
 1

Bayesian Virtual Probe: Minimizing Variation Characterization 
Cost for Nanoscale IC Technologies via Bayesian Inference 

Wangyang Zhang and Xin Li 
Electrical & Computer Engineering Department 

Carnegie Mellon University 
5000 Forbes Avenue, Pittsburgh, PA 15213 

{wangyan1, xinli}@ece.cmu.edu 

Rob A. Rutenbar 
Computer Science Department 

University of Illinois at Urbana-Champaign 
201 N. Goodwin Ave, Urbana IL 61801 

rutenbar@illinois.edu
 

ABSTRACT 
The expensive cost of testing and characterizing parametric 
variations is one of the most critical issues for today’s nanoscale 
manufacturing process. In this paper, we propose a new technique, 
referred to as Bayesian Virtual Probe (BVP), to efficiently 
measure, characterize and monitor spatial variations posed by 
manufacturing uncertainties. In particular, the proposed BVP 
method borrows the idea of Bayesian inference and information 
theory from statistics to determine an optimal set of sampling 
locations where test structures should be deployed and measured 
to monitor spatial variations with maximum accuracy. Our 
industrial examples with silicon measurement data demonstrate 
that the proposed BVP method offers superior accuracy (1.5× 
error reduction) over the VP approach that was recently developed 
in [12]. 

Categories and Subject Descriptors 
B.7.2 [Integrated Circuits]: Design Aids – Verification  

General Terms 
Algorithms 
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1. INTRODUCTION 

As the feature size of integrated circuits continues to scale 
down, parametric variation of manufacturing process becomes 
increasingly difficult to control [1]-[2]. Great uncertainty in 
circuit behavior has been observed due to process variations, 
which is a growing issue with technology scaling. To understand 
and combat process variations, silicon testing and characterization 
[3] is an important part of the infrastructure that facilitates many 
statistical IC design techniques, such as statistical timing analysis 
[4]-[8], post-silicon tuning [9]-[11], etc. However, most 
traditional silicon characterization approaches are extremely 
expensive: Hundreds of test structures must be deployed in wafer 
scribe lines and/or product chips to accurately capture spatial 
variations. 

Recently, a new technique referred to as Virtual Probe (VP) 
has been developed to minimize the cost of silicon 
characterization [12]. The key idea of VP is to measure very few 
test structures at a set of sampling locations of a wafer/chip. The 
parametric variations at other locations are not physically 

measured by hardware testing. Instead, spatial variation 
information at these locations is predicted through the use of a 
numerical algorithm. In other words, unlike the traditional 
approaches that require a large number of test structures, VP only 
physically monitors the variability at very few locations, thereby 
reducing the testing and characterization cost. 

While the efficacy of VP has been demonstrated by several 
industrial examples in [12], it remains an open question how VP 
could select optimal sampling locations to maximize prediction 
accuracy. The algorithm proposed in [12] randomly selects a 
number of sampling locations to collect measurement data. Such a 
simple sampling scheme may lead to large error, especially if a set 
of “bad” locations are randomly sampled. More importantly, 
random sampling does not necessarily minimize error and, hence, 
does not offer the best-possible accuracy that VP could achieve. 

Motivated by these observations, we aim to develop an 
optimal sampling scheme to improve the accuracy of VP. In 
particular, we ask the following question: Where are the optimal 
sampling locations that result in maximum accuracy? The answer 
to this question, however, is not trivial. In this paper, we show that 
the optimal sampling locations strongly depend on the spatial 
pattern of process variations. Namely, they are different from 
process to process, from wafer to wafer, and from chip to chip. It 
is impossible to come up with a fixed set of sampling locations 
that are optimal for all cases. Instead, the best sampling locations 
must be adaptively “learned” in real time. 

