21]: 
7 ( ) ( ) ( )yxHxHyxI |, −= . (7) 

Studying (7), we would notice that the mutual information I(x, y) 
is equal to the difference between H(x) (i.e., the information of x) 
and H(x | y) (i.e., the extra information carried by x given a known 
y). In other words, I(x, y) measures the information of x that we 
can learn from y. It is the key mathematical tool that we will use 
to design our proposed MISS system. Intuitively, if x represents 
the original data and y stands for the distorted data stored in an 
SRAM, the goal of optimal MISS design is to maximize the 
mutual information I(x, y) so that we can extract as much 
information as possible for x by knowing y. 
 
3. INFORMATION MODEL 

In this section, we derive an analytical model to quantitatively 
measure the information stored in an SRAM system where each 
bit cell is subject to a given failure probability. Such an 
information model allows us to quickly compare different SRAM 
designs based on their information density, and it will be 
incorporated into our convex optimization framework in Section 4 
to optimally design the proposed MISS system. 
 
3.1 Mathematical Formulation 

We consider an SRAM system that is particularly designed for 
the data cache of signal processing applications. In this case, the 
SRAM cells are used to store numerical data for signal processing 
algorithms. 
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Without loss of generality, we assume that a signal x is real-
valued and it is within the interval [0, 1]. Any real-valued signal 
can be mapped to this interval after appropriate shifting and 
scaling. We represent the signal x by a set of binary digits {xn; n = 
1,2,…} where xn ∈ {0, 1}: 
8 ∑

+∞

=

− ⋅=
1
2

n
n

n xx . (8) 

In general, since x is real-valued, an infinite number of binary 
digits are required to exactly represent x. The upper bound of the 
summation in (8) is n = +∞. 

In practice, we always use a finite number of (say, N) digits 
{xQ

n; n = 1,2,…,N}, where xQ
n ∈ {0, 1}, to approximate x. Such 

an approximation is referred to as quantization in digital signal 
processing [18]: 
9 ∑

=

− ⋅=
N

n

Q
n

nQ xx
1
2  (9) 

10 ε+= Qxx  (10) 
where xQ represents the quantized signal, ε denotes the 
quantization noise, and the superscript “Q” stands for 
“quantization”. In (9), each digit xQ

n is associated with a unique 
weight 2−n. The first digit xQ

1 is referred to as the most significant 
bit (MSB), as it corresponds to the largest weight 2−1. On the other 
hand, the N-th digit xQ

N is referred to the least significant bit 
(LSB), as it corresponds to the smallest weight 2−N. 

To quantitatively model the quantization noise ε, we assume 
that the signal x can take any value within the interval [0, 1] with 
equal probability. Namely, the signal x is uniformly distributed 
over [0, 1]. Given this assumption, it can be easily verified that 
each digit xQ

n can be either 0 or 1 with equal probability [18]: 
11 ( ) ( )

( ) ( )Nn
x
x

xp Q
n

Q
nQ

n ,,2,1
15.0
05.0

=
⎩
⎨
⎧

=
=

=  (11) 

and the quantization noise ε follows the statistics [18]: 
12 ( ) 0=εμ  (12) 

13 ( ) Nvar −⋅= 4
12
1ε  (13) 

where μ(•) and var(•) represent the mean and variance of a 
random variable, respectively. 

While the quantization process introduces the noise term ε in 
(10) and, hence, causes information loss, it is not the only noise 
source in today’s SRAM system. When the binary digits {xQ

n; n = 
1,2,…,N} are stored in SRAM, the stored value {yQ

n; n = 1,2,…,N} 
can be different from {xQ

n; n = 1,2,…,N}, since each SRAM cell 
can possibly fail. In other words, the stored signal: 
14 ∑

=

− ⋅=
N

n

Q
n

nQ yy
1
2  (14) 

can be different from the actual quantized signal xQ. For this 
reason, we need to further consider the random cell failure and 
model the corresponding information loss. 

