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Abstract—In this paper, a robust analog design (ROAD) tool for
posttuning (i.e., locally optimizing) analog/RF circuits is proposed.
Starting from an initial design derived from hand analysis or
analog circuit optimization based on simplified models, ROAD ex-
tracts accurate performance models via transistor-level simulation
and iteratively improves the circuit performance by a sequence
of geometric programming steps. Importantly, ROAD sets up all
design constraints to include large-scale process and environmen-
tal variations, thereby facilitating the tradeoff between yield and
performance. A crucial component of ROAD is a novel projection-
based scheme for quadratic (both polynomial and posynomial)
performance modeling, which allows our approach to scale well to
large problem sizes. A key feature of this projection-based scheme
is a new implicit power iteration algorithm to find the optimal
projection space and extract the unknown model coefficients with
robust convergence. The efficacy of ROAD is demonstrated on
several circuit examples.

Index Terms—Analog/RF circuit, circuit optimization, perfor-
mance model, robust design.

I. INTRODUCTION

A S IC technologies are scaled to finer feature sizes and
circuit applications move to higher frequency bands, ana-

log/RF circuit design faces several new challenges. First, device
models have become increasingly complex in order to char-
acterize the physical behavior of nanoscale transistors at high
frequencies. Second, at these frequencies, parasitic couplings
become more important and more complex. Finally, but per-
haps most importantly, with subwavelength photolithography,
process variations become a critical issue and significantly
impact the overall circuit performance. It is complex, if not
impossible, to handle all these second-order effects via hand
analyses. Therefore, manually designing analog/RF circuits is
time consuming and requires a lot of design intuition and
experience. Today’s analog/RF circuits are typically designed
and verified through several iterations [1].
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To address this increasing difficulty of manual design, var-
ious approaches have been proposed for parametric analog
optimization [1]–[10]. These methods take a fixed circuit topol-
ogy as input and optimize the device sizes to meet design
specifications. For example, DELIGHT.SPICE [2] is an op-
timization engine that utilizes a gradient-based algorithm to
locally optimize the circuit. Advanced stochastic search algo-
rithms such as simulated annealing and genetic programming
have also been applied to search the entire design space for
a globally optimal solution [3]–[7]. Compared with gradient-
based approaches, these stochastic search algorithms typically
yield better optimization results at the expense of increased
computational cost.

Recent research [8]–[10] has demonstrated that many analog
circuit specifications can be cast as posynomial functions. As
such, analog circuit sizing can be formulated as a geometric
programming problem that can be solved extremely efficiently
[11]. However, the traditional geometric programming ap-
proach requires the creation of posynomial design equations by
hand. Manually derived equations apply various simplifications
and ignore many second-order effects that can be important at
high operation frequencies and/or in nanoscale technologies.

In addition to modeling inaccuracies, process and envi-
ronmental variations have an increasingly significant impact
on circuit performance, thereby posing additional challenges
for analog optimization. For example, given a circuit that is
optimized for nominal process and environmental conditions,
substantial device resizing may be required to accommodate
large-scale process and environmental variations and improve
the product yield. Corner enumeration can be used to achieve
a robust design [8]–[10], where the analog circuit is analyzed
and/or simulated at all process and environmental corners dur-
ing sizing. However, this approach suffers from the problem
that the total number of simulations increases exponentially
with the number of independent process/environmental para-
meters. Furthermore, it is not guaranteed that the worst case
design will occur at one of these corners.

During the past two decades, many statistical optimization
approaches have been proposed to statistically handle process
and environmental variations for analog sizing [12]–[19]. These
techniques can be classified into four categories in general,
namely: 1) direct yield optimization [12]–[14]; 2) design cen-
tering [15], [16]; 3) worst case optimization [17], [18]; and
4) infinite programming [19]. Direct yield optimization meth-
ods maximize the parametric yield that is estimated by either
numerical integration or Monte Carlo analysis. Design cen-
tering approaches attempt to find the optimal design that is
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farthest away from all constraint boundaries and is therefore
least sensitive to process and environmental variations. Worst
case optimization techniques optimize worst case circuit per-
formance, instead of nominal performance, over all process and
environmental variations. Finally, infinite programming meth-
ods formulate the circuit optimization problem as a nonlinear
infinite program where the cost function and constraints are de-
fined over an infinite set covering all process and environmental
variations.

In this paper, we propose a new approach to posttune
(i.e., locally optimize) analog/RF circuits based on accurate
transistor-level simulations and with consideration of large-
scale process and environmental variations. Our approach is
called robust analog design (ROAD). Using ROAD, a robust
analog/RF design can be achieved via two steps. First, an
initial nominal design is created from either manual analysis
or automatic optimization by traditional algorithms [1]–[10].
Simplified device/coupling models could be utilized in this
step to ease the manual design or speed up the automatic
optimization. This initial optimization provides a rapid but
coarse search over the entire design space. Then, in the second
step, ROAD is applied with detailed device/coupling/variation
models to perform a more fine-grained search and optimizes
the worst case circuit performance, considering all process and
environmental variations. From this point of view, ROAD is a
new worst case optimization tool that is in the same category as
that in [17] and [18].

Given an initial design, ROAD first applies quadratic
response surface (i.e., polynomial) modeling and statistical
analysis to extract the probability distributions of all circuit
performances. Next, the worst case circuit performances are
accurately approximated as posynomial functions in the local
design space. Unlike the existing geometric programming ap-
proaches in [8]–[10] where posynomial performance models
are derived from hand analysis equations, our posynomial
models are fitted using transistor-level simulation data. Finally,
ROAD utilizes these preextracted posynomial models and opti-
mizes the circuit by geometric programming. This fitting and
optimization procedure is repeatedly applied to successively
narrowed local design spaces. Since ROAD sets up all design
constraints with process and environmental variations and the
posynomial model becomes increasingly accurate in the succes-
sively narrowed local design space, ROAD is able to produce an
accurate design with high parametric yield.