Towards this goal, we borrow the idea of Bayesian inference 
from statistics [20] to develop a new algorithm referred to as 
Bayesian Virtual Probe (BVP). BVP adaptively determines the 
optimal sampling locations by explicitly minimizing prediction 
error. Given a small set of measurement data, it first estimates the 
error of VP by using Bayes’ theorem. Next, the optimal sampling 
locations are found to collect additional measurement data and 
improve prediction accuracy. Such an adaptive sampling scheme 
does not save silicon area, as we must deploy and manufacture all 
test structures in advance. However, it can substantially reduce 
testing/characterization time and eliminate many reliability issues 
for wafer probe test, since we only need to measure a small subset 
of test structures optimally selected by BVP. 

Two important new contributions are made in this paper to 
uniquely tune the proposed BVP algorithm for our variation 
characterization application. First, we develop a new scheme to 
approximate the Bayesian inference by multivariate Gaussian 
distribution. As such, the posterior distribution (i.e., the error of 
VP) can be analytically estimated with low computational cost. 
Without this new approximation scheme, posterior distribution 
must be estimated by Monte Carlo simulation [20], which is 
computationally expensive and, hence, not feasible for many 
practical applications. 

In addition, we further derive an analytical formula to 
estimate the differential entropy (i.e., the prediction uncertainty) 
based on information theory. Such an entropy formulation enables 
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us to efficiently select the optimal sampling locations to minimize 
prediction uncertainty (or equivalently, maximize prediction 
accuracy). As will be demonstrated by several industrial examples 
with silicon measurement data in Section 4, our proposed BVP 
method reduces the number of required sampling points by 1.5× 
compared to the earlier VP algorithm that relies only on random 
sampling. 

The remainder of this paper is organized as follows. In 
Section 2 we briefly review the background of VP. In Section 3, 
we derive the Bayesian inference for our proposed BVP method, 
and then utilize it to develop a novel optimal sampling method 
that maximizes prediction accuracy based on information theory. 
The efficacy of BVP is demonstrated by several industrial 
examples with silicon measurement data in Section 4. Finally, we 
conclude in Section 5. 
 
2. BACKGROUND 

Let g(x, y) be the two-dimensional function of the 
performance of interest, where x and y represent the coordinate of 
a location within the two-dimensional plane. The performance g 
can be the frequency of a ring oscillator, the threshold voltage of a 
transistor, etc. We discretize the two-dimensional function g(x, y) 
and denote the coordinates x and y as integers x ∈ {1,2,...,P} and y 
∈ {1,2,...,Q}. Mathematically, the relation between the 
performance value and its frequency-domain component can be 
represented by a two-dimensional linear transform such as 
discrete cosine transform (DCT) [19]: 
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where {G(u, v); u = 1,2,...,P, v = 1,2,...,Q} is a set of DCT 
coefficients and: 
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On the other hand, {g(x, y); x = 1,2,...,P, y = 1,2,...,Q} can be 
represented as the linear combination of {G(u, v); u = 1,2,...,P, v = 
1,2,...,Q} by inverse discrete cosine transform (IDCT): 
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Virtual Probe (VP [12]) aims to measure a very small number 
of (say, M) samples at the locations {(xm, ym); m = 1,2,...,M} and 
recover the performance value g(x, y) at other locations {(xm, ym); 
m = M+1,M+2,...,PQ} where M << PQ. Towards this goal, we 
formulate the following linear equation based on the measurement 
data {g(xm, ym); m = 1,2,...,M}: 
5 BA =⋅η  (5) 
where 
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8 ( ) ( ) ( )[ ]TQPGGG ,2,11,1 �=η  (8) 
9 ( ) ( ) ( )[ ]T
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We need to solve {G(u, v); u = 1,2,...,P, v = 1,2,...,Q} from (5)-(9). 
Once the DCT coefficients are known, the unknown performance 
values {g(xm, ym); m = M+1,M+2,...,PQ} can be easily calculated 
by IDCT in (4): 
10 η⋅= AB ~~  (10) 
where 
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In (11), {Am,u,v; m = M+1,M+2,...,PQ, u = 1,2,...,P, v = 1,2,...,Q} is 
defined by (7). 