Towards this goal, we propose the symmetric failure model 
shown in Figure 1. In this model, xQ

n denotes the n-th digit of the 
quantized signal xQ. On the other hand, yQ

n represents the stored 
digit in SRAM that corresponds to xQ

n. Figure 1 shows the 
transition probability from xQ

n to yQ
n, which carries a two-fold 

meaning. First, the probability of getting different xQ
n and yQ

n (i.e., 
the failure rate) is equal to αn. Second, the failure model in Figure 
1 is symmetric, as the conditional probabilities p(yQ

n = 0 | xQ
n = 1) 

and p(yQ
n = 1 | xQ

n = 0) are identical. Such a symmetric failure 
model assumes that the failure probability is independent of the 
binary value stored in the SRAM cell. It is a valid assumption, if 

the failure event is caused by random variations and the SRAM 
cell has a symmetric topology (e.g., the traditional 6-T SRAM 
cell). Combing (11) and Figure 1, we can derive the following 
joint probability mass function for xQ

n and yQ
n: 

15 ( )
( ) ( )

( )
( )

( ) ( )
( )Nn

yx
yx
yx
yx

yxp

Q
n

Q
nn

Q
n

Q
nn

Q
n

Q
nn

Q
n

Q
nn

Q
n

Q
n ,,2,1

1,115.0
0,15.0
1,05.0
0,015.0

, =

⎪
⎪
⎩

⎪
⎪
⎨

⎧

==−⋅
==⋅
==⋅
==−⋅

=

α
α
α

α
. (15) 

xQn yQn

0

1

0

1

( ) n
Q
n

Q
n xyp α−=== 10|0

( ) n
Q
n

Q
n xyp α−=== 11|1

( ) n
Q
n

Q
n xyp α=== 0|1( ) n

Q
n

Q
n xyp α=== 1|0

 
Figure 1.  Symmetric failure model for SRAM cell where the 
failure probability is αn. 

The random failure of SRAM cell can be conceptually 
considered as an additive noise for the quantized signal xQ: 
16 QQQ yx δ+=  (16) 
where 
17 ∑

=

− ⋅=
N

n

Q
n

nQ

1
2 δδ  (17) 

stands for the “equivalent” noise caused by random cell failure. 
Substituting (9), (14) and (17) into (16) yields: 
18 ( )Nnyx Q

n
Q
n

Q
n ,,2,1=−=δ . (18) 

In (18), each digit δQ
n represents the error between the original 

data xQ
n and the stored data yQ

n. Based on the joint probability 
mass function p(xQ

n, yQ
n) in (15), it is easy to derive the 

probability mass function for δQ
n: 

19 ( )
( )
( )
( )

( )Nnp
Q
nn

Q
nn

Q
nn

Q
n ,,2,1

15.0
01

15.0
=

⎪
⎩

⎪
⎨

⎧

=⋅
=−

−=⋅
=

δα
δα
δα

δ
. (19) 

and the following statistics: 
20 ( ) 0=Q

nδμ  (20) 
21 ( ) n

Q
nvar αδ = . (21) 

Substituting (20)-(21) into (17), we have: 
22 ( ) 0=Qδμ  (22) 

23 ( ) ∑
=

− ⋅=
N

n
n

nQvar
1
4 αδ . (23) 

Finally, we combine (10) and (16), yielding: 
24 QQyx δε ++= . (24) 
Eq. (24) implies an important fact that when approximating a real-
valued signal x by N digits and store them in an SRAM, we 
introduce two additive noise terms. The first term ε corresponds to 
quantization noise, and the second term δQ is associated with 
random cell failure. Eq. (12)-(13) and (22)-(23) specify the 
statistics (i.e., mean and variance) for these two noise sources, 
respectively. The aforementioned noise model is summarized in 
Figure 2. 