Compared with other statistical optimization approaches
[12]–[19], the novelty of ROAD lies in a projection-based ap-
proach for quadratic performance (both polynomial and posyn-
omial) modeling. Instead of fitting a full-rank quadratic model,
as is currently done in [20]–[25], ROAD applies a projection
operator with the goal of obtaining an optimal low-rank model
by minimizing the approximation error. With this novel projec-
tion scheme, ROAD is able to dramatically reduce the number
of unknown model coefficients and the number of simulation
samples, thereby significantly reducing the modeling cost and
facilitating scaling to much larger problem sizes than what are
feasible with current modeling techniques.

In addition, while the traditional projection theory generally
trades accuracy for simplicity in terms of the dimension of the

projection space [26], [27], we find that the rank-one projection
is especially meaningful in our application. Our theoretical
analysis proves that a quadratic polynomial/posynomial is in-
variant (i.e., remains a polynomial/posynomial) under the rank-
one approximation. This allows us to use a one-dimensional
projection space to build models of these functions efficiently.
Furthermore, our numerical experiments show that the rank-
one projection allows us to approximate many analog per-
formances with sufficient accuracy to enable a good local
optimization.

In addition to the concept of using subspace projection for
quadratic polynomial/posynomial modeling, another important
contribution of our work is the algorithm that is used to obtain
this projection. As part of ROAD, we have formulated a novel
implicit power iteration algorithm that is used to determine the
optimal projection space and extract the unknown model coeffi-
cients. Essentially, this algorithm solves a sequence of overde-
termined linear equations or convex quadratic programming
problems and exhibits robust convergence. Using this implicit
power iteration technique, ROAD is able to achieve significant
speedup for generating rank-one quadratic performance (both
polynomial and posynomial) models. As demonstrated by the
numerical examples in Section IV, ROAD is able to extract
accurate models and reduce the computational cost by up to
5.5× when compared with the traditional full-rank quadratic
modeling.

The remainder of this paper is organized as follows: In
Section II, we briefly review the background materials in the ar-
eas of parametric analog optimization and performance model-
ing. Then, we propose our ROAD approach, including response
surface modeling, statistical analysis, posynomial fitting, and
geometric programming in Section III. The efficacy of ROAD is
demonstrated by several circuit examples designed in the IBM
BiCMOS 0.25 µm or Taiwan Semiconductor Manufacturing
Company Ltd. (TSMC) CMOS 0.13 µm process in Section IV.
Finally, we draw conclusions in Section V.

II. BACKGROUND

A. Feasible Region in Analog Design Space

It is well known that the entire analog/RF design space is
strongly nonlinear and contains many local minima that prevent
local optimization from converging to the globally optimal
point. The strong nonlinearity of the analog design space makes
analog optimization extremely difficult and motivates the ap-
plication of stochastic search algorithms, e.g., simulated an-
nealing and genetic programming, to find a good optimization
solution [3]–[7]. It is theoretically guaranteed that stochastic
search algorithms can find the global optimum after they visit a
sufficiently large number of design points in the design space.

Recently, Graeb et al. [28] and Stehr et al. [29] proposed the
concept of feasible region that is defined by a set of implicit
topology-given specifications—e.g., MOSFETs should stay in
the saturation region in order to provide the correct analog
functionality. As shown in Fig. 1, the feasible region is a small
subset of the entire analog design space. It is observed that
in many applications, analog design space is weakly nonlin-
ear in the feasible region [28]. Therefore, starting from an
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Fig. 1. Feasible region in analog design space.

initial design in the feasible region, it is likely that a good
final design can be achieved even by using local optimization
algorithms.

Due to this observation, we utilize a two-step approach for
parametric analog optimization, which is similar to that used
in [29]. In the first step, an initial global search is applied to
explore the entire design space and get close to a good initial
solution in the feasible region. The initial global search can
be done by manual analysis, traditional analog optimization
algorithms [1]–[10], or the initial sizing algorithm proposed
in [29]. Simplified device/coupling models can be utilized in
this step to ease the manual design or speed up the automatic
optimization. Then, in the second step, ROAD is used to
perform a more fine-grained local posttuning with detailed
device/coupling/variation models to improve the design accu-
racy and the parametric yield.

Since ROAD is a local optimization tool, the initial starting
point can have a significant impact on the quality of the opti-
mized design. For example, if a bad initial design (e.g., out of
the feasible region) is used, ROAD can even fail to converge.
In this paper, we do not attempt to make the optimization
result independent of the initial starting point. Instead, we focus
on our formulation and evaluation of a novel projection-based
performance modeling technique to reduce the computational
cost and facilitate the application of posttuning to large prob-
lem sizes.

B. Posynomial Function and Geometric Programming

Let X = [x1, x2, . . . , xM ]T be M real and positive design
variables (e.g., bias current, transistor sizes). A function f is
called posynomial if it has the following form:

f(X) =
∑

i

cix
α1i
1 xα2i

2 · · ·xαNi

M (1)

where ci ∈ R+, and αij ∈ R. Note that the coefficients ci must
be nonnegative, but the exponents αij can be real values.

Several research works have demonstrated that many ana-
log circuit specifications (e.g., gain, bandwidth) can be cast
into posynomial functions [8]–[10]. As such, analog circuit
sizing can be formulated as a geometric programming problem
as follows:

minimize f0(X)

subject to fi(X) ≤ 1, i = 1, . . . ,K

xj > 0, j = 1, . . . ,M (2)

where f0, f1, . . . , fK are normalized circuit performance ma-
trices, and they are approximated as posynomial functions. The
geometric programming problem in (2) attempts to find the
optimal value of X that yields minimal f0 while satisfying
all other constraints {fi(X) ≤ 1, i = 1, 2, . . . ,K} and {xj >
0, j = 1, 2, . . . ,M}. The optimization in (2) can be converted
into a convex programming problem and solved in an extremely
efficient way [11].