Studying (5)-(9), one would notice that M (the number of 
equations) is vastly less than PQ (the number of unknowns). The 
linear equation A⋅� = B is profoundly underdetermined. To solve 
(5), the authors of [12] further assume that the solution � is sparse. 
Namely, a large number of DCT coefficients are close to zero, but 
we do not know the exact locations of these zeros. Given this 
assumption, the solution � can be uniquely determined by solving 
the following optimization: 
13 

BA =⋅η
η

η
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0  (13) 

where ||•||0 stands for the L0-norm of a vector, i.e., the number of 
non-zeros in the vector. The optimization in (13) attempts to 
minimize the number of non-zeros in �, while satisfying the linear 
equation A⋅� = B. Hence, it results in a unique solution � that is as 
sparse as possible. 

The optimization problem in (13) is NP hard and, hence, is 
extremely difficult to solve [15]-[16]. A more efficient technique 
to find sparse solution is based on L1-norm regularization – a 
relaxed version of L0-norm [12], [15]-[16]: 
14 

BA =⋅η
η

η

subject to
minimize

1  (14) 

where ||•||1 denotes the L1-norm of a vector, i.e., the summation of 
the absolute value of all elements in the vector. The L1-norm 
regularization in (14) can be re-formulated as a linear 
programming problem and solved efficiently [12]. 

The Virtual Probe (VP) method proposed in [12] randomly 
selects a number of sampling locations to collect measurement 
data and build the linear equation A⋅� = B in (5). Such a simple 
sampling scheme may lead to large error, especially if a set of 
“bad” locations are randomly sampled. In addition, random 
sampling does not lead to minimum error and, hence, does not 
offer the best-possible accuracy. Motivated by this observation, 
this paper aims to develop a new Bayesian Virtual Probe (BVP) 
algorithm that adaptively determines the optimal sampling 
locations to achieve minimum prediction error. 
 
3. BAYESIAN VIRTUAL PROBE 

The key novelty of our proposed Bayesian Virtual Probe 
(BVP) lies in an iterative optimal sampling technique that 
maximizes prediction accuracy. Starting from a small set of initial 
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samples, BVP determines a set of optimal sampling locations to 
collect additional measurement data so that the prediction error is 
minimized. Such an optimal sampling scheme is facilitated by two 
critical techniques: (1) efficient error prediction by Bayesian 
inference, and (2) optimal sample selection based on information 
theory. These two core techniques enable us to efficiently estimate 
and, consequently, minimize the prediction error. In this section, 
we describe the mathematical formulation of BVP and highlight 
its novelties. 
 
3.1 Bayesian Inference 

Bayesian inference is an efficient statistical method for error 
estimation [20]. Unlike the L1-norm regularization in (14) that 
only solves a deterministic solution, Bayesian inference aims to 
find a probability density function (PDF) that quantitatively 
measures the prediction error. For instance, a large variance of the 
PDF implies large uncertainty and low accuracy. 

Towards this goal, we first need to define a so-called prior 
distribution for �. Intuitively, such a prior distribution represents 
our prior knowledge about �. In this paper, we construct the 
following prior distribution for each element of the vector � = [�1, 
�2, ..., �PQ]T: 
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The prior PDF in (15) is modeled as a zero-mean Normal 
distribution with a unique variance σi

2 assigned to each �i. In 
other words, we model the DCT coefficients {�i; i = 1,2,...,PQ} by 
different probability distributions. Figure 1 shows two zero-mean 
Normal distributions with σ = 0.1 and σ = 1, respectively. 
Studying Figure 1, one would notice that if the prior distribution 
pdf(�i) has a small (or large) variance, the DCT coefficient �i is 
likely to be zero (or non-zero). 
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Figure 1.  Two zero-mean Normal probability density functions (σ = 0.1 
and σ = 1 respectively) as prior distributions. 

