
1

Finding Deterministic Solution from Underdetermined Equation: 
Large-Scale Performance Modeling by Least Angle Regression 

Xin Li 
ECE Department, Carnegie Mellon University 

5000 Forbs Avenue, Pittsburgh, PA 15213 
xinli@ece.cmu.edu  

ABSTRACT 
The aggressive scaling of IC technology results in high-
dimensional, strongly-nonlinear performance variability that 
cannot be efficiently captured by traditional modeling techniques. 
In this paper, we adapt a novel L1-norm regularization method to 
address this modeling challenge. Our goal is to solve a large 
number of (e.g., 104~106) model coefficients from a small set of 
(e.g., 102~103) sampling points without over-fitting. This is 
facilitated by exploiting the underlying sparsity of model 
coefficients. Namely, although numerous basis functions are 
needed to span the high-dimensional, strongly-nonlinear variation 
space, only a few of them play an important role for a given 
performance of interest. An efficient algorithm of least angle 
regression (LAR) is applied to automatically select these 
important basis functions based on a limited number of simulation 
samples. Several circuit examples designed in a commercial 65nm 
process demonstrate that LAR achieves up to 25× speedup 
compared with the traditional least-squares fitting. 
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1. INTRODUCTION 

As IC technologies scale to 65nm and beyond, process 
variation becomes increasingly critical and makes it continually 
more challenging to create a reliable, robust design with high 
yield [1]. For analog/mixed-signal circuits designed for sub-65nm 
technology nodes, parametric yield loss due to manufacturing 
variation becomes a significant or even dominant portion of the 
total yield loss. Hence, process variation must be carefully 
considered within today’s IC design flow. 

Unlike most digital circuits that can be efficiently analyzed at 
gate level (e.g., by statistical timing analysis), analog/mixed-
signal circuits must be modeled and simulated at transistor level. 
To estimate the performance variability of these circuits, response 
surface modeling (RSM) has been widely applied [2]-[6]. The 
objective of RSM is to approximate the circuit performance (e.g., 
delay, gain, etc.) as an analytical (either linear or nonlinear) 
function of device parameters (e.g., VTH, TOX, etc.). Once response 
surface models are created, they can be used for various purposes, 
e.g., efficiently predicting performance distributions [7]. 

While RSM was extensively studied in the past, the following 
two trends in advanced IC technologies suggest a need to revisit 
this area. 
• Strong nonlinearity: As process variation becomes relatively 

large, simple linear RSM is not sufficiently accurate [7]. 
Instead, nonlinear (e.g., quadratic) models are required to 
accurately predict performance variability. 

• High dimensionality: Random device mismatch becomes 
increasingly important due to technology scaling [1]. To 
accurately model this effect, a large number of random 
variables must be utilized, rendering a high-dimensional 
variation space [6]. 
The combination of these two recent trends results in a large-

scale RSM problem that is difficult to solve. For instance, as will 
be demonstrated in Section 5, more than 104 independent random 
variables must be used to model the device-level variation of a 
simplified SRAM critical path designed in a commercial 65nm 
CMOS process. To create a quadratic model for the critical path 
delay, we must determine a 104×104 quadratic coefficient matrix 
including 108 coefficients! 

Most existing RSM techniques [2]-[5] rely on least-squares 
(LS) fitting. They solve model coefficients from an over-
determined equation and, hence, the number of sampling points 
must be equal to or greater than the number of model coefficients. 
Since each sampling point is created by expensive transistor-level 
simulation, such high simulation cost prevents us from fitting 
high-dimensional, nonlinear models where a great number of 
sampling points are required. While the existing RSM techniques 
have been successfully applied to small-size or medium-size 
problems (e.g., 10~1000 model coefficients), they are ill-equipped 
to address the modeling needs of today’s analog/mixed-signal 
system where 104~106 model coefficients must be solved. The 
challenging issue is how to make RSM affordable for such a large 
problem size. 

In this paper, we propose a novel RSM technique that aims to 
solve a large number of (e.g., 104~106) model coefficients from a 
small set of (e.g., 102~103) sampling points without over-fitting. 
While numerous basis functions must be used to span the high-
dimensional, strongly-nonlinear variation space, not all these 
functions play an important role for a given performance of 
interest. In other words, although there are a large number of 
unknown model coefficients, many of these coefficients are close 
to zero, rendering a unique sparse structure. Taking the 65nm 
SRAM in Section 5 as an example, the delay variation of its 
critical path can be accurately approximated by around 50 basis 
functions, even though the SRAM circuit contains 21310 
independent random variables! However, we do not know the 
right basis functions in advance; these important basis functions 
must be automatically selected by a “smart” algorithm based on a 
limited number of simulation samples. 