Geometric programming has been previously applied to para-
metric analog optimization in [8]–[10]. However, these ap-
proaches optimize analog/RF circuits using simplified models,
which is similar to using hand analysis equations. In contrast, in
ROAD, we use the solution derived from the optimization based
on such simplified equations as a starting point. Our objective is
to further tune the design for robust performance using detailed
device/variation modeling information.

ROAD utilizes posynomial performance models and geomet-
ric programming for local optimization. However, linear and/or
quadratic polynomial performance models can also be used,
where the optimization problem should be solved by linear pro-
gramming and/or quadratic programming. The detailed com-
parison between geometric programming, linear programming,
and quadratic programming is beyond the scope of this paper
and is, therefore, not included.

C. Linear and Quadratic Performance Modeling

Given a circuit topology, the circuit performance (e.g., gain,
bandwidth) is a function of the design variables (e.g., bias cur-
rent, transistor sizes), as well as the process and environmental
parameters (e.g., VTH, temperature). If the variations on all
design, process, and environmental parameters are sufficiently
small, the circuit performance f can be approximated as a linear
response surface (i.e., polynomial) model [20], [21], i.e.,

f(Y ) = BTY + C (3)

where Y = [y1, y2, . . . , yN ]T contains the design, process, and
environmental parameters, B ∈ RN and C ∈ R stand for the
model coefficients, and N is the total number of the variational
parameters.

The linear model in (3) is not sufficiently accurate for mod-
eling large-scale variations. It, in turn, suggests that applying
quadratic response surface (i.e., polynomial) model is required
to improve the modeling accuracy [20], [21], i.e.,

f(Y ) = Y TAY + BTY + C (4)

where C ∈ R is the constant term, B ∈ RN represents the
linear coefficients, and A ∈ RN×N denotes the quadratic co-
efficients. The unknown model coefficients A, B, and C can
be determined by solving the overdetermined linear equation
[20], [21] described as follows:

Y T
i AYi + BTYi + C = f̃i, i = 1, 2, . . . , S (5)

where Yi and f̃i are the value of Y and the exact value of the
performance f for the ith simulated sample, respectively, and S
is the total number of the sampling points.
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Fig. 2. ROAD optimization flow.

Another important category of performance model is the
posynomial function shown in (1). Several previous techniques
have been proposed for quadratic posynomial model generation
[22]–[25]. Considering the tradeoff between modeling accuracy
and computational cost, direct fitting [24] is one of the most
efficient approaches. Direct fitting approximates a posynomial
function by the following quadratic form:

f(X) = X̃T ÃX̃ + B̃T X̃ + C̃ (6)

where X = [x1, x2, . . . , xM ]T contains M design variables,
X̃ = [x−1

1 , x−1
2 , . . . , x−1

M , x1, x2, . . . , xM ]T is a column vector,
and Ã ∈ R2M×2M

+ , B̃ ∈ R2M
+ , and C̃ ∈ R+ are the unknown

posynomial coefficients that can be determined by the following
optimization [24]:

minimize ψ(Ã, B̃, C̃)=
T∑

i=1

(
X̃T

i ÃX̃i + B̃T X̃i + C̃ − f̃i

)2

subject to Ã ∈ R2M×2M
+ , B̃ ∈ R2M

+ , and C̃ ∈ R+ (7)

where X̃i and f̃i are the value of X̃ and the exact value of the
function f for the ith simulated sample, respectively, and T is
the total number of the sampling points. Note that unlike the
quadratic polynomial fitting, the coefficient matrices Ã, B̃, and
C̃ in (7) must be nonnegative so that the approximated function
in (6) is a posynomial. The cost function in (7) is a positive
semidefinite quadratic function restricted to a convex constraint
set [24]. Therefore, the optimization problem in (7) is convex
and is guaranteed to find a globally optimal solution.

In addition, the authors in [24] proposed a template estima-
tion technique to reduce the posynomial modeling cost. The
template estimation algorithm first fits the sampling points to
a quadratic polynomial function. Then, in the second step,
dominant posynomial terms are selected based on the polyno-
mial coefficients, and only these dominant terms are put into
the cost function in (7) for final optimization. As such, the
computational cost can be significantly reduced.

It is straightforward to verify that the numbers of the un-
known coefficients in (5) and (7) are O(N2) and O(M2),
respectively. The overall computational cost for determining all
these coefficients consists of two portions.

1) Simulation cost: the cost for running a simulator to de-
termine the performance value f̃i at each sampling point.
The number of simulation samples should be no less than
the number of unknown coefficients, in order to uniquely
solve the linear equation in (5) or the convex optimization
in (7). Therefore, at least O(N2) and O(M2) sampling
points are required for fitting the quadratic polynomial
model in (4) and the quadratic posynomial model in (6),
respectively. In practical applications, the number of sim-
ulation samples is generally selected to be significantly
larger than the unknown coefficient number to avoid
overfitting. Typically, the simulation cost is the dominant
portion of the overall computational cost.

2) Fitting cost: the cost for solving the overdetermined linear
equation in (5) or the convex optimization in (7). The
fitting costs are of the order of O(N6) and O(M6) for
the quadratic polynomial model in (4) and the quadratic
posynomial model in (6), respectively.

The aforementioned high computational cost limits the
traditional quadratic polynomial and posynomial modeling
approaches to small- or medium-size applications. This obser-
vation, therefore, motivates us to propose a novel projection-
based performance modeling algorithm in ROAD, which can
significantly reduce both simulation cost and fitting cost.

III. ROAD METHODOLOGY

Our proposed ROAD tool uses a combination of response
surface modeling, statistical analysis, posynomial fitting, and
geometric programming. Fig. 2 outlines the ROAD optimiza-
tion flow that consists of three individual steps.

Step 1) Run transistor-level simulation and fit the qua-
dratic response surface (i.e., polynomial) models
fi(DesV ar, ProV ar) for all circuit performances
in the local design space, where fi stands for the ith
circuit performance, DesV ar contains the design
variables, and ProV ar contains the process and
environmental parameters.