Determining the appropriate values for {σi; i = 1,2,...,PQ}, 
however, is not trivial. We only know that the vector � is sparse; 
however, we do not know the exact locations of these zeros. To 
address this difficulty, we re-use the idea of L1-norm 
regularization described in Section 2. Namely, given a small set of 
initial samples, we solve the optimization in (14) to “estimate” the 
values of {�i; i = 1,2,...,PQ}. If the solution �i from (14) is far 
away from zero, the corresponding variance σi

2 should be large, 
implying that the coefficient �i is likely to be non-zero. Otherwise, 
if the solution �i from (14) is close to zero, the corresponding 
variance σi

2 should be small, implying that the coefficient �i is 
likely to be zero. From this point of view, the proposed BVP 

technique re-uses the result of VP, i.e., the vector � solved from 
(14), to further create a Bayesian inference for error estimation 
and optimal sampling. 

Based on the above discussion, we formulate the following 
equation to determine {σi; i = 1,2,...,PQ}: 
16 ( )PQiL

ii ,,2,11 �=⋅= ηλσ  (16) 

where �i
L1 represents the i-th element of the solution � solved 

from the L1-norm regularization in (14), and � > 0 is a scaling 
factor that controls the variance of the distribution. In practice, 
however, it is not necessary to know the exact value of �. As will 
be shown in Section 3.2, the final decision of optimal sampling 
locations is independent of �. It should be noted that while the 
model in (16) looks simple, it has been successfully applied to a 
number of practical problems related to sparse regression and 
demonstrated with promising results, e.g., [17]-[18]. 

To complete our definition of the prior distribution, we further 
assume that all DCT coefficients in the vector � are mutually 
independent. Hence, the joint probability density function pdf(�) 
is: 
17 ( )

( ) ( ) 

�
�

�
�
� ⋅Σ⋅⋅−⋅

Σ⋅
= − ηη

π
η η

η

1
2 2

1exp
det2

1 T
PQpdf  (17) 

where det(•) denotes the determinant of a matrix, and the 
covariance matrix �� is equal to: 
18 
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The independence assumption simply implies that we do not 
know the correlation of {�i; i = 1,2,...,PQ} in advance. The 
correlation information will be taken into account, once the prior 
distribution pdf(�) is combined with our measurement data A⋅� = 
B to determine the posterior distribution. 

To derive the proposed Bayesian inference, we re-write the 
prior distribution in terms of the measured performance B = A⋅� 
and the unmeasured performance B� = Ã⋅� that are defined in (5) 
and (10), respectively. Given the zero-mean Normal distribution 
pdf(�) in (17)-(18) and the linear mapping in (5) and (10), it is 
easy to verify that the prior distribution of (B,B�) is also zero-mean 
and jointly Normal [20]: 
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where the covariance matrix �B,B� is equal to: 
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Note that �B,B� is not diagonal, implying that the random variables 
in (B,B�) are statistically correlated. 

Next, we take the measurement data A⋅� = B into account. 
Given these measurement data, the vector B is fixed. Namely, we 
know the exact value of B (except for measurement noise), and 
the vector B now becomes deterministic, instead of being modeled 
as a multivariate random variable. The proposed Bayesian 
inference aims to utilize the measured performance value B to 
extract extra information about the unmeasured performance 
value B�. This is possible, because B and B� are statistically 
correlated, as shown in (20). Mathematically, the extra knowledge 
about B� that we can learn from B is represented by the posterior 
distribution, i.e., the conditional probability pdf(B�|B). Based on 
Bayes’ theorem and the prior distribution in (19)-(20), the 
posterior distribution pdf(B�|B) is also jointly Normal and its mean 
and covariance are respectively equal to [20]: 

264

17.1



 4

21 BBBBBBB ⋅Δ⋅Δ−= −
~

1
~~|~μ  (21) 

22 1
~~

2
|~

−Δ⋅=Σ BBBB λ  (22) 

where �B�B and �B�B� are the block partitions of the matrix �2⋅(�B,B�)−1: 
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It is worth mentioning that other Bayesian inferences can also be 
derived, e.g., using a Laplace distribution as the prior [12]. 
However, the posterior distribution cannot be easily solved in 
such cases. Hence, these Bayesian inferences do not fit the need 
of our application in this paper. 

