
 

Virtual Probe: A Statistically Optimal Framework for Minimum-
Cost Silicon Characterization of Nanoscale Integrated Circuits 

Xin Li, Rob R. Rutenbar and Ronald D. Blanton 
ECE Department, Carnegie Mellon University 

5000 Forbs Avenue, Pittsburgh, PA 15213 
{xinli, rutenbar, blanton}@ece.cmu.edu 

 

ABSTRACT 
In this paper, we propose a new technique, referred to as virtual 

probe (VP), to efficiently measure, characterize and monitor both 

inter-die and spatially-correlated intra-die variations in nanoscale 

manufacturing process. VP exploits recent breakthroughs in 

compressed sensing [15]-[17] to accurately predict spatial 

variations from an exceptionally small set of measurement data, 

thereby reducing the cost of silicon characterization. By exploring 

the underlying sparse structure in (spatial) frequency domain, VP 

achieves substantially lower sampling frequency than the well-

known (spatial) Nyquist rate. In addition, VP is formulated as a 

linear programming problem and, therefore, can be solved both 

robustly and efficiently. Our industrial measurement data 

demonstrate that by testing the delay of just 50 chips on a wafer, 

VP accurately predicts the delay of the other 219 chips on the 

same wafer. In this example, VP reduces the estimation error by 

up to 10× compared to other traditional methods. 
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1. INTRODUCTION 
As integrated circuits (ICs) scale to finer feature size, it 

becomes increasingly difficult to control process variations for 

nanoscale technologies [1]-[2]. The increasing fluctuations in 

manufacturing process introduce unavoidable and significant 

uncertainties in circuit performance. Hence, modeling and 

analyzing these variations to ensure manufacturability and 

improve parametric yield has been identified as a top priority for 

today’s IC design. 

Towards this goal, various techniques have been proposed for 

statistical IC analysis and optimization, e.g., statistical timing 

analysis [3]-[6], post-silicon tuning [7]-[9], etc. All these 

techniques aim to predict and, consequently, minimize circuit-

level performance variations in order to create a robust design 

with high parametric yield. The efficiency of these methods 

heavily relies on the accuracy of the variation model (e.g., 

distribution, correlation, etc.) that provides the important 

information about manufacturing uncertainties. 

Accurately extracting the variation model, however, is not 

trivial. Silicon wafers/chips must be carefully tested and 

characterized using multiple test structures (e.g., ring oscillators) 

deployed in wafer scribe lines and/or within product chips [10]-

[12]. The traditional silicon characterization suffers from three 

major issues: 

• Large area overhead: Today’s advanced microprocessor 

chips typically contain hundreds of on-chip ring oscillators to 

characterize and monitor parametric variations, resulting in 

significant overhead in silicon area [11]. 

• Long testing time: Physically measuring all test structures 

through a limited number of I/O ports consumes a large 

amount of testing time [12]. At nanoscale technologies, IC 

testing has contributed to a significant portion of the total 

manufacturing cost [19]. 

• Low testing reliability: IC testing may even damage the 

wafer/chip being tested. For instance, wafer probe test may 

permanently damage the wafer due to mechanical stress [12]. 

The combination of these critical issues results in continuously 

growing silicon characterization cost, as more and more test 

structures must be added to capture the complicated spatial 

variation of small devices. Even though silicon characterization 

has been extensively studied in the past, there is an immediate 

need to revisit this area and develop a more efficient methodology 

to reduce cost. 

To this end, we ask the following fundamental question: How 

many test structures are minimally required to fully capture the 

spatial variation information? A quick answer to this question can 

be made based on the well-known Nyquist–Shannon sampling 

theorem [18]. Namely, if the variation contains no spatial 

frequency higher than fMAX, the sampling frequency must be at 

least 2fMAX, i.e., test structures must be spaced at most 1/(2fMAX) 

apart. 