Our proposed RSM algorithm borrows the recent advance of 
statistics [8] to explore the underlying sparsity of model 
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coefficients. It applies L1-norm regularization [8] to find the 
unique sparse solution (i.e., the model coefficients) of an 
underdetermined equation. Importantly, the proposed L1-norm 
regularization is formulated as a convex optimization problem and, 
therefore, can be solved both robustly and efficiently. 

An important contribution of this paper is to apply an efficient 
algorithm of Least Angle Regression (LAR [8]) to solve the L1-
norm regularization problem. For our RSM application, LAR is 
substantially more efficient than the well-known interior-point 
method [13] that was developed for general-purpose convex 
optimization. In addition, LAR results in more accurate response 
surface models than the statistical regression (STAR) algorithm 
proposed in [6], which can be proven by both theoretical analyses 
[10] and numerical experiments. Compared with STAR, LAR 
reduces modeling error by 1.5~3× with negligible computational 
overhead, as will be demonstrated by the numerical examples in 
Section 5. 

The remainder of this paper is organized as follows. In 
Section 2, we review the background on principal component 
analysis and response surface modeling, and propose our L1-norm 
regularization in Section 3. The LAR algorithm is used to 
efficiently solve all model coefficients in Section 4. The efficacy 
of LAR is demonstrated by several numerical examples in Section 
5, followed by the conclusions in Section 6. 
 
2. BACKGROUND 
2.1 Principal Component Analysis 

Given N process parameters X = [x1 x2 ... xN]T, the process 
variation �X = X–X0, where X0 denotes the mean value of X, is 
often modeled by multiple zero-mean, correlated Normal 
distributions [2]-[7]. Principal component analysis (PCA) [11] is a 
statistical method that finds a set of independent factors to 
represent the correlated Normal distributions. Assume that the 
correlation of �X is represented by a symmetric, positive semi-
definite covariance matrix R. PCA decomposes R as [11]: 
1 TUUR ⋅Σ⋅=  (1) 
where � = diag(�1, �2, ..., �N) contains the eigenvalues of R, and U 
= [U1 U2 ... UN] contains the corresponding eigenvectors that are 
orthonormal, i.e., UTU = I. (I is the identity matrix.) PCA defines 
a set of new random variables �Y = [�y1 �y2 ... �yN]T: 
2 XUY T Δ⋅⋅Σ=Δ − 5.0 . (2) 
The new random variables in �Y are called the principal 
components. It is easy to verify that all principal components in 
�Y are independent and standard Normal (i.e., zero mean and unit 
variance). More details on PCA can be found in [11]. 
 
2.2 Response Surface Modeling 

Given a circuit design, the circuit performance f (e.g., delay, 
gain, etc.) is a function of the process variation �Y defined in (2). 
RSM approximates the performance function f(�Y) as the linear 
combination of M basis functions [2]-[6]: 

3 ( ) ( )�
=

Δ⋅≈Δ
M

i
ii YgYf

1

α  (3) 

where {�i; i = 1,2,...,M} are the model coefficients, and {gi(�Y); i 
= 1,2,...,M} are the basis functions (e.g., linear, quadratic, etc.). 
The unknown model coefficients in (3) can be determined by 
solving the following linear equation at K sampling points: 
4 FG =⋅α  (4) 
where 
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6 [ ]TMαααα �21=  (6) 

7 ( ) ( ) ( )[ ]TKfffF �21= . (7) 
In (5)-(7), �Y (k) and f(k) are the values of �Y and f(�Y) at the k-th 
sampling point respectively. Without loss of generality, we 
assume that all basis functions are normalized: 
8 ( )MiGG i

T
i ,,2,11 �==  (8) 

where 

9 ( )( ) ( )( ) ( )( )[ ]TK
iiii YgYgYgG ΔΔΔ= �21 . (9) 

This assumption simplifies the notation of our discussion in the 
following sections. 