The posterior covariance �B�|B in (22) offers a quantitative 
measure of the uncertainty of B�. Namely, if the prediction of B� is 
accurate, the covariance matrix �B�|B should be close to zero. 
Otherwise, if the prediction has large error, the posterior 
distribution should carry a large variance. It, in turn, provides a 
useful guideline for us to optimally collect extra measurement 
data to minimize prediction error. Intuitively, if the k-th element 
of B� (i.e., B�k) has a large posterior variance, we should directly 
measure B�k to minimize uncertainty. In what follows, we will 
derive a mathematical framework based on information theory to 
determine optimal sampling locations. 
 
3.2 Optimal Sampling 

According to information theory, the uncertainty of a 
statistical system pdf(B�|B) can be quantitatively measured by the 
following differential entropy [20]: 
24 ( ) ( ) ( )[ ]� ⋅⋅−= BdBBpdfBBpdfBBH ~|~log|~|~ . (24) 

Intuitively, the differential entropy in (24) is large, if the system is 
profoundly undetermined. In other words, the differential entropy 
should be minimized in order to reduce the uncertainty and, hence, 
achieve an accurate estimation. Given the jointly Normal posterior 
distribution pdf(B�|B) for which the covariance is specified in (22), 
the differential entropy in (24) can be re-written as: 
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where PQ−M is the dimension of B�, i.e., B� ∈ RPQ−M. Note that for 
a jointly Normal distribution with a given dimension, the 
differential entropy is uniquely determined by the covariance 
matrix. 

The objective of BVP is to select several (say, K) additional 
samples that we should further measure to minimize the 
prediction error or, equivalently, minimize the differential entropy. 
To simplify our notation, we re-order the vector B� such that: 
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where W is a permutation matrix and B�K is a vector that contains 
the K additional samples that we should measure. Given the 
covariance matrix in (22) and the permutation in (26), the 
covariance matrix of WB� is: 

27 
�
�

	


�

�
ΣΣ
ΣΣ

⋅=Δ⋅=Σ −

KKKK

KKKKT
BBBBB WW

KK ~~~

~21
~~

2
|~,~

~
λλ  (27) 

where �B�K,B�K� | B is partitioned into four blocks: �KK, �KK�, �K�K and 
�K�K�. Once B�K is measured, the conditional probability pdf(B�K�|B�K,B) 
is still jointly Normal and its covariance matrix is [20]: 
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Hence, the differential entropy of pdf(B�K�|B�K,B) can be written as: 
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where PQ−M−K is the dimension of B�K�, i.e., B�K� ∈ RPQ−M−K. Based 
on the block partitions in (27) and the theory of Schur 
complement [21], H(B�K�|B�K,B) can be re-formulated as: 
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Since det(W)⋅det(WT) = 1 for the permutation matrix W and the 
parameter � appears at both the numerator and the denominator, 
H(B�K�|B�K,B) can be further simplified as: 
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Two important observations can be made from (31). First, to 
minimize the differential entropy H(B�K�|B�K,B), we need to 
optimally select K elements (i.e., K sampling locations) out of B� 
so that the determinant of the corresponding covariance matrix 
det(�KK) is maximized. In particular, if only a single sampling 
location is selected, maximizing det(�KK) is equivalent to finding 
the k-th element of B� that has the maximum variance. Second, the 
value of H(B�K�|B�K,B) is independent of �. Hence, we can simply set 
� = 1 in our numerical computation. It does not change the 
optimal sampling locations that we select. 
 