The Nyquist sampling theorem generally assumes that all 

frequency components below the maximum frequency fMAX may 

exist; this, however, is not true for our silicon characterization 

application. As will be demonstrated by the industrial 

measurement data in Section 4, spatial variation typically has a 

sparse representation in frequency domain (i.e., a large number of 

Fourier coefficients are almost zero). In this case, simply 

sampling at Nyquist rate generates a large number of redundant 

data. Such redundancy has been observed in many other 

application domains. For example, the key idea of image 

compression is to remove the redundancy and represent the 

information in a compact form [22]. However, our silicon 

characterization problem is substantially different from image 

compression, as we do not want to fully sample spatial variation at 

Nyquist rate and then “compress” it. Instead, we want to avoid 
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redundant sampling in the first place to reduce characterization 

cost. The challenging issue here is how to efficiently sample few 

test structures on a wafer/chip and then accurately recover the 

essential spatial variation information. 

In this paper, we exploit the recent advances in statistics 

(known as compressed sensing [15]-[17]) to develop a novel 

framework of virtual probe (VP) for low-cost silicon testing and 

characterization. Our goal is to accurately predict the spatial 

variation of a wafer/chip by measuring very few test structures at 

a set of selected locations. The proposed VP algorithm is derived 

from maximum posterior estimation (MAP) [21]. It is 

mathematically formulated as a linear programming problem that 

can be solved both robustly and efficiently. Most importantly, 

several theoretical studies from the statistics community prove 

that by exploring the sparse structure in (spatial) frequency 

domain, VP can fully reconstruct the spatial variation with a 

probability nearly equal to 1, even if the (spatial) sampling 

frequency is much lower than the Nyquist rate [15]-[17]. As will 

be demonstrated by the industrial examples in Section 4, VP 

reduces the estimation error by up to 10× compared to other 

traditional methods. 

The remainder of this paper is organized as follows. In 

Section 2, we develop the mathematical formulation and 

algorithm for VP, and then discuss several possible applications of 

VP in Section 3. The efficacy of VP is demonstrated by a number 

of examples using industrial measurement data in Section 4. 

Finally, we conclude in Section 5. 

 

2. VIRTUAL PROBE 

Test structure Virtual probe

 
Fig 1.  An example of the proposed virtual probes. (Left) Traditionally, a 
large number of test structures are deployed and measured to fully 
characterize process variations. (Right) We propose to deploy and 
measure very few test structures, and virtual probes are conceptually 
added to fully recover the spatial variation through the use of a numerical 
algorithm. 

The key idea of virtual probe (VP) is to deploy and measure 

very few test structures at a set of selected locations of a 

wafer/chip. The parametric variations at other locations are not 

directly measured by hardware testing. Instead, virtual probes are 

conceptually added at these locations to predict the variation 

information through the use of a numerical algorithm, as shown in 

Fig 1. In other words, unlike the traditional approach that uses a 

large number of test structures, we propose to physically monitor 

the variability at very few locations and then apply a “smart” 

algorithm to accurately predict the complete spatial variation. This 

goal is facilitated by exploring the sparse structure in (spatial) 

frequency domain, as will be discussed in detail in this section. 

In what follows, we first derive the mathematical formulation 

of VP by (spatial) frequency-domain analysis. Next, we propose 

to solve the VP problem by maximum posterior estimation (MAP) 

[21]. Finally, we convert the proposed MAP formulation to an 

equivalent linear programming problem that can be solved by the 

interior-point method [20] both robustly and efficiently. 

 

2.1 Mathematical Formulation 
Let g(x, y) be the two-dimensional function of the 

performance of interest, where x and y represent the coordinate of 

a location within the two-dimensional plane. Depending on the 

test structure design, the performance g can be the frequency of a 

ring oscillator, the threshold of a transistor, etc. If g(x, y) contains 

no spatial frequency higher than fMAX, the Nyquist-Shannon 

sampling theorem [18] tells us to sample g(x, y) with the sampling 

frequency of 2fMAX in order to perfectly recover the continuous 

function g(x, y). 

Mathematically, the relation between the sampling values and 

their frequency-domain components can be represented by a 

number of two-dimensional linear transforms such as Fourier 

transform [18], discrete cosine transform (DCT) [22], wavelet 

transform [22], etc. In this paper, we use DCT to illustrate the 

basic idea of VP. It should be noted, however, that the proposed 

VP framework can also be implemented with other linear 

transforms. 