Studying Figure 2, we would have two important observations. 
First, both noise terms ε and δQ lead to information loss. To 
maximize the stored information, different strategies should be 
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applied to minimize different noise sources. For example, we 
should increase the number of digits (i.e., N) and, hence, the 
number of SRAM cells to reduce the quantization noise ε. On the 
other hand, to minimize the noise δQ caused by random cell 
failure, large transistors should be used and/or extra redundancy 
should be added. All these approaches result in increased area. 
The open question here is how to optimally explore the trade-off 
between total noise and silicon area. 

Real-valued 
signal x 0 1ε+= Qxx

Quantized 
signal xQ

Stored 
signal yQ

∑
=

− ⋅=
N

n

Q
n

nQ yy
1
2

Noise ε due to quantization

Noise δQ due to random cell failure

QQ
N

n

Q
n

nQ yxx δ+=⋅=∑
=

−

1
2

xQ
1

MSB LSB

xQ
2 xQ

3 xQ
4 • • • xQ

N•

yQ
1

MSB LSB

yQ
2 yQ

3 yQ
4 • • • yQ

N•

 
Figure 2.  Two additive noise terms, ε due to quantization noise 
and δQ due to random cell failure, are modeled when 
approximating a real-valued signal x. 

Second, when the quantized signal {xQ
n; n = 1,2,…,N} is 

stored as N digits {yQ
n; n = 1,2,…,N}, different digits correspond 

to different levels of importance. For instance, the MSB yQ
1 is 

much more important than the LSB yQ
N, since it is assigned to a 

much larger weight. If the SRAM cell yQ
1 fails, it leads to a large 

distortion (i.e., large information loss) of the signal xQ. From this 
point of view, MSB should be better protected to achieve a 
smaller failure rate than LSB. The open question here is how to 
determine the optimal failure rate for each digit yQ

n so that the 
overall information density is maximized. 

Motivated by these observations, we will derive an 
information model in the next sub-section that allows us to 
quantitatively measure the information density and quickly 
explore the design trade-offs for an SRAM system. Such a model 
will be further used in Section 4 to maximize the information 
density for the proposed MISS system. 
 
3.2 Information Modeling 

As shown in Figure 2, a real-valued signal x is represented as 
yQ, after it is quantized and stored in an SRAM. Ideally, we want x 
and yQ to be exactly identical (i.e., no information loss). However, 
such an ideal case can never be achieved due to quantization error 
and random cell failure. To quantitatively model the “difference” 
between x and yQ, we adopt the concept of mutual information 
that is defined in Section 2. In our case, the mutual information I(x, 
yQ) measures the information of x that we can learn from yQ. We 
should maximize I(x, yQ) (or equivalently, minimize the 
information loss) as much as possible so that yQ accurately 
approximates x. 

Before moving forward, it is important to mention that the 
variable yQ in (14) is discrete. In theory, the mutual information of 
a discrete random variable cannot be calculated by (7), as Eq. (7) 
is only applicable to continuous random variables. In most 

practical applications, however, the total number of digits (i.e., N) 
is large and, hence, yQ can be approximately treated as a 
continuous variable. This assumption is adopted in our paper and 
we will use (7) to derive an approximate model for the mutual 
information I(x, yQ) in this sub-section. 

Based on (7), we represent I(x, yQ) as the difference between 
two entropy metrics: 
25 ( ) ( ) ( )QQ yxHxHyxI |, −= . (25) 
Studying (25), one would notice that the first term H(x) is the 
differential entropy of x. It is independent of the SRAM system 
that we design. Hence, our goal here is to model the second term 
H(x | yQ) and study how H(x | yQ) is related to the two noise terms 
in (24), i.e., ε due to quantization noise and δQ due to random cell 
failure. The information model we develop will represent H(x | yQ) 
as a function of N (i.e., the total number of digits) and {αn; n = 
1,2,…,N} (i.e., the cell failure probabilities). 