Most existing RSM techniques [2]-[5] attempt to solve the 
least-squares (LS) solution for (4). Hence, the number of samples 
(K) must be equal to or greater than the number of coefficients 
(M). It, in turn, becomes intractable, if M is large (e.g., 104~106). 
For this reason, the traditional RSM techniques are limited to 
small-size or medium-size problems (e.g., 10~1000 model 
coefficients). In this paper, we propose a novel RSM algorithm 
that aims to create high-dimensional, strongly-nonlinear response 
surface models (e.g., 104~106 model coefficients) from a small set 
of (e.g., 102~103) simulation samples without over-fitting. 
 
3. L1-NORM REGULARIZATION 

Our proposed RSM technique utilizes a novel L1-norm 
regularization scheme that is derived from advanced statistics 
theories [8]. In this section, we describe its mathematical 
formulation and highlight the novelties. 
 
3.1 Mathematical Formulation 

Unlike the traditional RSM techniques that solve model 
coefficients from an over-determined equation, we focus on the 
nontrivial case where the number of samples (K) is less than the 
number of coefficients (M). Namely, there are fewer equations 
than unknowns, and the linear system in (4) is underdetermined. 
In this case, the solution � (i.e., the model coefficients) is not 
unique, unless additional constraints are added. 

In this paper, we will explore the sparsity of � to uniquely 
determine its value. Our approach is motivated by the observation 
that while a large number of basis functions must be used to span 
the high-dimensional, nonlinear variation space, only a few of 
them are required to approximate a specific performance function. 
In other words, the vector � in (6) only contains a small number of 
non-zeros. However, we do not know the exact locations of these 
non-zeros. We will propose a novel L1-norm regularization 
scheme to find the non-zeros so that the solution � of the 
underdetermined equation (4) can be uniquely solved. 

To derive the proposed L1-norm regularization, we first show 
the idea of L0-norm regularization. To this end, we formulate the 
following optimization to solve the sparse solution � for (4): 

10 
λα

α
α

≤

−⋅

0

2
2

subject to

minimize FG
 (10) 

where ||•||2 and ||•||0 stand for the L2-norm and L0-norm of a vector, 
respectively. The L0-norm ||�||0 equals the number of non-zeros in 
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the vector �. It measures the sparsity of �. Therefore, by directly 
constraining the L0-norm, the optimization in (10) attempts to find 
a sparse solution � that minimizes the least-squares error. 

The parameter � in (10) explores the tradeoff between the 
sparsity of the solution � and the minimal value of the cost 
function ||G⋅�−F||22. For instance, a large � will result in a small 
cost function, but meanwhile it will increase the number of non-
zeros in �. It is important to note that a small cost function does 
not necessarily mean a small modeling error. Even though the 
minimal cost function value can be reduced by increasing �, such 
a strategy may result in over-fitting especially because Eq. (4) is 
underdetermined. In the extreme case, if � is sufficiently large and 
the constraint in (10) is not active, we can always find a solution � 
to make the cost function exactly zero. However, such a solution 
is likely to be useless, since it over-fits the given sampling points. 
In practice, the optimal value of � can be automatically 
determined by cross-validation, as will be discussed in detail in 
Section 4. 

While the L0-norm regularization can effectively guarantee a 
sparse solution �, the optimization in (10) is NP hard [8] and, 
hence, is extremely difficult to solve. A more efficient technique 
to find sparse solution is based on L1-norm regularization – a 
relaxed version of L0-norm: 

11 
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subject to

minimize FG
 (11) 

where ||�||1 denotes the L1-norm of the vector �, i.e., the 
summation of the absolute values of all elements in �: 
12 Mαααα +++= �211

. (12) 
The L1-norm regularization in (11) can be re-formulated as a 

convex optimization problem. Introduce a set of slack variables 
{�i; i = 0,1,...,M} and re-write (11) into the following equivalent 
form [13]: 
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In (13), the cost function is quadratic and positive semi-definite. 
Hence, it is convex. All constraints are linear and, therefore, the 
resulting constraint set is a convex polytope. For these reasons, 
the L1-norm regularization in (13) is a convex optimization 
problem and it can be solved by various efficient and robust 
algorithms, e.g., the interior-point method [13]. 

The aforementioned L1-norm regularization is much more 
computationally efficient than the L0-norm regularization that is 
NP hard. This is the major motivation to replace L0-norm by L1-
norm. In the next sub-section, we will use a two-dimensional 
example to intuitively explain why solving the L1-norm 
regularization in (11) yields a sparse solution �. 
 