We discretize the two-dimensional function g(x, y) at a spatial 

frequency higher than the Nyquist rate. Without loss of generality, 

we denote the coordinates x and y as integers x ∈ {1,2,...,P} and y 

∈ {1,2,...,Q} after discretization. The DCT transform can be 

represented as [22]: 
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where {G(u, v); u = 1,2,...,P, v = 1,2,...,Q} is a set of DCT 

coefficients and: 
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Equivalently, the sampling value {g(x, y); x = 1,2,...,P, y = 

1,2,...,Q} can be represented as the linear combination of {G(u, v); 

u = 1,2,...,P, v = 1,2,...,Q} by the inverse discrete cosine transform 

(IDCT) [22]: 
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From (1)-(4), it is easy to verify that once the sampling values 

{g(x, y); x = 1,2,...,P, y = 1,2,...,Q} are known, the DCT 

coefficients {G(u, v); u = 1,2,...,P, v = 1,2,...,Q} are uniquely 

determined, and vice versa. 

The proposed VP method, however, will go one step further. 

Our objective is to accurately recover {g(x, y); x = 1,2,...,P, y = 

1,2,...,Q} from a very small number of (say, M) samples at the 

locations {(xm, ym); m = 1,2,...,M} where M << PQ. Towards this 

goal, we formulate the following linear equation: 

5 BA =⋅η  (5) 

where 
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In (5)-(9), the DCT coefficients {G(u, v); u = 1,2,...,P, v = 1,2,...,Q} 

are the problem unknowns. In other words, we need to determine 

{G(u, v); u = 1,2,...,P, v = 1,2,...,Q} based on the measurement 

data {g(xm, ym); m = 1,2,...,M}. Once the DCT coefficients {G(u, 

v); u = 1,2,...,P, v = 1,2,...,Q} are known, the function {g(x, y); x = 

1,2,...,P, y = 1,2,...,Q} can be easily calculated by IDCT in (4). 

Solving the linear equation A⋅! = B in (5), however, is not 

trivial, since M (the number of equations) is vastly less than PQ 

(the number of unknowns). Namely, the linear equation in (5) is 

profoundly underdetermined. While Eq. (5) cannot be uniquely 

solved by a simple matrix inverse, we will show in the next sub-

section that the solution of (5) can be statistically determined by 

considering additional prior information via Bayesian inference 

[21]. 

 

2.2 Maximum Posterior Estimation 
In this sub-section, we describe an efficient algorithm using 

maximum posterior estimation (MAP) to statistically solve the 

linear equation (5). Although the result of this sub-section can be 

derived by applying a number of elegant statistics theorems [15]-

[17], we attempt to describe the MAP algorithm at a level that is 

intuitive to the CAD community. More mathematical details of 

MAP can be found in [15]-[17] and [21]. 

To solve (5), we first need to define a so-called prior 

distribution for ! [21]. Intuitively, the prior distribution represents 

our prior knowledge about ! without seeing any measurement 

data. Such prior information helps us to further constrain the 

underdetermined linear equation A⋅! = B in (5) so that a 

meaningful solution can be uniquely found. At first glance, this 

seems impossible, since we would expect that the spatial 

variations and, hence, the DCT coefficients in ! are substantially 

different from wafer to wafer and from chip to chip. However, we 

will show in this paper that ! has a unique property that we can 

exploit to define the prior distribution. 