3.3 Summary 

Algorithm 1: Bayesian Virtual Probe (BVP) 
1. Start from a given integer N representing the total number of 

sampling locations to be measured. 
2. Set the scaling factor � = 1 for our numerical computation. 
3. Randomly select a small number of (say, M << N) sampling 

locations and collect the measurement data at these locations: 
Ω = {g(xm, ym); m = 1,2,...,M}. 

4. Formulate the linear equation in (5) and solve the L1-norm 
regularization problem in (14) to estimate �. 

5. If M = N, stop iteration and go to Step 9. 
6. Define the prior distribution pdf(B,B�) in (19)-(20) and 

calculate the posterior distribution pdf(B�|B) using (21)-(23). 
7. Find the k-th element of B� that has the maximum posterior 

variance. The corresponding sampling location is denoted as 
(xk, yk). 

8. Collect the measurement data g(xk, yk). Set Ω = Ω ∪ {g(xk, yk)} 
and M = M+1. Go to Step 4. 

9. Apply IDCT in (4) to recover the performance function {g(x, 
y); x = 1,2,...,P, y = 1,2,...,Q} spatially across the wafer/chip. 

Algorithm 1 summarizes the major steps of the proposed BVP 
method. It repeatedly applies L1-norm regularization to estimate �, 
and then build the proposed Bayesian inference to optimally select 
the next sampling location. Note that even though Algorithm 1 
only finds a single optimal sampling location at one time, the 
proposed BVP technique can be easily extended to select multiple 
sampling locations simultaneously. 

Our current implementation of Algorithm 1 requires to know 
N (i.e., the total number of sampling points) in advance. In 
practice, the required number of sampling points can be 
determined by monitoring the difference of the prediction results 
between two successive iteration steps. Furthermore, 
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measurement cost (i.e., the maximum number of sampling points 
that are affordable) must also be considered when selecting N. 
Due to space limit, the details of these implementation options are 
not discussed here. 

Finally, it is important to mention that BVP requires a small 
number of initial samples to start the iteration. This initial set of 
samples is randomly generated in Algorithm 1, although other 
deterministic schemes [15]-[16] can also be applied for initial 
sampling. After this initialization step, the main body of 
Algorithm 1 does not involve any other random sampling, thereby 
eliminating the possibility of getting “bad” samples. As will be 
demonstrated by our industrial examples with silicon 
measurement data in Section 4, the proposed BVP algorithm 
achieves superior accuracy (more than 1.5× error reduction) over 
the original VP method. Furthermore, the proposed Bayesian 
inference can be analytically solved by simple matrix inverse and, 
hence, is extremely efficient with low computational cost. 
 
4. NUMERICAL EXAMPLES 

In this section, we demonstrate the efficacy of BVP using 
several industrial design examples with silicon measurement data. 
All numerical experiments are performed on a 2.8GHz Linux 
server. 
 
4.1 Flush Delay Measurement Data 
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Figure 2.  (a) Measured flush-delay values (normalized by a randomly 
selected constant) of 282 industrial chips from the same wafer. (b) 
Recovered flush-delay values from 40 tested chips by VP. (c) Recovered 
flush-delay values from 40 tested chips by BVP. (d) Optimal 40 sampling 
locations (marked by red color) selected by BVP. 

We consider the flush-delay values measured from 282 
industrial chips on the same wafer, as shown in Figure 2(a). In this 
example, the measured delay significantly varies from chip to chip 
due to process variations; however, there is a strong spatial 
correlation in delay variability. Our objective is to predict such a 
spatial variation by measuring few silicon chips. 

For testing and comparison, two different techniques are 
implemented to predict spatial variation: (1) the traditional VP 
with random Latin Hypercube sampling [12], and (2) the proposed 
BVP with optimal sampling location selection. In this example, 

BVP first measures 10 randomly selected chips and it iteratively 
collects additional measurement data based on Algorithm 1. 
Figure 2(b) and Figure 2(c) show the recovered flush-delay values 
from 40 tested chips by VP and BVP respectively. Figure 2(d) 
further shows the locations of these 40 chips optimally selected by 
BVP. 