3.2 Geometrical Explanation 

To understand the connection between L1-norm regularization 
and sparse solution, we consider the two-dimensional example 
(i.e., � = [�1 �2]T) in Fig. 1. Since the cost function ||G⋅�−F||22 is 
quadratic and positive semi-definite, its contour lines can be 
represented by multiple ellipsoids. On the other hand, the 
constraint ||�||1 ≤ � corresponds to a number of rotated squares, 
associated with different values of �. For example, two of such 
squares are shown in Fig. 1, where �1 ≤ �2. 

Studying Fig. 1, we would notice that if � is large (e.g., � = 
�2), both �1 and �2 are not zero. However, as � decreases (e.g., � = 

�1), the contour of ||G⋅�−F||22 eventually intersects the polytope 
||�||1 ≤ � at one of its vertex. It, in turn, implies that one of the 
coefficients (i.e., �1 in this case) becomes exactly zero. From this 
point of view, by decreasing � of the L1-norm regularization in 
(11), we can pose a strong constraint for sparsity and force a 
sparse solution. This intuitively explains why L1-norm 
regularization guarantees sparsity, as is the case for L0-norm 
regularization. 

In addition, various theoretical studies from the statistics 
community demonstrate that under some general assumptions, 
both L1-norm regularization and L0-norm regularization result in 
the same solution [9]. Roughly speaking, if the M-dimensional 
vector � contains L non-zeros and the linear equation G⋅� = F is 
well-conditioned, the solution � can be uniquely determined by 
L1-norm regularization from K sampling points, where K is in the 
order of O(L⋅logM) [9]. Note that K (the number of sampling 
points) is a logarithm function of M (the number of unknown 
coefficients). It, in turn, provides the theoretical foundation that 
by solving the sparse solution of an underdetermined equation, a 
large number of model coefficients can be uniquely determined 
from a small number of sampling points. 

α1

α2

11
λα ≤

21
λα ≤

2
2

FG −⋅α

 
Fig. 1.  The proposed L1-norm regularization ||�||1 ≤ � results in a 
sparse solution (i.e., �1 = 0) if � is sufficiently small (i.e., � = �1). 
 
4. LEAST ANGLE REGRESSION 

While Eq. (11) gives the mathematical formulation of L1-
norm regularization, a number of implementation issues must be 
carefully considered to make it of practical utility. Most 
importantly, an efficient algorithm is required to automatically 
determine the optimal value of �. Towards this goal, a two-step 
approach can be used: (a) solve the optimization in (11) for a set 
of different �’s, and (b) select the optimal � by cross-validation. In 
this section, we will introduce an efficient algorithm of least angle 
regression (LAR [8]) to accomplish these two steps with minimal 
computational cost. 
 
4.1 Piece-wise Linear Solution Trajectory 

To solve the optimization in (11) for different �’s, one 
straightforward approach is to repeatedly apply the interior-point 
method [13] to solve the convex programming problem in (13). 
This approach, however, is computationally expensive, as we 
must run a convex solver for many times in order to visit a 
sufficient number of possible values of �. Instead of applying the 
interior-point method, we propose to first explore the unique 
property of the L1-norm regularization in (11) and minimize the 
number of the possible �’s that we must visit. 

As discussed in Section 3.2, the sparsity of the solution � 
depends on the value of �. In the extreme case, if � is zero, all 
coefficients in � are equal to zero. As � gradually increases, more 
and more coefficients in � become non-zero. In fact, it can be 
proven that the solution � of (11) is a piece-wise linear function of 
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� [8]. To intuitively illustrate this concept, we consider the 
following simple example: 

14 
( )
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. (14) 

We collected 50 random sampling points for this function and 
solved the L1-norm regularization in (11) to calculate the values of 
� associated with different �’s. Fig. 2 shows the solution trajectory 
�(�), i.e., � as a function of �, which is piece-wise linear. The 
details of the mathematical proof for this piece-wise linear 
property can be found in [8]. 

The aforementioned piece-wise linear property allows us to 
find the entire solution trajectory �(�) with low computational cost. 
We do not have to repeatedly solve the L1-norm regularization at 
many different �’s. Instead, we only need to estimate the local 
linear function in each interval [�i, �i+1]. Next, we will show an 
iterative algorithm to efficiently find the solution trajectory �(�). 
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Fig. 2.  The solution trajectory �(�) of the L1-norm regularization 
in (11) is a piece-wise linear function of �. 
 