Towards this goal, we first apply (6) and (24) to simply the 
conditional differential entropy H(x | yQ): 
26 ( ) ( ) ( )QQQQQQ yHyyHyxH ||| δεδε +=++= . (26) 
In (26), H(ε + δQ | yQ) is the conditional differential entropy for ε 
+ δQ. Calculating the conditional entropy of the sum of two 
random variables is extremely difficult [15]. Hence, instead of 
finding the exact value of H(ε + δQ | yQ), we aim to determine its 
upper bound and, equivalently, the lower bound of the mutual 
information I(x, yQ) in (25). Such a lower/upper bound technique 
is facilitated by the following two approximations: (1) 
independence approximation, and (2) Gaussian approximation. 

1) Independence approximation: Based on (5), we have: 
27 ( ) ( )QQQ HyH δεδε +≤+ |  (27) 
where the equality holds when ε + δQ and yQ are independent. In 
general, even though the quantization noise ε  and the stored 
signal yQ are independent, the noise δQ due to random cell failure 
and yQ are correlated. Such a correlation can be intuitively 
explained by the fact that if the n-th digit yQ

n is 0, the 
corresponding noise δQ

n can only be 0 or 1 (but not −1), according 
to the noise definition in (18). In other words, since xQ

n can be 
either 0 or 1, δQ

n = xQ
n − yQ

n can never be −1 given yQ
n = 0. It, in 

turn, demonstrates that yQ
n and δQ

n are correlated. Namely, the 
value of δQ

n depends on the value of yQ
n. Hence, H(ε + δQ) in (27) 

is an upper bound to approximate H(ε + δQ | yQ), where the 
equality cannot be reached in our application. 

2) Gaussian approximation: We further apply Theorem 2 to 
derive an upper bound for H(ε + δQ). To this end, we define a new 
random variable ξ with Gaussian distribution. The mean and 
variance of ξ are identical to those of ε + δQ: 
28 ( ) ( )Qδεμξμ +=  (28) 
29 ( ) ( ) ( ) ( )QQ varvarvarvar δεδεξ +=+=  (29) 
where Eq. (29) utilizes the property that ε  and δQ are independent. 
The mutual independence between ε  and δQ is a valid assumption, 
as these two noise terms come from completely different sources. 
The new random variable ξ is the optimal Gaussian distribution 
that approximates ε + δQ. In this case, Theorem 2 guarantees: 
30 ( ) ( )ξδε HH Q ≤+ . (30) 
Namely, we use the differential entropy H(ξ) as an upper bound to 
approximate H(ε + δQ). Combing (3), (13), (23), (29) and (30), we 
have: 
31 ( ) ⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛ ⋅+⋅⋅⋅≤+ ∑
=

−−
N

n
n

nNQ eH
1

2 44
12
12log

2
1 απδε . (31) 
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Finally, substituting (26)-(27) and (31) into (25) yields: 
32 ( ) ( ) ⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛ ⋅+⋅⋅⋅−≥ ∑
=

−−
N

n
n

nNQ exHyxI
1

2 44
12
12log

2
1, απ . (32) 

Eq. (32) is the information model that we aim to derive. It gives 
the lower bound of the mutual information between x and yQ. To 
design the proposed MISS system, we should maximize the 
mutual information I(x, yQ) and, hence, maximize the lower bound 
in (32): 
33 ( ) ⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛ ⋅+⋅⋅⋅− ∑
=

−−
N

n
n

nN

N
exH

N 1
2,,,

44
12
12log

2
1max

1

απ
αα

 (33) 

where N (i.e., the total number of digits) and {αn; n = 1,2,…,N} 
(i.e., the cell failure probabilities) are the design parameters that 
should be determined. 

Note that the differential entropy H(x) in (33) is independent 
of N and {αn; n = 1,2,…,N}. In addition, the function log2(•) 
monotonically increases. Hence, the optimization in (33) is 
equivalent to: 
34 ∑

=

−− ⋅+
N

n
n

nN

N N 1,,,
44

12
1min

1

α
αα

. (34) 

Eq. (34) implies an important fact that maximum-information 
storage can be achieved by minimizing the total noise power, i.e., 
var(ε) + var(δQ). This conclusion is consistent with our intuition. 
Namely, maximum signal-to-noise ratio can be achieved, if noise 
power is minimized. In practice, the optimization in (34) must be 
solved subject to a given area constraint so that the information 
density (instead of the total information) is maximized. These 
implementation details will be discussed in the next section. 
 