Before moving forward, let us first examine the following 

example of an industrial IC design. We measure the flush delay of 

this IC from 17 wafers, each containing 269 chips. Using this data 

set, we calculate the DCT coefficients. Fig 2 plots the histogram 

of the normalized DCT coefficient !i (i.e., the i-th element of !). 
Studying Fig 2, we notice that the distribution has a sharp peak at 

!i = 0. This implies that most DCT coefficients are close to 0. In 

general, if the performance variation {g(x, y); x = 1,2,...,P, y = 

1,2,...,Q} presents a spatial pattern, i.e., the variation is spatially 

correlated, the vector ! that contains the corresponding DCT 

coefficients {G(u, v); u = 1,2,...,P, v = 1,2,...,Q} is sparse. This 

sparsity has been observed in many image processing tasks [22], 

and motivates the compressed sensing work for image recovery 

using a minimum number of samples [16]-[17]. Roughly speaking, 

previous work in compressed sensing shows that if most of these 

coefficients are expected to be 0, we can reconstruct the image 

from a surprisingly small (i.e., “compressed”) set of samples. As 

will be demonstrated by several industrial examples in Section 4, 

this sparseness assumption is also valid for silicon 

characterization. 

To mathematically model the histogram in Fig 2, we use the 

following zero-mean Laplace distribution [21] to approximate the 

probability density function (PDF) of {!i; i = 1,2,...,PQ}: 
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where pdf(!i) stands for the PDF of !i, and " > 0 is a parameter 
that controls the variance of the distribution. The parameter " in 
(10) can be optimally found by maximum likelihood estimation 

(MLE) [21]. Fig 3 shows the optimally-fitted Laplace distribution 
for the data set in Fig 2. In practice, however, it is not necessary to 
know the value of ". As will be shown at the end of this sub-
section (see (15)), the final MAP solution is independent of the 

actual value of ". 
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Fig 2.  Histogram of the normalized DCT coefficient !i for an industrial IC 

design example. 
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Fig 3.  Optimally-fitted Laplace distribution for the normalized DCT 
coefficient !i of an industrial IC design example. 

To completely define the prior distribution, we further assume 

that all DCT coefficients in the vector ! ∈ RPQ are mutually 

independent. Hence, the joint PDF of ! is represented as: 
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where ||!||1 denotes the L1-norm, i.e., the summation of the 

absolute value of all elements in !. The prior PDF in (11) has a 
three-fold meaning. First, the DCT coefficients {!i; i = 1,2,...,PQ} 
have a high probability to equal zero. This, in turn, implies the 
sparseness of !. Second, the prior PDF in (11) treats each !i 

equally. In other words, the prior PDF does not tell us which !i is 
zero or non-zero. We need a “smart” algorithm to automatically 
find the non-zero coefficients based on a limited number of 
sampling points {g(xm, ym); m = 1,2,...,M}. Third, the 

independence assumption in (11) simply means that we do not 
know the correlation of ! in advance. The correlation information 
will be taken into account by the posterior distribution (see (12)), 
once the measurement data are available. Next, we will describe 

the MAP algorithm to uniquely determine ! based on the prior 

distribution in (11) as well as the measurement data A⋅! = B in (5). 

The key idea of MAP is to find the optimal solution ! that 
maximizes the posterior distribution, i.e., the conditional PDF 

pdf(! | A⋅! = B). Namely, given the measurement data A⋅! = B, it 

aims to find the solution ! that is most likely to occur. Based on 

Bayes’ theorem [21], the posterior distribution pdf(! | A⋅! = B) is 

proportional to the prior distribution pdf(!) and the likelihood 

function pdf(A⋅! = B | !): 
12 ( ) ( ) ( )ηηηηη || BApdfpdfBApdf =⋅⋅∝=⋅ . (12) 

In our case, the likelihood function is a Dirac delta function: 
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Hence, maximizing the posterior probability in (12) is equivalent 

to maximizing the prior probability in (11) subject to the 

constraint A⋅! = B: 
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Since the exponential function exp(−||!||1/") where " > 0 

monotonically decreases in ||!||1, the optimization in (14) can be 

re-written as: 

15 
BA =⋅η

η
η

subject to

minimize
1 . (15) 

Note that the optimization formulation in (15) is independent of 

the parameter ". 
Eq. (15) is referred to as L1-norm regularization [15]-[17]. 