Step 2) Based on the response surface models
fi(DesV ar, ProV ar), apply statistical analysis to
process and environmental variations and extract the
probability distribution of the circuit performances
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fi. Fit the worst case performances gi(DesV ar)
as the posynomial functions of the design variables
DesV ar.

Step 3) Using these preextracted posynomial models, opti-
mize the circuit by geometric programming.

The fitting and optimization procedure in Fig. 2 is repeatedly
applied to successively narrowed local design spaces during the
ROAD iterations. Since ROAD sets up all design constraints
with process and environmental variations and the performance
model becomes increasingly accurate in the successively nar-
rowed local design space, ROAD can converge to an accurate
design with high parametric yield. In this section, we will
describe the key algorithms used in ROAD and highlight their
novelties.

A. Projection-Based Response Surface Modeling

As shown in Fig. 2, the first step in ROAD is to extract
the quadratic response surface (i.e., polynomial) models based
on transistor-level simulation. Although high-order polynomial
functions can be utilized to improve the modeling accuracy,
ROAD uses quadratic models because they are easy to fit
and facilitate an efficient probability extraction using the as-
ymptotic probability extraction (APEX) algorithm [30]. Our
experimental evaluation also shows that the accuracy provided
by quadratic models is sufficient to converge to a good design
solution.

The key disadvantage of the traditional quadratic response
surface modeling algorithms [20], [21] is the need to compute
all elements of the matrix A in (4). This matrix is often sparse
and rank deficient in many practical problems. Therefore, in-
stead of finding the full matrix A, ROAD approximates A by
another low-rank matrix AL. Such a low-rank approximation
problem can be stated as follows: Given a matrix A, find
another matrix AL with rank p < rank(A) such that their
difference ‖AL −A‖F is minimized. Here, ‖ · ‖F denotes the
Frobenius norm, which is the square root of the sum of the
squares of all matrix elements. For simplicity, we assume
that A is symmetric in this paper. Any asymmetric quadratic
form can be easily converted to the equivalent symmetric form
0.5·XT (A + AT )X [27].

From the matrix theory [26], for any symmetric matrix
A ∈ RN×N , the optimal rank-p approximation with the least
Frobenius norm error is

AL =
p∑

i=1

λiPiP
T
i (8)

where λi is the ith dominant eigenvalue, and Pi ∈ RN is the
ith dominant eigenvector. The eigenvectors in (8) define an
orthogonal projector P1P

T
1 + · · · + PpP

T
p , and every column

in AL is the projection of every column in A onto the sub-
space span{P1, . . . , Pp}. We use this orthogonal projector for
quadratic response surface modeling in this paper.

Although it is possible to increase the dimension of the
projection space to achieve higher modeling accuracy, ROAD
utilizes the rank-one projection AL = λ1P1P

T
1 in order to

achieve the best tradeoff between accuracy and complexity. As

we will demonstrate via numerical examples in Section IV,
the rank-one projection is much easier to compute than higher
order projections, whereas it provides sufficient accuracy for
approximating many circuit performances in the local/small
design space. The main advantage of such a rank-one projection
is that for approximating the matrix A ∈ RN×N in (4), only
λ1 ∈ R and P1 ∈ RN need to be determined, thus reducing the
number of problem unknowns to O(N). Compared with the
problem size O(N2) in traditional approaches, our proposed
projection-based method is more efficient and can be applied to
larger size problems.

B. Coefficient Fitting via Implicit Power Iteration

Since the matrix A in (4) is not known in advance, we cannot
use standard matrix techniques to compute its dominant eigen-
value λ1 and eigenvector P1 for a rank-one approximation. One
approach for finding the optimal rank-one model is to solve the
following optimization problem:

minimize ψ(λ1, P1, B,C)

=
S∑

i=1

(
λ1Y

T
i P1P

T
1 Yi + BTYi + C − f̃i

)2

subject to ‖P1‖2 = 1 (9)

where ‖ · ‖2 denotes the two-norm of a vector.
Compared with (4), (9) approximates the matrix A by

λ1P1P
T
1 . Therefore, we expect that minimizing the cost func-

tion Ψ(λ1, P1, B,C) in (9) will cause λ1 and P1 to converge
to the dominant eigenvalue and eigenvector, respectively, of
the original matrix A. Unfortunately, Ψ(λ1, P1, B,C) is a
sixth-order polynomial and might not be convex. In addition,
the constraint set in (9) is specified by a quadratic equation
and is not convex either. Therefore, the optimization in (9) is
not a convex programming problem, and there is no efficient
optimization algorithm that can guarantee to find the globally
optimal solution.

Instead of solving the nonconvex optimization problem
in (9), we propose a novel implicit power iteration method to
efficiently extract the unknown coefficients λ1 and P1. This
implicit power iteration solves a sequence of overdetermined
linear equations and exhibits robust convergence. An outline of
this algorithm is shown in Fig. 3.

Next, we explain why the implicit power iteration yields
the optimal rank-one approximation AL = λ1P1P

T
1 . Note that

Step 3 in Fig. 3 approximates the matrix A by QkQ
T
k−1, where

Qk−1 is determined in the previous iteration step. Finding such
an optimal approximation is equivalent to solving the following
overdetermined linear equation:

QkQ
T
k−1 = A. (10)

The least square error solution for (10) is given by [26]

Qk = AQk−1 ·
(
QT

k−1Qk−1

)−1
= AQk−1. (11)

In (11), QT
k−1Qk−1 = ‖Qk−1‖2

2 = 1, since Qk−1 is normalized
in Step 2 in Fig. 3. Equation (11) reveals an interesting fact that
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Fig. 3. Implicit power iteration algorithm for quadratic response surface modeling.

Fig. 4. Convergence of the implicit power iteration in a three-dimensional space.

solving the overdetermined linear equation in Step 3 “implic-
itly” computes the matrix–vector product AQk−1, which is the
basic operation required in the traditional power iteration for
dominant eigenvector computation [26].