4. MISS DESIGN 

Given the information model derived in the previous section, 
we need to further capture the relation between the silicon area 
and the design parameters, i.e., N and {αn; n = 1,2,…,N}, so that 
the optimization in (34) can be solved subject to a given area 
constraint. Assume that N SRAM cells are used to store the N 
digits {yQ

n; n = 1,2,…,N} and the silicon area of these memory 
cells is denoted as {sn; n = 1,2,…,N}. The total silicon area sTotal is 
simply the summation of {sn; n = 1,2,…,N}: 
35 ∑

=

=
N

n
nTotal ss

1

. (35) 

On the other hand, there are several design options that we 
can consider to explore the trade-offs between the cell area {sn; n 
= 1,2,…,N} and the failure probabilities {αn; n = 1,2,…,N}. For 
example, the failure probability αn can be reduced, if the transistor 
size is increased and/or extra redundancy is added. Due to the 
page limit of this paper, we will not consider all these possible 
implementation options. Instead, we will focus on the transistor 
sizing approach for the rest of this paper. 

To quantitatively model the relation between sn and αn, we 
consider a commercial 6-T SRAM cell designed in a 65nm CMOS 
process. Taking the initial design provided by the foundry, we 
proportionally scale the widths of all six transistors to vary the 
cell area sn. In addition, we apply Monte Carlo analysis (i.e., 
importance sampling [6]-[8], [10], [13]) to estimate the failure 
rate αn with the consideration of process variations. Figure 3 plots 
the failure rate αn as a function of the cell area sn. In Figure 3, sn is 
normalized where sn = 5 represents the initial foundry design and 
sn = 1 denotes the minimum-size design with the transistors at 
their minimum feature size. 

Studying Figure 3, we would notice that the failure rate αn 

exponentially decreases, as the cell area sn increases. The 
logarithm of the failure probability is almost a linear function of 
the cell area. Motivated by this observation, we use the following 
model to approximate the relation between αn and sn: 
36 ( )nn sk ⋅−⋅= βα exp  (36) 
where the model coefficients k = 1.5×10−4 and β = 0.73 are 
determined by least-squares fitting [24] from the data points in 
Figure 3. The fitted model accurately matches the Monte Carlo 
analysis result, as shown in Figure 3. 
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Figure 3.  The SRAM cell failure rate αn exponentially decreases 
as the cell area sn increases. 

Combining (34)-(36), we can formulate the following 
constrained optimization problem: 
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where sTotal and sMin denote the given specifications of the total 
silicon area and the minimum cell area, respectively. Taking 
Figure 3 as an example, sMin (normalized) is equal to 1, as is 
determined by the minimum feature size of the manufacturing 
process. In (37), N (i.e., the total number of digits) and {sn; n = 
1,2,…,N} (i.e., the cell area) are the design parameters that should 
be determined. Compared to (34), the cell failure probabilities {αn; 
n = 1,2,…,N} are replaced by {sn; n = 1,2,…,N} in (37), since 
there is a one-to-one mapping between αn and sn as shown in (36). 

As the variable N in (37) is an integer, the resulting nonlinear 
optimization is an integer programming problem. It cannot be 
directly solved by an efficient and robust algorithm. However, for 
any fixed value of N, the cost function in (37) is a convex 
exponential function of {sn; n = 1,2,…,N} and the constraints are 
simply linear functions of {sn; n = 1,2,…,N}. Hence, if N is fixed, 
Eq. (37) is a convex optimization problem for the variables {sn; n 
= 1,2,…,N}. It can be easily solved by many convex programming 
algorithms (e.g., interior point method [19]). For this reason, 
instead of solving (37) directly, we propose the following 
hierarchical search approach. 