Several theoretical studies from the statistics community prove 

that with some general assumptions, the L1-norm regularization in 

(15) yields the actual value of !. Roughly speaking, if the PQ-

dimensional vector ! contains K non-zeros and the linear equation 

A⋅! = B is well-conditioned, the solution ! can be almost uniquely 

determined (with a probability nearly equal to 1) from M sampling 

points, where M is in the order of O(K⋅log(PQ)) [15]-[17]. Note 

that M (the number of sampling points) is a logarithmic function 

of PQ (the number of problem unknowns). It, in turn, provides the 

theoretical foundation we need: by solving the sparse solution ! 
using MAP, all DCT coefficients {G(u, v); u = 1,2,...,P, v = 

1,2,...,Q} can be almost uniquely determined (with a probability 

nearly equal to 1) and, hence, the performance variation g(x, y) 

can be almost completely recovered from a small number of 

sampling points. 

 

2.3 Linear Programming 
Studying (15), we notice that the cost function ||!||1 is not 

smooth. To efficiently solve the optimization, we convert (15) to 

an equivalent linear programming problem, as in [15]. 

Introduce a set of slack variables {#i; i = 1,2,...,PQ} and re-

write (15) as the following form: 

16 

( )PQi

BA

iii

PQ
!,#

,,2,1

subject to

minimize 21

!

!

=≤≤−

=⋅

+++

θηθ

η

θθθ

. (16) 

Intuitively, by minimizing the cost function in (16), all constraints 

{−#i ≤ !i ≤ #i; i = 1,2,...,PQ} will become active, i.e., {|!i| = #i; i = 

1,2,...,PQ}. For this reason, the optimizations in (15) and (16) are 

equivalent. This conclusion can be formally proven by using the 

Karush-Kuhn-Tucker condition from optimization theory [20]. 

Note that both the cost function and the constraints in (16) are 

linear. Therefore, it is a linear programming problem and can be 

solved by various efficient and robust algorithms, e.g., the 

interior-point method [20]. 

 

2.4 Summary 

Algorithm 1: Virtual Probe (VP) 

1. Randomly select M sampling locations {(xm, ym); m = 

1,2,...,M}. 

2. Collect the measurement data {g(xm, ym); m = 1,2,...,M} at 

these locations. 

3. Formulate the linear equation in (5)-(9). 

4. Solve the linear programming problem in (16) to determine !, 
i.e., the DCT coefficients {G(u, v); u = 1,2,...,P, v = 1,2,...,Q}. 

5. Apply IDCT in (4) to recover the performance function {g(x, 

y); x = 1,2,...,P, y = 1,2,...,Q} spatially across the wafer/chip. 

Algorithm 1 summarizes the major steps of the proposed VP 

method. It starts from very few (i.e., M) random sampling points 

{g(xm, ym); m = 1,2,...,M}. Given these measurement data, VP 

solves a linear programming problem to determine all DCT 

coefficients {G(u, v); u = 1,2,...,P, v = 1,2,...,Q} and, consequently, 

recover the spatial variation {g(x, y); x = 1,2,...,P, y = 1,2,...,Q}. It 

is worth mentioning that the random sampling scheme used by 

Algorithm 1 may not result in maximum accuracy. In our future 

research, we will further study this sampling issue and develop 

improved algorithm for optimal sampling. 

In summary, the proposed VP method offers a number of 

important advantages over other traditional techniques: 

• Low cost: VP is developed to minimize the number of test 

structures required to fully extract the spatial variation 

information. It, in turn, reduces the testing and measurement 

cost, e.g., area overhead, testing/characterization time, yield 

loss during testing, etc. In addition, the VP formulation in (16) 

is a linear programming problem and it can be solved both 

robustly and efficiently. Hence, the computation overhead of 

Algorithm 1 is almost negligible, as will be demonstrated by 

our examples based on industrial measurement data in Section 

4. 

• High accuracy: The prediction accuracy of VP is guaranteed 

by the theoretical studies from the statistics community [15]-

[17]. Namely, with some general assumptions, VP can fully 
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reconstruct the spatial variation with a probability nearly 

equal to 1. In addition, the accuracy of VP can be verified in 

real time using several efficient techniques [15]-[17], e.g., 

cross validation, Bayesian inference, etc. These error 

estimation schemes are extremely important, since they 

provide quantitative criteria to determine whether the result of 

VP is sufficiently accurate or not. In practice, additional 

sampling points can be further collected to improve accuracy, 

until the prediction error is sufficiently small. More details on 

error estimation can be found in [15]-[17]. They are not 

discussed in this paper due to the limited number of available 

pages. 