Given the initial vector

Q0 = α1P1 + α2P2 + · · · (12)

where Q0 is represented as the linear combination of all eigen-
vectors of A, the kth iteration step yields

Qk = AkQo = α1λ
k
1P1 + α2λ

k
2P2 + · · · . (13)

In (13), we ignore the normalization Qk−1 = Qk−1/‖Qk−1‖2,
which is nothing else but a scaling factor. This scaling factor
will not change the direction of Qk. As long as α1 	= 0 in (12),
i.e., P1 is not orthogonal to the initial vector Q0, α1λ

k
1P1 (with

|λ1| > |λ2| > |λ3| > · · ·) will become increasingly dominant
over other terms. Thus, Qk will asymptotically approach the
direction of P1, as shown in Fig. 4.

After the iteration in Fig. 3 converges, we have Qk−1 =
Qk−1/‖Qk−1‖2 = P1 and Qk = AQk−1 = λ1P1. QkQ

T
k−1 is

the optimal rank-one approximation AL = λ1P1P
T
1 . Thus, the

proposed implicit power iteration extracts the unknown co-
efficients λ1 and P1 with guaranteed convergence, but in an
implicit way (i.e., without knowing the full matrix A). This
“implicit” property is the key difference between the proposed
algorithm and the traditional power iteration in [26].

The implicit power iteration in Fig. 3 needs to solve 2N + 1
unknown coefficients, for which the required number of simu-
lation samples is of the order of O(N), and solving the overde-
termined linear equation in Step 3 in Fig. 3 has a complexity
of O(N3). Therefore, the proposed projection-based modeling

is much more efficient than the traditional full-rank quadratic
modeling, which requires O(N2) simulation samplings and
has a fitting cost of O(N6) for solving the overdetermined
linear equation.

The aforementioned implicit power iteration is used for rank-
one quadratic response surface (i.e., polynomial) modeling.
If a quadratic coefficient matrix contains p(p ≥ 2) dominant
eigenvalues and, therefore, a rank-p approximation is required,
the implicit power iteration can be repeatedly applied to extract
the first p dominant eigenvalues and eigenvectors. More details
on this rank-p approximation are beyond the scope of this paper
and can be found in [31].

Finally, it is worth mentioning that the implicit power iter-
ation is probably convergent if A is symmetric. For an asym-
metric A, we can show that Qk−1 and Qk should iteratively
converge to the directions of the dominant left and right singular
vectors of A in order to achieve the optimal rank-one approxi-
mation. However, the global convergence of the implicit power
iteration is difficult to prove in that case.

C. Extension to Projection-Based Posynomial Modeling

The projection-based technique described in Sections III-A
and B can be extended to quadratic posynomial modeling,
which is required in the second step of the ROAD optimization
flow in Fig. 2. Most of the projection theories described in
Section III-A can be directly applied to quadratic posynomial
modeling. For example, given the symmetric square matrix
Ã in (6), the optimal rank-p approximation is still given by
(8), where λi and Pi in (8) now represent the ith dominant
eigenvalue and eigenvector of Ã, respectively. The difference
between polynomial and posynomial fitting is that for posyn-
omial fitting, we need to further prove that AL ∈ R2M×2M

+ ,
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Fig. 5. Implicit power iteration algorithm for quadratic posynomial modeling.

i.e., that the low-rank approximation AL is nonnegative, if
Ã ∈ R2M×2M

+ . In order to prove this, we need the following
theorem.
Perron–Frobenius Theorem [27]: Let A be a real nonnega-

tive matrix, i.e., A ∈ Rn×n
+ . Then, λ1 = ρ(A), where the spec-

tral radius of A is a simple eigenvalue of A. Moreover, there
exists an eigenvector P1 with nonnegative elements associated
with this eigenvalue.

One conclusion from the Perron–Frobenius theorem is that
since the first dominant eigenvalue λ1 and eigenvector P1 for
the nonnegative matrix Ã in (6) are both nonnegative, the
rank-one approximation AL = λ1P1P

T
1 is also nonnegative. In

other words, a quadratic posynomial is invariant (i.e., remains a
posynomial) under the rank-one projection.

On the other hand, the eigenvectors Pi are mutually orthog-
onal for the symmetric matrix Ã. Since P1 is nonnegative, P2,
P3, . . . must contain nonpositive elements. This implies that
any rank-p projection with p ≥ 2 might convert a posynomial
to a signomial with negative coefficients.

ROAD utilizes the rank-one projection, which is theoretically
guaranteed by the earlier discussion to map a posynomial
to another posynomial. In addition, the unknown dominant
eigenvalue λ1 and eigenvector P1 can be extracted by a similar
implicit power iteration, as summarized in Fig. 5.

In Fig. 5, the optimization in Step 3 requires all coeffi-
cients Qk, Bk, and Ck to be nonnegative so that the approx-
imated function is a posynomial. In Step 3, the cost function
Ψk(Qk, Bk, Ck) is a positive semidefinite quadratic function,
and the constraint is a convex set. Therefore, the optimization in
Step 3 is a convex programming problem. The overall implicit
power iteration in Fig. 5 consists of a sequence of such convex
programming steps and will robustly converge to the optimal
rank-one posynomial model.

D. Robust Analog Optimization With
Process/Environmental Variations

Given a circuit topology, the circuit performance (e.g., gain,
bandwidth) is a function of design variables (e.g., bias current,
transistor sizes) and process and environmental parameters
(e.g., VTH, temperature). The process and environmental pa-
rameters can be modeled as random variables to capture their
variations. In such cases, the circuit performance f(X) with the
fixed design variables X = [x1, x2, . . . , xM ]T is also a random

Fig. 6. Probability density function of the circuit performance f(X).

TABLE I
ROAD FORMULATION FOR GEOMETRIC PROGRAMMING1

1The table only considers positive Spec values. Negative Spec values can be
normalized to positive ones through proper scaling/shifting [24].