Algorithm 1: Hierarchical Optimization for MISS System 
1. Start from the cell failure rate model in (36), the total silicon 

area sTotal, and the minimum cell area sMin. 
2. Calculate NMax as the largest integer that is no greater than 

sTotal/sMin. Set N = 1. 
3. Given a fixed value of N, solve the convex optimization 

problem in (37) to determine {sn; n = 1,2,…,N} and calculate 
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the optimal cost function value cN. 
4. N = N + 1. If N ≤ NMax, go to step 3. Otherwise, go to Step 5. 
5. Find the minimum cost function value from the set {cN; N = 

1,2,…,NMax}. Determine the corresponding N and {sn; n = 
1,2,…,N} as the optimal solution of the MISS system. 

Algorithm 1 searches the optimal N and {sn; n = 1,2,…,N} for 
(37) via two hierarchical loops. In the inner loop, we solve a 
convex optimization problem to determine {sn; n = 1,2,…,N} for a  
given N. On the other hand, N is varied from 1 to NMax during the 
top-level iterations to search its optimal value. In Algorithm 1, 
NMax is determined by the ratio between sTotal and sMin. Namely, 
the maximum number of SRAM cells cannot be greater than 
sTotal/sMin. 

The optimization in (37) minimizes the total noise power and, 
hence, maximizes the mutual information in (32) for a given area 
constraint. Once it is solved by Algorithm 1, we find the optimal 
N and {sn; n = 1,2,…,N} to store the real-valued signal in (8) with 
maximum information density. In most practical applications, 
multiple real-valued signals are involved for signal processing, 
and each signal should be stored in N SRAM cells where the 
optimal cell area is {sn; n = 1,2,…,N}. The efficacy of the 
proposed MISS system over the traditional SRAM design will be 
demonstrated by a 65nm design example in Section 5 and two 
real-life signal processing applications in Section 6. 
 
5. DESIGN EXAMPLE 

In this section, we demonstrate the efficacy of the proposed 
MISS system and highlight its difference over the traditional 
SRAM design. A commercial 6-T SRAM cell in a 65nm CMOS 
process is used as the test case. The failure rate of this SRAM cell 
is shown in Figure 3. 

Two different SRAM design methodologies are implemented 
for testing and comparison purpose. First, an initial cell design is 
provided by the foundry. Its normalized cell area is 5 and the 
corresponding failure rate is 3.9×10−6, as shown in Figure 3. If N 
digits are used to represent a real-valued signal, all these N SRAM 
cells have the same silicon area {sn = 5; n = 1,2,…,N} and failure 
rate {αn = 3.9×10−6; n = 1,2,…,N}. The total silicon area is simply 
5×N. The aforementioned setup is used to create the traditional 
SRAM design. 

Second, we take the initial foundry design and proportionally 
scale the widths of all transistors, resulting in the cell failure rate 
shown in Figure 3. In this example, the normalized minimum cell 
area is sMin = 1. Next, we apply Algorithm 1 to generate the 
optimal MISS design for a given area constraint sTotal. The convex 
optimization in Algorithm 1 is solved by CVX [17]. It takes less 
than 1 minute on a desktop to finish the top-level iterations of 
Algorithm 1. As sTotal varies from 5 to 100, a number of optimal 
MISS designs are created. 

In this paper, we use signal-to-noise ratio (SNR) as a criterion 
to quantitatively compare the aforementioned SRAM designs. 
Given the real-valued signal x that is uniformly distributed over [0, 
1], its energy can be measured by the variance [18]: 
38 ( )

12
1=xvar . (38) 

On the other hand, the total noise power, including the noise ε  
due to quantization and the noise δQ due to random cell failure, 
can be calculated based on (13), (23) and (29): 
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Combining (38) and (39), we have: 
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Figure 4.  The proposed MISS system achieves significantly 
improved signal-to-noise ratio over the traditional SRAM design. 
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                             (a)                                                 (b) 
Figure 5.  The number of SRAM cells and the corresponding 
silicon area of these memory cells are different for (a) the 
traditional SRAM design and (b) the proposed MISS system. 