Two important observations can be made from the results in 
Figure 2. First, by testing 40 chips only, BVP accurately capture 
the spatial variation of delay, while VP fails to achieve the same 
accuracy. In other words, BVP provides superior accuracy over 
VP in this example. Second, as shown in Figure 2(d), BVP 
automatically selects a large portion of tested chips in the middle 
of the wafer along the Y axis. This direction exactly follows the 
gradient of delay variation. It, therefore, enables us to accurately 
predict the spatial variation information in this example. 

Figure 3 shows the average prediction error as a function of 
the number of samples (i.e., tested chips) for both VP and BVP. 
Note that BVP achieves more than 1.5× error reduction over VP. 
The error of BVP is around 5% when 40 chips (out of 282 chips in 
total) are tested. To achieve the same accuracy, VP has to measure 
60~70 chips (1.5× more). 

0 20 40 60 80 100
0

5

10

15

Number of samples

R
el

at
iv

e 
E

rr
or

(%
)

 

 
VP
BVP

1.5×

1.5×

 
Figure 3.  Comparison of prediction error for VP and BVP with different 
number of samples. 
 
4.2 Leakage Current Measurement Data 

We consider the leakage-current measurement collected by 
IDDQ test for the same silicon wafer. Figure 4(a) shows the 
normalized leakage-current values log10(ILeak) (after logarithmic 
transform) as a function of the spatial locations. Compared to the 
delay variation shown in Figure 2(a), the spatial pattern of 
leakage-current measurement is less regular. It, in turn, implies 
that leakage prediction is inherently more difficult than delay 
prediction for this wafer being tested. 

Similar to the previous example, we apply both VP and BVP 
to estimate the spatial variation of leakage current. In our 
experiment, BVP first measures 10 randomly selected chips and it 
iteratively collects additional measurement data based on 
Algorithm 1. Figure 4(b) and Figure 4(c) show the predicted 
leakage-current values from 50 tested chips by VP and BVP 
respectively. Figure 4(d) shows the locations of these 50 chips 
optimally selected by BVP. 

Comparing Figure 4(b) and Figure 4(c), one would notice that 
the proposed BVP method offers substantially better accuracy 
than the traditional VP approach. The accuracy is improved by 
BVP, because it can optimally select the sampling locations to 
accommodate the unique spatial pattern of leakage variation. 
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Figure 5 further shows the average prediction error as a function 
of the number of samples (i.e., tested chips) for both VP and BVP. 
When 50 chips (out of 282 chips in total) are tested, the error of 
BVP is around 6.5%. To achieve the same accuracy, VP has to 
measure 70~80 chips (1.5× more). 
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Figure 4.  (a) Measured leakage-current values log10(ILeak) (normalized by 
a randomly selected constant) of 282 industrial chips from the same 
wafer. (b) Recovered leakage-current values from 50 tested chips by VP. 
(c) Recovered leakage-current values from 50 tested chips by BVP. (d) 
Optimal 50 sampling locations (marked by red color) selected by BVP. 
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Figure 5.  Comparison of prediction error for VP and BVP with different 
number of samples. 
 
5. CONCLUSIONS 

In this paper, we propose a novel Bayesian Virtual Probe 
(BVP) method to generate an optimal set of sampling locations for 
minimum-cost silicon testing and characterization. The proposed 
BVP technique applies an efficient Bayesian inference to estimate 
the prediction error based on posterior distribution. In addition, an 
optimal sample selection algorithm is derived from information 
theory to minimize the prediction error. Several industrial 
examples with silicon measurement data demonstrate that the 
proposed BVP technique offers superior accuracy (1.5× error 
reduction) over the traditional VP approach [12]. Our future 
research will further improve the BVP algorithm by considering 

various non-ideal effects (e.g., measurement noise) and apply it to 
practical integrated circuit design and testing problems such as 
wafer probe testing and post silicon tuning. 
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