4.2 Iterative Algorithm 

We start from the extreme case where � is zero for the L1-
norm regularization in (11). In this case, the solution of (11) is 
trivial: � = 0. Our focus of this sub-section is to present an 
efficient algorithm of least angle regression (LAR) to calculate the 
solution trajectory �(�), as � increases from zero. To this end, we 
re-write the linear equation G⋅� = F in (4)-(9) as: 
15 MM GGGF ααα +++= �2211 . (15) 
Eq. (15) represents the vector F (i.e., the performance values) as 
the linear combination of the vectors {Gi; i = 1,2,...,M} (i.e., the 
basis function values). Each Gi corresponds to a basis function 
gi(�Y). As � increases from zero, LAR [8] first calculates the 
correlation between F and every Gi: 
16 ( )MiFGr T

ii ,,2,1 �==  (16) 

where Gi is a unit-length vector (i.e., Gi
TGi = 1) as shown in (8). 

Next, LAR finds the vector Gs1 that is most correlated with F, i.e., 
rs1 takes the largest value. Once Gs1 is identified, LAR 
approximates F in the direction of Gs1: 
17 11 sGF γ≈ . (17) 
At this first iteration step, since we only use the basis function 
gs1(�Y) to approximate the performance function f(�Y), the 
coefficients for all other basis functions (i.e., {�i; i ≠ s1}) are zero. 
The residual of the approximation is: 
18 11 sGFRes γ−= . (18) 

To intuitively understand the LAR algorithm, we consider the 
two-dimensional example shown in Fig. 3. In this example, the 
vector G2 has a higher correlation with F than the vector G1. 
Hence, G2 is selected to approximate F, i.e., F ≈ �1G2. From the 
geometrical point of view, finding the largest correlation is 

equivalent to finding the least angle between the vectors {Gi; i = 
1,2,...,M} and the performance F. Therefore, the aforementioned 
algorithm is referred to as least angle regression in [8]. 

G1

G2 γ1⋅G2

F

F−γ1⋅G2

Iteration 1: F ≈ α2G2 where 
α2 = �1

F−γ1⋅G2 = γ2⋅[G1+G2]
G1

G2

Iteration 2: F ≈ α1G1+α2G2
where α1 = γ2 & α2 = γ1+γ2

θ2

θ1

θ1 > θ2

θ2

θ1 θ1 = θ2

 
Fig. 3.  LAR calculates the solution trajectory �(�) of a two-
dimensional example F = �1G1+�2G2. 

As |�1| increases, the correlation between the vector Gs1 and 
the residual Res = F−�1Gs1 decreases. LAR uses an efficient 
algorithm to compute the maximal value of |�1| at which the 
correlation between Gs1 and F−�1Gs1 is no longer dominant. In 
other words, there is another vector Gs2 that has the same 
correlation with the residual: 
19 ( ) ( )112111 s

T
ss

T
s GFGGFG γγ −⋅=−⋅ . (19) 

At this point, instead of continuing along Gs1, LAR proceeds in a 
direction equiangular between Gs1 and Gs2. Namely, it 
approximates F by the linear combination of Gs1 and Gs2: 
20 ( )21211 sss GGGF +⋅+≈ γγ  (20) 
where the coefficient �1 is fixed at this second iteration step. 

Taking Fig. 3 as an example, the residual F−�1G2 is 
approximated by �2⋅(G1+G2). If |�2| is sufficiently large, F is 
exactly equal to F = �2G1+(�1+�2)⋅G2. In this example, because 
only two basis functions g1(�Y) and g2(�Y) are used, LAR stops at 
the second iteration step. If more than two basis functions are 
involved, LAR will keep increasing |�2| until a third vector Gs3 
earns its way into the “most correlated” set, and so on. Algorithm 
1 summarizes the major iteration steps of LAR. 