• General purpose: VP can be used to predict the spatial 

pattern of both inter-die and spatially-correlated intra-die 

variations. The prediction by VP is based on the measurement 

data collected from the current wafer/chip only. It does not 

require any historical data for training and, hence, can 

efficiently handle the non-stationary effects, e.g., process 

drifting caused by equipment aging. The only assumption 

posed by VP is that the spatial variation has a sparse 

representation in frequency domain. This assumption is 

typically valid, as process variations are spatially correlated. 

In practice, such a sparseness assumption can be easily 

verified by the error estimation schemes we previously 

mentioned. Namely, if the frequency-domain representation is 

not sparse, we will observe large prediction error reported by 

VP. 

 

3. APPLICATION OF VIRTUAL PROBE 
The proposed VP method can be applied to a broad range of 

applications related to integrated circuits. In this section, we first 

illustrate how to apply VP to silicon characterization at both wafer 

level (for inter-die variations) and chip level (for intra-die 

variations). Next, we briefly discuss several additional application 

areas including speed binning and post-silicon tuning. 

 

3.1 Wafer-Level Silicon Characterization 

Chip

Test structure 

in scribe line

 
Fig 4.  Test structures are deployed in wafer scribe lines to measure and 
characterize inter-die variations at wafer level. 

To characterize parametric variations at wafer level (i.e., inter-

die variations), test structures are deployed in wafer scribe lines 

[10]-[12], as shown in Fig 4. These test structures do not have 

area overhead, as they are not within a product chip. However, it 

does not simply mean that the characterization is free. Instead, 

wafer-level characterization can still be expensive due to the 

following two reasons. 

First, test structures in scribe lines must be measured by wafer 

probe test, as these devices will be completely destroyed during 

wafer dicing before packaging. Within this testing process, a 

probe card will contact the I/O pads of the test structures to 

measure currents and/or voltages. Such a wafer probe testing, 

however, is not perfectly safe. It may break the wafer being tested 

due to mechanical stress, create additional yield loss, and 

eventually increase manufacturing cost. Second, wafer probe test 

(e.g., aligning the probe card with the I/O pads and collecting all 

measurement data) is time-consuming. It, in turn, further increases 

manufacturing cost, as the overall manufacturing time is increased. 

For these two reasons, it is crucial to reduce the number of 

measured test structures so that the overall testing and 

characterization cost is minimized. Our proposed VP method 

perfectly fits this need. Namely, we propose to deploy and 

measure very few test structures randomly distributed over the 

scribe lines of a wafer. Once the measurement data are collected, 

Algorithm 1 is applied to reconstruct the spatial variation across 

the wafer. Note that since the test structures are constrained within 

scribe lines, the aforementioned wafer-level characterization may 

not provide sufficient resolution to predict intra-die variations. It, 

therefore, implies that additional test structures are required for 

chip-level silicon characterization, as will be discussed in detail in 

the next sub-section. 

 

3.2 Chip-Level Silicon Characterization 
On-chip test structures are typically used to characterize intra-

die variations at chip level [10]-[12], as shown in Fig 5. The cost 

of chip-level characterization consists of two major portions: (1) 

area overhead, and (2) testing time. 

First, on-chip test structures are deployed within a product 

chip at a number of pre-selected locations. If too many test 

structures are used, they lead to significant area overhead and, 

hence, become financially intractable. Second, all on-chip test 

structures must be measured through a limited number of I/O pads 

of the chip. This testing process is time-consuming and directly 

increases manufacturing cost. 

On-chip test 

structure

 
Fig 5.  Test structures are deployed within a product chip to measure and 
characterize intra-die variations at chip level. 