Fig. 7. Illustration of the ROAD iterations.

variable that can be characterized by a probability density func-
tion. In ROAD, instead of handling the complete probability
density function, we define three important metrics for each
circuit performance, namely: 1) the mean value fMEAN(X);
2) the lower bound fLOW(X); and 3) the upper bound fUP(X),
as shown in Fig. 6. The lower bound fLOW(X) and the upper
bound fUP(X) in Fig. 6 are defined as two specific points (e.g.,
the 1% point and the 99% point, respectively) on the cumulative
distribution function.

In order to achieve a robust design, ROAD incorporates both
process and environmental variations into the cost function
and/or constraints during optimization. For example, the design
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Fig. 8. Outline of the overall ROAD iteration scheme.

Fig. 9. Circuit schematic of an LNA.

Fig. 10. Effect of the training set size for response surface modeling.

specification Var[f(X)] ≤ Spec is translated to [fUP(X) −
fLOW(X)]/Spec ≤ 1. In other words, we force the distance
between the upper bound and the lower bound to be no greater
than Spec under process and environmental variations. Table I

TABLE II
RESPONSE SURFACE MODELING ERROR FOR LNA (ε% = 5%)

TABLE III
RESPONSE SURFACE MODELING COST FOR LNA (ε% = 5%)

summarizes all geometric programming cost functions and
constraints utilized in ROAD.

As shown in Fig. 2, after the response surface models are
extracted for the circuit performance f and after we know the
probability distributions of the process and environmental para-
meters (e.g., Normal distribution), the probability density func-
tion of the circuit performance f can be extracted for any fixed
design variables X = [x1, x2, . . . , xM ]T by using the APEX
algorithm [30]. It follows that the mean value fMEAN(X),
the lower bound fLOW(X), and the upper bound fUP(X) are
computed at one sampling point X = [x1, x2, . . . , xM ]T . This
probability extraction procedure is repeated for a number of
sampling points {Xi}. Then, depending on the design specifica-
tions, the cost function and constraints (e.g., fMEAN(X)/Spec,
[fUP(X) − fLOW(X)]/Spec) are approximated as posynomial
functions using the projection-based technique proposed in
Section III-C. Finally, based on these extracted posynomial



10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 1, JANUARY 2007

performance models, geometric programming is applied to
optimize the design variables and improve the circuit perfor-
mance and the parametric yield.

E. Road Iteration Scheme

As shown in Fig. 7 and summarized in Fig. 8, starting from
an initial design, ROAD iteratively improves the circuit per-
formance and the parametric yield by successive performance
modeling, statistical analysis, and geometric programming. In
each iteration, ROAD fits posynomial models in a local design
space to approximate the worst case circuit performance with
consideration of process and environmental variations. Then,
geometric programming is utilized to find the optimal design in
that local design space.

The overall iteration is performed at two levels, namely:
1) inner loop iteration and 2) outer loop iteration. The inner
loop iteration searches for the optimal solution in the local
design spaces that have the same size but are centered at
different expansion points. During the kth iteration, the kth
local design space is defined by a perturbation of ±ε% on all
design variables of the previous iteration result Dk−1. Then,
after the optimal design is found under the current perturbation
size ±ε%, ROAD reduces ε by a factor of 2 and repeats the
inner loop iteration for a finer-grained search. The iteration is
stopped if no further improvement is identified between two
successive steps and if the current ε% is smaller than the
predefined minimal design space size. Since the performance
modeling error is successively reduced due to the iteratively
narrowed design space, ROAD can converge to a final design
with high accuracy.

From our experience, the final design accuracy of the afore-
mentioned ROAD iteration is mainly determined by the final
value of ε%, i.e., the predefined minimal design space size in
Step 9 in Fig. 8. This final ε% determines the performance
modeling accuracy at the end of the iteration. Higher design
accuracy can be achieved if a smaller final ε% is utilized. On the
other hand, the final ROAD design is not sensitive to the initial
value of ε%. In many applications, the initial and final ε% can
be typically selected as 5%–10% and 1%–2%, respectively.

IV. NUMERICAL EXAMPLES

We demonstrate the ROAD flow as applied to circuit exam-
ples designed in the IBM BiCMOS 0.25 µm or TSMC CMOS
0.13 µm process. All the numerical experiments are performed
on a Sun SPARC 1-GHz server.

A. Low-Noise Amplifier (LNA)

Fig. 9 shows a LNA designed in the IBM BiCMOS 0.25-µm
process. The LNA circuit includes 12 design variables and
8 design specifications. Principal component analysis (PCA)
[33] is applied to extract the principal factors of the random
process variations based on the probability distributions and the
correlation information obtained from the IBM design kit. In
addition, variable screening [34] is further utilized to identify a
subset of the random process parameters that have much greater
influence on circuit performance than the others. After PCA and

Fig. 11. Effect of the training set size for posynomial modeling.

TABLE IV
POSYNOMIAL MODELING ERROR FOR LNA (ε% = 5%)

TABLE V
POSYNOMIAL MODELING COST FOR LNA (ε% = 5%)

variable screening, eight random factors are left to model the
process variations for both active devices (i.e., MOSFETs) and
passive components (i.e., resistors, inductors, and capacitors).