Algorithm 1: Least Angle Regression (LAR) 
1. Start from the vector F defined in (7) and the normalized 

vectors {Gi; i = 1,2,...,M} defined in (8)-(9). 
2. Apply (16) to calculate the correlation {ri; i = 1,2,...,M}. 
3. Select the vector Gs that has the largest correlation rs. 
4. Let the set Q = {Gs} and the iteration index p = 1. 
5. Approximate F by: 
21 �

∈

⋅≈
QG

ip
i

GF γ . (21) 

6. Calculate the residual: 
22 �

∈

⋅−=
QG

ip
i

GFRes γ . (22) 

7. Use the algorithm in [8] to determine the maximal |�p| such 
that either the residual in (22) equals 0 or another vector Gnew 
(Gnew ∉ Q) has as much correlation with the residual: 

23 ( )QGResGResG i
T
i

T
new ∈∀⋅=⋅ . (23) 

8. If Res = 0, stop. Otherwise, Q = Q ∪ {Gnew}, F = Res, p = 
p+1, and go to Step 5. 

It can be proven that with several small modifications, LAR 
will generate the entire piece-wise linear solution trajectory �(�) 
for the L1-norm regularization in (11) [8]. The computational cost 
of LAR is similar to that of applying the interior-point method to 
solve a single convex optimization in (11) with a fixed � value. 
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Therefore, compared to the simple approach that repeatedly solves 
(11) for multiple �’s, LAR typically achieves orders of magnitude 
more efficiency, as is demonstrated in [8]. 
 
4.3 Cross-Validation 

Once the solution trajectory �(�) is extracted, we need to 
further find the optimal � that minimizes the modeling error. To 
avoid over-fitting, we cannot simply measure the modeling error 
from the same sampling data that are used to calculate the model 
coefficients. Instead, modeling error must be measured from an 
independent data set. Cross-validation is an efficient method for 
model validation that has been widely used in the statistics 
community [12]. An S-fold cross-validation partitions the entire 
data set into S groups, as shown by the example in Fig. 4. 
Modeling error is estimated from S independent runs. In each run, 
one of the S groups is used to estimate the modeling error and all 
other groups are used to calculate the model coefficients. 
Different groups should be selected for error estimation in 
different runs. As such, each run results in an error value �i (i = 
1,2,...,S) that is measured from a unique group of sampling points. 
In addition, when a model is trained and tested in each run, non-
overlapped data sets are used so that over-fitting can be easily 
detected. The final modeling error is computed as the average of 
{�i; i = 1,2,...,S}, i.e., � = (�1+�2+...+�S)/S. 

For our application, LAR is used to calculate the solution 
trajectory during each cross-validation run. Next, the modeling 
error associated with each run is estimated, resulting in {�i(�); i = 
1,2,...,S}. Note that �i is not simply a value, but a one-dimensional 
function of �. Once all cross-validation runs are complete, the 
final modeling error is calculated as �(�) = (�1(�)+�2(�)+...+�S(�))/S, 
which is again a one-dimensional function of �. The optimal � is 
then determined by finding the minimal value of �(�). 

The major drawback of cross-validation is the need to 
repeatedly extract the model coefficients for S times. However, 
for our circuit modeling application, the overall computational 
cost is dominated by the transistor-level simulation that is 
required to generate sampling data. Hence, the computational 
overhead by cross-validation is almost negligible, as will be 
demonstrated by our numerical examples in Section 5. 

Run 1
Run 2
Run 3
Run 4

4 groups of data

For coefficient 
estimation (white)

For error 
estimation (grey)

 
Fig. 4.  A 4-fold cross-validation partitions the data set into 4 
groups and modeling error is estimated from 4 independent runs. 
 
5. NUMERICAL EXAMPLES 

In this section we demonstrate the efficacy of LAR using 
several circuit examples. For each example, two independent 
random sampling sets, called training set and testing set 
respectively, are generated using Cadence Spectre. The training 
set is used for coefficient fitting (including cross-validation), 
while the testing set is used for model validation. All numerical 
experiments are performed on a 2.8GHz Linux server. 
 
5.1 Two-Stage Operational Amplifier 

Fig. 5 shows the simplified circuit schematic of a two-stage 
operational amplifier (OpAmp) designed in a commercial 65nm 

process. In this example, we aim to model four performance 
metrics: gain, bandwidth, offset and power. The inter-die/intra-die 
variations of both MOS transistors and layout parasitics are 
considered. After PCA based on foundry data, 630 independent 
random variables are extracted to model these variations. 

 
Fig. 5.  Simplified circuit schematic of an operational amplifier. 
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Fig. 6.  Modeling error decreases as the number of training 
samples increases. 