Motivated by these observations, we propose to deploy and 

measure very few on-chip test structures and then apply VP to 

reconstruct the complete spatial variation information within a 

chip. As such, the characterization cost is substantially reduced. 

 

3.3 Beyond Silicon Characterization 
The silicon characterization results extracted by VP can be 

efficiently applied to a number of practical applications. In this 

sub-section, we briefly discuss two important application 

examples: (1) speed binning, and (2) post-silicon tuning. 

In traditional speed binning, all manufactured chips are tested 

individually to determine the maximum operation frequency [19]. 

This is expensive, since each chip must be repeatedly tested with 

different speed setups. Given the proposed VP framework, we can 

potentially test a small number of chips to find their speed bins, 

and then use VP to predict the speed of other chips on the same 

wafer. Note that even if the prediction by VP is not exact, it can 

still be used to optimize the testing scheme to reduce cost. For 

instance, if the speed of an untested chip is estimated by VP, the 

speed test should start from the nearest bin since this chip is most 
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likely to fall in that speed bin. Such a strategy helps us to find the 

appropriate speed bin quickly and, hence, reduce testing cost. 

On the other hand, post-silicon tuning is a recently-developed 

technique to improve parametric yield in the presence of large-

scale process variations [7]-[9]. It aims to adaptively configure a 

number of tunable parameters (e.g., supply voltage, body bias, etc.) 

so that a given circuit can work properly under different process 

conditions. An important component of post-silicon tuning is 

accurate on-chip measurement of the current process condition so 

that the tunable parameters can be appropriately configured to 

adjust the circuit behavior. Such measurement, however, is not 

trivial, as it often requires a large number of on-chip “sensors”. 

We believe that the proposed VP framework can be used to 

predict the process condition from a much reduced number of on-

chip sensors. By minimizing the number of the required sensors, 

both the design complexity and the manufacturing cost can be 

significantly reduced. 

 

4. NUMERICAL EXAMPLES 
In this section we demonstrate the efficacy of VP using 

several examples based on industrial measurement data. All 

numerical experiments are performed on a 2.8GHz Linux server. 

 

4.1 Flush Delay Measurement Data 
We consider the flush-delay values measured from 269 

industrial chips on the same wafer, as shown in Fig 6. In this 

example, the measured delay is not a constant, but significantly 

varies from chip to chip due to process variations. Our goal is to 

capture these wafer-level delay variations. We use a two-

dimensional function g(x, y) to model the delay, where x ∈ 

{1,2,...,18} and y ∈ {1,2,...,19}. Each coordinate point (x, y) 

corresponds to a chip. Next, we apply a two-dimensional DCT to 

g(x, y), yielding the frequency-domain components G(u, v) shown 

in Fig 7. 

Two important observations can be made from the result in 

Fig 7. First, G(u, v) contains substantial high-frequency 

components, implying that the spatial sampling rate cannot be 

drastically reduced according to the well-known Nyquist–

Shannon sampling theorem. Second, G(u, v) is sparse, as its 

magnitude is almost zero at a large number of frequencies. This 

sparse structure is the essential necessary condition that makes the 

proposed VP technique applicable to this example. 

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

X Axis

Y
 A

x
is

 

 

80

90

100

110

120

130

140

150

160

 
Fig 6.  Measured flush-delay values (normalized by a randomly selected 
constant) of 269 industrial chips from the same wafer. 
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Fig 7.  Discrete cosine transform (DCT) of the normalized flush-delay 
measurement. 
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Fig 8.  Recovered flush-delay values from 50 tested chips by using VP. 
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Fig 9.  Histogram of the relative error calculated by Eq. (17) for all chips 
on the same wafer. 

We apply Algorithm 1 to recover g(x, y) based on a small 

number of (i.e., M) sampling points {g(xm, ym); m = 1,2,...,M}. The 

linear optimization in (16) is solved by the commercial 

optimization software MOSEK (www.mosek.com). Fig 8 shows 

the recovered flush-delay values from 50 tested chips (i.e., M = 

50). In this case, the total runtime of Algorithm 1 is less than 1 
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second. 