For each posttuning iteration, we sample the local design
space by a perturbation of ±ε% on all design variables. ε% is
initially set to 5% and then successively reduced to 1% during
the iterations. Two independent sampling sets are generated,
which are called the training set and the testing set, respectively.
The training set is created by orthogonal arrays [32], which pick
up the most important samples based on statistical analysis;
this is used for polynomial/posynomial coefficient fitting. For
testing and comparison, we collect 500 random samples as
the testing set (independent of the training set) and use them
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TABLE VI
CIRCUIT PERFORMANCE AND OPTIMIZATION COST FOR LNA

to verify the performance modeling accuracy for all modeling
techniques.
1) Robust Convergence of Implicit Power Iteration: We test

the convergence of the proposed implicit power iteration for
both quadratic response surface (i.e., polynomial) modeling and
quadratic posynomial modeling. One hundred different initial
vectors are randomly selected and used for running the implicit
power iteration. We find that all 100 experiments reliably
converge without a single failure.
2) Response Surface Modeling: The purpose of response

surface modeling is to extract the quadratic polynomial fi(Y ),
where fi stands for the ith circuit performance, and Y contains
12 design variables and 8 process parameters in this example.
For both direct fitting [20], [21] and ROAD, Fig. 10 shows
the relation between the response surface modeling error and
the training set size, where the perturbation ε% is set to 5%. The
modeling error is measured using the same testing set that
includes 500 random sampling points. Studying Fig. 10, we
find that the number of samples in the training set should be
three to four times greater than the number of unknown coeffi-
cients. Further increasing the number of training samples does
not have a significant impact on reducing the modeling error.
This observation implies that the required number of train-
ing samples depends on the number of unknown coefficients.
As the unknown coefficient number is reduced in ROAD due
to projection, not only can we decrease the computational time
for coefficient fitting, but we can also significantly reduce the
circuit simulation cost due to the smaller training set.

Table II summarizes the response surface modeling accuracy
for both direct fitting [20], [21] and ROAD. The modeling
error in Table II is measured using the same testing set that
contains 500 random sampling points. Studying Table II, we
find that no significant accuracy is surrendered by using the
proposed projection-based technique in ROAD. In addition, it
is interesting to note that for several circuit performances (e.g.,
S11 and S22), the ROAD modeling error is even smaller than
the direct fitting error. Theoretically, the direct fitting approach
should be more accurate, since it takes into account all quadratic
polynomial terms in (4). However, this is not necessarily true
in many practical applications, where the training set only
contains a limited number of sampling points. As shown in
Fig. 10, both direct fitting and ROAD require more training
samples in order to achieve smaller fitting error. Therefore,
given a limited number of samples in the training set (see
Table III), ROAD might produce a more accurate response
surface model than direct fitting.

Fig. 12. Probability distribution of S21 achieved by the nominal and robust
ROAD optimizations.

Fig. 13. Circuit schematic of a two-stage folded-cascode operational
amplifier.

Table III further shows the number of training samples used
for coefficient fitting and the computational cost for generating
the response surface models. Even for this small example,
ROAD achieves 3.5× speedup for Spectre simulation and 2×
speedup for coefficient fitting. As discussed in Section III-A,
ROAD reduces the number of unknown coefficients from
O(N2) to O(N), where N is the total number of design
variables and process/environmental parameters. Therefore, we
expect that as the problem size increases further, ROAD would
achieve additional speedup over the direct fitting method.
3) Posynomial Modeling: Based on the preextracted re-

sponse surface models fi(Y ), statistical analysis [30] is applied
to evaluate the worst case circuit performances, which are
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then approximated as the posynomial functions of the design
variables. For both direct fitting [24] and ROAD, Fig. 11 shows
the relation between the posynomial modeling error and the
training set size, where the perturbation ε% is set to 5%. The
modeling error is measured using the same testing set that
includes 500 random sampling points. As shown in Fig. 11, in
order to achieve accurate posynomial models, the number of
samples in the training set should be two to three times greater
than the number of unknown coefficients. This observation is
similar to what we observe for response surface modeling in
Fig. 10.

Table IV compares the accuracy of three posynomial mod-
eling approaches. The modeling error is measured using the
same testing set that includes 500 random sampling points.
In Table IV, direct fitting without template estimation [24] is
the most accurate one since it takes into account all possible
posynomial product terms in (6). However, although both the
template estimation method and the proposed ROAD approach
apply simplifications to reduce the computational cost, their
fitting accuracy is still comparable to the direct fitting without
template estimation. Table V shows the computational cost for
all these three approaches. In this small example with only
eight design variables, ROAD consumes more coefficient fitting
time than the template estimation approach. However, the total
computational cost (i.e., statistical analysis + coefficient fitting)
of ROAD is still the smallest, since it requires fewer sampling
points in the training set and, therefore, saves a significant
amount of computational time when generating these training
samples by statistical analysis.
4) Robust Design: With the preextracted posynomial per-

formance models, the geometric programming problem is
solved efficiently, taking 1–2 s for this LNA example. For
testing and comparison, three different designs are generated.
The initial design is created by hand analysis, the nominal
design is optimized without considering process variations, and
the robust design is synthesized for high parametric yield.

As shown in Table VI, the initial manual design contains a
few circuit performance metrics that do not satisfy the design
specifications. We apply ROAD to nominal optimization and
robust optimization, respectively. Table VI shows the nominal
and worst case performance values after both optimizations.
The worst case performance is measured at the 1% or 99% point
on the cumulative distribution function that is calculated from
1000 transistor-level Monte Carlo simulations in Spectre.

As shown in Table VI, the nominal ROAD optimization
pushes several nominal performances (i.e., S21 and IIP3) to
the boundaries of the design specifications, and therefore, the
worst case performances violate the design requirements. The
robust ROAD design, however, leaves sufficient margin for
each performance metric. These margins are estimated from
the probability distributions extracted by APEX [30] and are
related to the parametric yield values of individual performance
matrices. The additional performance margins enable the circuit
to meet design specifications under process variations. For
example, Fig. 12 plots the probability distribution of S21, where
the robust design produced by ROAD satisfies the specification
for a much larger fraction of the process variations than the
nominal design.