0 50 100

-100

-50

0

s
Total

N
oi

se
 P

ow
er

 (
dB

)

 

 

Cell Failure
Quantization

0 50 100

-100

-50

0

s
Total

N
oi

se
 P

ow
er

 (
dB

)

 

 

Cell Failure
Quantization

 
                             (a)                                                 (b) 
Figure 6.  Noise power varies for (a) the traditional SRAM design 
and (b) the proposed MISS system, as sTotal varies from 5 to 100. 

Figure 4 shows the SNR values as the normalized total area 
sTotal varies from 5 to 100. Note that the proposed MISS system 
achieves significantly improved SNR over the traditional SRAM 
design. As labeled in Figure 4, to reach the same SNR (or 
equivalently, to store the same amount of information), the 
proposed MISS system offers more than 3.5× area reduction 
compared to the traditional SRAM design. 

To intuitively understand the advantage offered by MISS, 
Figure 5 plots the number of SRAM cells and the corresponding 
silicon area of these memory cells for both the traditional SRAM 
design and the proposed MISS system. Comparing Figure 5(a) 
and Figure 5(b), we would have two important observations. First, 
when sTotal is small, the traditional SRAM design uses a small 
number of digits to store a real-valued signal x. In the extreme 
case, if sTotal is equal to 5, only one digit is used to represent x, 
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resulting in large quantization noise. On the other hand, five digits 
are used by the MISS system given sTotal = 5. In this case, even 
though the corresponding five SRAM cells must take minimum 
size, they offer significantly improved SNR, as shown in Figure 4. 

Second, when sTotal is large, a lot of digits are adopted by the 
traditional SRAM design where the corresponding SRAM cells 
have identical silicon area. For example, when sTotal is equal to 
100, there are 20 SRAM cells in total where the normalized 
silicon area of each cell is 5. The proposed MISS system, however, 
only uses 16 SRAM cells in this case. In addition, these 16 
memory cells are optimally sized so that the MSB cell is large (i.e., 
has low failure rate) and the LSB cell is small (i.e., has high 
failure rate). As a result, the SNR (and hence, the information 
density) is maximized. 

Figure 6 further plots the noise power as a function of sTotal for 
both the traditional SRAM design and the proposed MISS system. 
Studying Figure 6(a) for the traditional SRAM design, the 
quantization noise dominates, when sTotal is small and only few 
digits are used to represent a real-valued signal. As sTotal increases, 
quantization noise decreases and eventually random cell failure 
becomes the dominant noise source. On the other hand, the 
proposed MISS system carefully balances these two noise sources 
and the noise power continuously decreases with increased sTotal, 
as Algorithm 1 is applied to optimally size all SRAM cells. 

Finally, it is important to mention that while cell redundancy 
and error-correcting code (ECC) are typically applied to a 
practical SRAM system, they are not considered in this paper. 
Both of these techniques help to reduce cell failure rate with 
increased silicon area. They can be incorporated into the proposed 
MISS system as alternative implementation options. Due to the 
page limit of this paper, the detailed discussion on these topics is 
not presented here. 
 
6. APPLICATIONS 

In this section, we study two signal processing examples for 
the traditional SRAM design and the proposed MISS system. Our 
objective is to demonstrate the impact of MISS on real-life 
applications. 
 
6.1 Image Processing 

 
               (a)                                 (b)                             (c) 
Figure 7.  Image processing example: (a) original image, (b) 
image stored by the traditional SRAM design, and (c) image 
stored by the proposed MISS system. 

Shown in Figure 7(a) is a benchmark example that has been 
widely used to test various image processing algorithms [22]. The 
image size is 512×512. It is in BMP format where each pixel is a 
numerical value. For testing and comparison, two different SRAM 
systems are designed to store this BMP image. 