To assess the accuracy of VP, we calculate the following 

relative error for each chip: 

17 ( ) ( ) ( )
( )yxg

yxgyxg
yxErrorREL

,

,~,
,

−
=  (17) 

where g(x, y) and g $(x, y) denote the exact value and the estimated 

value of the performance function, respectively. The error metric 

defined in (17) quantitatively measures the difference between the 

measurement data (i.e., Fig 6) and the prediction result (i.e., Fig 8). 

Fig 9 shows the histogram of the relative error calculated for all 

chips on the wafer. Note that the relative error of VP is less than 

10% for most chips in this example. 

For testing and comparison, we also study this example from 

Nyquist point of view. As shown in Fig 7, if we want to 

completely recover g(x, y), we cannot decrease the spatial 

sampling frequency at all; otherwise, we will not be able to 

capture the high-frequency components due to aliasing. To 

quantitatively study the impact of down-sampling, we sample g(x, 

y) by a uniform two-dimensional grid and recover g(x, y) using the 

traditional two-dimensional interpolation [23]. The average error 

is then calculated as: 
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Fig 10 shows the average error as a function of the number of 

samples (i.e., M) for both VP and the two-dimensional 

interpolation method. Note that VP achieves up to 10× error 

reduction in this example. The error of VP is around 6%, when 50 

chips (out of 269 chips in total) are tested. To achieve the same 

accuracy, the traditional two-dimensional interpolation has to 

measure 225 chips (4× more). 
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Fig 10.  Average error decreases as the number of samples (i.e., M) 
increases. 

 

4.2 Leakage Current Measurement Data 
We consider the leakage-current measurement collected by 

IDDQ test for the same industrial circuit design. Fig 11 shows the 

normalized leakage-current values log10(ILEAK) (after logarithmic 

transform) as a function of the location (x, y). Fig 12 further 

shows the frequency-domain components after DCT. Similar to 

the previous example, the DCT coefficients contain important 

high-frequency components; yet they are quite sparse. 
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Fig 11.  Measured leakage-current values log10(ILEAK) (normalized by a 
randomly selected constant) of 269 industrial chips from the same wafer. 
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Fig 12.  Discrete cosine transform (DCT) of the normalized leakage-
current measurement log10(ILEAK). 
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Fig 13.  Recovered leakage-current values log10(ILEAK) from 100 tested 
chips by using VP. 

Next, we apply Algorithm 1 to recover the spatial variation 

based on a few (i.e., M) sampling points. Fig 13 shows the 

recovered leakage-current values log10(ILEAK) (after logarithmic 
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transform) from 100 tested chips (i.e., M = 100). In this case, the 

total runtime of Algorithm 1 is less than 1 second. Fig 9 further 

shows the histogram of the relative error calculated for all chips 

using (17). Note that the relative error of VP is less than 10% for 

most chips in this example. 
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Fig 14.  Histogram of the relative error calculated by Eq. (17) for all chips 
on the same wafer. 
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Fig 15.  Average error decreases as the number of samples (i.e., M) 
increases. 

For testing and comparison, we sample g(x, y) by a uniform 

two-dimensional grid and recover g(x, y) using the traditional two-

dimensional interpolation [23]. Fig 15 shows the average error 

calculated by (18) for both methods. Note that VP achieves up to 

4.5× error reduction compared to the interpolation approach. The 

error of VP is around 6%, when 75 chips (out of 269 chips in total) 

are tested. To achieve the same accuracy, the traditional two-

dimensional interpolation has to measure 225 chips (3× more). 

 

5. CONCLUSIONS 
In this paper, we propose a novel virtual probe (VP) technique 

to efficiently and accurately recover full-wafer/chip spatial 

variation from an extremely small set of measurement data, 

thereby reducing the cost of silicon characterization and testing. 

VP exploits recent breakthroughs in compressed sensing [15]-

[17]. It is formulated as a maximum posterior estimation (MAP) 

problem [21] and is solved via efficient linear programming 

algorithm [20]. Our numerical examples based on industrial 

measurement data demonstrate that VP reduces the estimation 

error by up to 10× compared to other traditional techniques. 
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