TABLE VII
RESPONSE SURFACE MODELING ERROR FOR OP AMP (ε% = 5%)

TABLE VIII
RESPONSE SURFACE MODELING ERROR FOR OP AMP (ε% = 1%)

TABLE IX
RESPONSE SURFACE MODELING COST FOR OP AMP (ε% = 5%)

TABLE X
POSYNOMIAL MODELING ERROR FOR OP AMP (ε% = 5%)

TABLE XI
POSYNOMIAL MODELING ERROR FOR OP AMP (ε% = 1%)

TABLE XII
POSYNOMIAL MODELING COST FOR OP AMP (ε% = 5%)
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TABLE XIII
CIRCUIT PERFORMANCE AND OPTIMIZATION COST FOR OP AMP

B. Two-Stage Folded-Cascode Operational Amplifier

Fig. 13 shows a two-stage folded-cascode operational ampli-
fier, which includes 34 design variables and 8 design specifi-
cations. After principal component analysis [33] and variable
screening [34], seven random factors are left to model the
process variations for both active devices (i.e., MOSFETs) and
passive components (i.e., capacitors). For simplicity, device
mismatches are not considered in this example. However, it
should be noted that nothing precludes us from including more
detailed mismatch models in ROAD as well. In each posttuning
iteration, we sample the local design space by a perturbation of
±ε% on all design variables. Similar to the LNA example, ε%
is initially set to 5%, and it is successively reduced to 1% during
the iterations.
1) Response Surface Modeling: Tables VII and VIII com-

pare the response surface modeling accuracy for both direct
fitting [20], [21] and ROAD. ROAD achieves similar modeling
accuracy as the direct fitting approach. In addition, comparing
Tables VII and VIII, one would find that as the perturbation
±ε% is reduced from ±5% to ±1%, the modeling accuracy
is improved. The ROAD modeling error is controlled around
1% for all circuit performances in Table VIII, which guarantees
high optimization accuracy at the end of the ROAD iterations.
It should be noted that achieving small modeling error is
extremely important for ROAD. The process and environmen-
tal variations in today’s IC technologies typically introduce
20%–30% variations on circuit performance. If the modeling
error is not sufficiently smaller than this value, the circuit yield
cannot be accurately estimated and optimized via these models.

Table IX summarizes the computational cost for generating
the response surface models. In this example, ROAD achieves
5.5× speedup for Spectre simulation and 32× speedup for
coefficient fitting. Compared with the previous LNA example,
the speedup of using ROAD becomes much more significant as
the problem size increases.
2) Posynomial Modeling: Tables X and XI summarize the

posynomial modeling accuracy for both direct fitting with
template estimation [24] and ROAD. Direct fitting without
template estimation [24] includes 2381 unknown coefficients in
this example and is, therefore, too computationally expensive.
From the data in Tables X and XI, both template estimation and
ROAD yield similar modeling accuracy. However, as shown in
Table XII, ROAD is four times faster for both statistical analysis
and coefficient fitting.

In addition, it should be noted that the maximal ROAD
posynomial modeling error is no more than 0.01% in Table XI

Fig. 14. Circuit schematic of a bandgap reference.

when the perturbation ±ε% is reduced to ±1%. This small error
implies a high optimization accuracy at the end of the ROAD
iterations.
3) Robust Design: Table XIII shows the Spectre-simulated

Op Amp performance before and after posttuning. The worst
case performance in Table XIII is measured at the 1% or 99%
point on the cumulative distribution function that is calculated
from 1000 transistor-level Monte Carlo simulations in Spectre.
As shown in Table XIII, the initial circuit is overdesigned,
resulting in a large power consumption. The nominal ROAD
optimization yields a much better design that meets all design
specifications, but it overoptimizes the circuit with several nom-
inal performances (e.g., unity gain frequency, phase margin,
and slew rate) sitting on the boundaries of the design spec-
ifications, and therefore, the worst case performances violate
the design requirements. Finally, the robust ROAD optimiza-
tion takes into account the process variations and, therefore,
leaves sufficient margin for each circuit performance metric.
These margins are estimated from the probability distributions
extracted by APEX [30] and are related to the parametric yield
values of individual performance matrices. Compared with the
initial design, the robust design generated by ROAD achieves
more than three times power reduction in this example.
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TABLE XIV
CIRCUIT PERFORMANCE AND OPTIMIZATION COST FOR BANDGAP

Fig. 15. Probability distribution of IOUT achieved by the initial and robust
designs.

C. Bandgap Reference

Fig. 14 shows a bandgap reference designed in the TSMC
0.13 µm process. The bandgap reference circuit includes 15
design variables and three design specifications. The primary
goal of designing the bandgap reference is to reduce the output
current variation caused by manufacturing and environmental
fluctuations. After principal component analysis [33] and vari-
able screening [34], 29 random factors are left to model the
process and environmental variations, including both interdie
variations and device mismatches. Similar to the previous two
examples, ε% is initially set to 5%, and it is successively
reduced to 1% during the ROAD iterations.

Table XIV shows the Spectre-simulated bandgap reference
performance before and after posttuning. The standard devia-
tion of the output current std(IOUT) is calculated from 1000
transistor-level Monte Carlo simulations in Spectre. Note that
the output current variation is reduced by approximately 30%
after ROAD optimization. The probability distributions of the
output current are plotted in Fig. 15.

V. CONCLUSION

In this paper, we propose a novel tool called ROAD to ac-
curately posttune (i.e., locally optimize) analog/RF circuits for
better performance and/or yield. Unlike nominal optimization,
which might overoptimize the circuit, ROAD leaves sufficient
margin for each circuit performance metric. These margins
enable the circuit to meet design specifications even in the
presence of large-scale process and environmental variations.

The novelty of ROAD lies in a projection-based approach
for generating accurate performance (both polynomial and
posynomial) models from transistor-level simulation. A crucial
component of our approach is a novel implicit power iteration
algorithm that is used to extract the unknown model coefficients
with robust convergence. Compared with traditional modeling
techniques, ROAD achieves significant runtime speedup and
scales well with problem size.

Finally, it is important to mention that the projection-based
modeling approach proposed in this paper is not limited to
performance modeling for analog circuits. The same idea can
be directly applied to solve the quadratic polynomial and
posynomial modeling problems in many other engineering
applications. In addition, the proposed sequential geometric
programming (SGP) technique is also a general optimization
scheme that can be applied to many other optimization prob-
lems. A detailed theoretical comparison between SGP and the
traditionally used sequential quadratic programming would be
an interesting direction for future research.
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