First, we create a traditional SRAM design using the setup 
described in Section 5. In this study, we set the total silicon area 
sTotal = 10 for each pixel. Since the area of one traditional SRAM 
cell is 5, we only have two digits to represent one pixel of the 
image. It, in turn, results in large quantization noise, as shown in 
Figure 7(b). 

Second, we create an optimal MISS design with the same area 
constraint (i.e., sTotal = 10) for each pixel. In this case, Algorithm 1 
optimally decides to use eight digits to represent one pixel. Even 
though each of these eight SRAM cells has small area (and hence, 
large failure rate) compared to the traditional SRAM design, 
MISS minimizes the total noise power (in particular, the 
quantization noise in this case). Therefore, the resulting image has 
significantly improved signal-to-noise ratio, as shown in Figure 
7(c). 

Finally, it is worth mentioning that the proposed MISS system 
is completely different from the traditional image compression 
method. While image compression is an alternative approach to 
increase the information density for data storage, it requires extra 
encoding and decoding steps and, hence, increases the latency for 
read and write operations. For this reason, image compression has 
never been used for on-chip data cache where access time is of 
great importance. 
 
6.2 Neural Signal Processing 
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Figure 8.  Signal-to-noise ratio achieved by the traditional SRAM 
design and the proposed MISS system for neural signal processing. 

 
(a) 

 
(b) 

 
(c) 

Figure 9.  Neural signal processing example: (a) original MEG 
image, (b) MEG image stored by the traditional SRAM design, 
and (c) MEG image stored by the proposed MISS system. 

In this sub-section, we consider a neural signal processing 
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example where magnetoencephalography (MEG) is recorded for a 
human subject. MEG measures the magnetic field generated by 
human brain [16]. In our experiment, MEG is sampled at 1 kHz 
for 2.2 seconds. In other words, one MEG image is sampled every 
one millisecond and 2200 MEG images are collected in total. 

The aforementioned MEG images are stored in two different 
SRAM systems: the traditional SRAM design and the proposed 
MISS system. Both SRAMs are designed using the same setup as 
described in Section 6.1 (i.e., sTotal = 10 for each pixel). In 
addition, a signal space separation (SSS) algorithm [16] is applied 
to these MEG data to perform spatial filtering. 

Figure 8 shows the signal-to-noise ratio (SNR) for both 
SRAM systems. Note that MISS achieves more than 30 dB 
improvement in SNR over the traditional SRAM design. In 
addition, Figure 9 shows the SSS results at a particular sampling 
time for (a) the original MEG image, (b) the MEG image stored 
by the traditional SRAM design, and (c) the MEG image stored by 
MISS. In each case, three different images are displayed. Roughly 
speaking, these three images correspond to the magnetic field at 
three different directions in the 3-D space. Studying Figure 9, we 
would notice that MISS achieves significantly reduced distortion 
compared to the traditional SRAM design. 
 
7. CONCLUSIONS 

In this paper, we propose a new SRAM design methodology 
that is referred to as maximum-information storage system 
(MISS). MISS aims to maximize the information density (instead 
of cell density) for SRAM. It offers an optimal SRAM design (e.g., 
maximum signal-to-noise ratio) for a number of application-
specific cases such as signal processing. To optimally design the 
proposed MISS system, an information model is derived to 
quantitatively measure the information bits stored in an SRAM. In 
addition, a convex optimization framework is developed to 
determine the optimal transistor sizing to achieve maximum 
information density. As is demonstrated by our 65nm SRAM 
design example, MISS can reduce silicon area by 3.5× compared 
to the traditional SRAM circuit. When applied to signal 
processing applications, MISS achieves more than 30 dB 
improvement in signal-to-noise ratio over the traditional SRAM 
system. Based on these promising results, MISS is expected to 
offer a radically new design paradigm for next-generation SRAM 
circuits. 
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