Table 1.  Linear performance modeling cost for OpAmp 
 LS STAR LAR 

# of Samples 1200 600 600 
Spectre (Sec.) 16140 8070 8070 
Fitting (Sec.) 2.6 1.2 44.2 
Total (Sec.) 16142 8071 8114 

 
Fig. 6 shows the modeling error for three different techniques: 

least-squares fitting (LS), STAR [6] and LAR. To achieve the 
same accuracy, both STAR and LAR require much less training 
samples than LS, because they do not solve the unknown model 
coefficients from an over-determined equation. On the other hand, 
given the same number of training samples, LAR yields better 
accuracy (up to 2~3× error reduction) than STAR. STAR is 
similar to the orthogonal matching pursuit algorithm developed 
for signal processing [10]. It has been theoretically proven that the 
L1-norm regularization used by LAR is more accurate, but also 
more expensive, than the orthogonal matching pursuit used by 
STAR [10]. However, for our circuit modeling application, the 
overall modeling cost is dominated by the Spectre simulation time 
that is required to generate sampling points. Therefore, the 
computational overhead of LAR is negligible, as shown in Table 1. 
LAR achieves 2× speedup compared with LS in this example. 
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B. Quadratic Performance Modeling 
To further improve accuracy, we select 200 most important 

process parameters based on the magnitude of the linear model 
coefficients. Next, we create quadratic performance models for 
these critical process parameters. In this example, the 200-
dimensional quadratic model contains 20301 unknown 
coefficients. Compared with STAR, LAR reduces the modeling 
error by 1.5~3×, as shown in Table 2. In addition, compared with 
LS, LAR reduces the modeling time from 4 days to 4 hours (24× 
speedup) while achieving similar accuracy, as shown in Table 3. 

Table 2.  Quadratic performance modeling error for OpAmp 
 LS STAR LAR 

Gain 4.21% 8.03% 5.77% 
Bandwidth 3.84% 5.36% 4.11% 

Power 1.52% 4.37% 1.69% 
Offset 3.69% 9.15% 2.94% 

Table 3.  Quadratic performance modeling cost for OpAmp 
 LS STAR LAR 

# of Samples 25000 1000 1000 
Spectre (Sec.) 336250 13450 13450 
Fitting (Sec.) 51562 92 1449 
Total (Sec.) 387812 13542 14899 

 
5.2 Simplified SRAM Read Path 
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Fig. 7.  Simplified circuit schematic of an SRAM read path. 
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Fig. 8.  Magnitude of the model coefficients estimated by LAR. 

Table 4.  Linear performance modeling error and cost for SRAM 
 LS STAR LAR 

Modeling Error 9.78% 6.34% 4.94% 
# of Samples 25000 1000 1000 
Spectre (Sec.) 728250 29130 29130 
Fitting (Sec.) 13856.1 26.5 338.3 
Total (Sec.) 742106 29156 29468 

 
Shown in Fig. 7 is the simplified circuit schematic of an 

SRAM read path designed in a commercial 65nm process. The 
read path contains cell array, replica path for self-timing and sense 

amplifier. In this example, the performance of interest is the delay 
from the word line (WL) to the sense amplifier output (Out). Both 
inter-die and intra-die variations are considered. After PCA based 
on foundry data, 21310 independent random variables are 
extracted to model these variations. 

Three different techniques are implemented for linear 
performance modeling: least-squares fitting (LS), STAR [6] and 
LAR. As shown in Table 4, LAR is most accurate among these 
three methods. Compared with LS, LAR reduces the modeling 
time from 8.6 days to 8.2 hours (25× speedup). Fig. 8 shows the 
magnitude of the linear model coefficients estimated by LAR. 
Even though there are 21311 basis functions in total, only 50 
model coefficients are not close to zero. These 50 basis functions 
are automatically selected by LAR to accurately approximate the 
performance of interest in this example. 
 
6. CONCLUSIONS 

In this paper, we propose a novel L1-norm regularization to 
efficiently create high-dimensional linear/nonlinear performance 
models for nanoscale circuits. The proposed method is facilitated 
by exploring the unique sparse structure of model coefficients. An 
efficient algorithm of least angle regression (LAR) is used to 
solve the proposed L1-norm regularization problem. Our 
numerical examples demonstrate that compared with least-square 
fitting, LAR achieves up to 25× runtime speedup without 
surrendering any accuracy. LAR can be incorporated into a robust 
circuit design flow for efficient yield prediction and optimization. 
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