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Abstract—While process variations are becoming more signifi-
cant with each new IC technology generation, they are often mod-
eled via linear regression models so that the resulting performance
variations can be captured via normal distributions. Nonlinear re-
sponse surface models (e.g., quadratic polynomials) can be utilized
to capture larger scale process variations; however, such models
result in nonnormal distributions for circuit performance. These
performance distributions are difficult to capture efficiently since
the distribution model is unknown. In this paper, an asymptotic-
probability-extraction (APEX) method for estimating the un-
known random distribution when using a nonlinear response
surface modeling is proposed. The APEX begins by efficiently
computing the high-order moments of the unknown distribution
and then applies moment matching to approximate the character-
istic function of the random distribution by an efficient rational
function. It is proven that such a moment-matching approach
is asymptotically convergent when applied to quadratic response
surface models. In addition, a number of novel algorithms and
methods, including binomial moment evaluation, PDF/CDF shift-
ing, nonlinear companding and reverse evaluation, are proposed
to improve the computation efficiency and/or approximation ac-
curacy. Several circuit examples from both digital and analog
applications demonstrate that APEX can provide better accuracy
than a Monte Carlo simulation with 104 samples and achieve
up to 10× more efficiency. The error, incurred by the popular
normal modeling assumption for several circuit examples designed
in standard IC technologies, is also shown.

Index Terms—Circuit performance, probability, process var-
iation, response surface modeling.

I. INTRODUCTION

A S IC TECHNOLOGIES are scaled to the deep submi-
crometer region, process variations are becoming critical

and significantly impact the overall performance of a circuit.
Table I shows some typical process parameters and their 3σ
variations as technologies are scaled from 250 to 70 nm.
These large-scale variations introduce uncertainties in circuit
behavior, thereby making IC design increasingly difficult. Low
product yield or unnecessary overdesign cannot be avoided if
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TABLE I
ESTIMATED TECHNOLOGY PARAMETERS AND 3σ VARIATIONS [1]

process variations are not accurately modeled and analyzed
within the IC design flow.

During the past decade, various statistical analysis tech-
niques [1]–[7] have been proposed and utilized in many appli-
cations such as statistical timing analysis, mismatch analysis,
yield optimization, etc. The objective of these techniques is to
model the probability distribution of the circuit performance
under random process variations. Nassif [1] applies a linear
regression to approximate a given circuit performance f (e.g.,
delay, gain, etc.) as a function of the process variations (e.g.,
∆VTH, ∆TOX, etc.) and assumes that all random variations
are normally distributed. As such, the performance f is also
a normal distribution, since the linear combination of normally
distributed random variables is still a normal distribution [8].

The linear regression model is efficient and accurate when
process variations are sufficiently small. However, the large-
scale variations in deep submicrometer technologies, which
reach almost ±50% in Table I, suggest the need for higher
order regression models in order to guarantee high approxima-
tion accuracy [4]–[7]. Using a higher order response surface
model, however, brings about new challenges due to the non-
linear mapping between the process variations and the circuit
performance f . The distribution of f is no longer normal, unlike
the case of the linear model. The authors in [3]–[5] utilize the
Monte Carlo simulation to evaluate the probability distribution
of f , but this is computationally expensive. Note that reducing
the computational cost for this probability extraction is crucial,
especially when the extraction procedure is an inner loop within
an optimization flow.

In this paper, we propose a novel asymptotic-probability-
extraction (APEX) approach for estimating the unknown
random distribution using the nonlinear response surface
modeling. Given a circuit performance f (e.g., the delay of
a digital circuit path or the gain of an analog amplifier), the
response surface modeling approximates f as a polynomial
function of the process variations (e.g., ∆VTH, ∆TOX, etc.).
Since the process variations are modeled as random variables,
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Fig. 1. Overall flow of APEX.

the circuit performance f , which is a function of these random
variables, is also a random variable. The APEX applies a
moment matching to approximate the characteristic function
of f (i.e., the Fourier transform of the probability density
function (PDF) [8]) by a rational function H . We conceptually
consider H to be of the form of the transfer function of a linear
time-invariant (LTI) system, and the PDF and the cumulative
distribution function (CDF) of f are approximated by the
impulse response and the step response of the LTI system H ,
respectively. Fig. 1 shows the overall flow of the APEX. In this
paper, we assume that the response surface model is already
available and it is provided to the APEX for estimating the
probability distribution of the circuit performance.

We prove that the moment-matching approach utilized in
APEX is asymptotically convergent when applied to quadratic
response surface models. In other words, given a quadratic re-
sponse surface model f that is a quadratic function of normally
distributed random variables, the PDF and the CDF of f can
be uniquely determined by its moments {mk, k = 1, 2, . . . ,K}
when K approaches infinity, i.e., K → +∞. The PDF and
the CDF extracted by the APEX can be used to characterize
and/or optimize the statistical performance of analog and digital
circuits under process variations.

APEX extends existing moment-matching methods via four
important new contributions which significantly reduce the
computational cost and improve the approximation accuracy
for this particular application. First, a key operation required
by the APEX is the computation of the high-order moments,
which is extremely expensive when using traditional techniques
such as the direct moment evaluation. In APEX, we propose a
binomial evaluation scheme to recursively compute the high-
order moments for a given quadratic response surface model.
The binominal-moment-evaluation scheme is derived from a
statistical independence theory and achieves a speedup of more
than 106× over the direct moment-evaluation technique in our
tested examples.

Second, the APEX approximates the unknown PDF by the
impulse response of an LTI system. Directly applying such
an approximation to any circuit performance with negative
value is infeasible, since it results in an LTI system that is
noncausal. To overcome this difficulty, the APEX applies a
modified Chebyshev inequality for PDF/CDF shifting.

Third, in several practical applications, we observe that a
direct moment matching is not efficient when the unknown PDF
has a large negative skewness. In such cases, we propose to ap-
ply a nonlinear-companding scheme to automatically compress
and/or expand the PDF such that the transformed PDF almost
has a zero skewness and can be approximated accurately.

Finally, the best case performance (e.g., the 1% point on
CDF) and the worst case performance (e.g., the 99% point

on CDF) are two important metrics to be evaluated in many
practical applications. Direct moment matching cannot capture
the 1% point value accurately since the moment-matching
approximation is most accurate for low-frequency components
(corresponding to the final value of a CDF) and least accurate
for high-frequency components (corresponding to the initial
value of a CDF). To address this problem, a reverse-evaluation
technique is proposed in this paper to produce an accurate
estimation of the 1% point.

The remainder of this paper is organized as follows. In
Section II, we review the background on principal component
analysis (PCA), response surface modeling, and classical mo-
ment problem. We propose our APEX approach in Section III
and discuss several implementation issues, including binomial
moment evaluation, PDF/CDF shifting, nonlinear companding,
and reverse evaluation in Section IV. We extend the APEX
algorithm to handle nonnormal process variations in Section V
and discuss the applications of APEX in Section VI. The
efficacy of APEX is demonstrated by several circuit examples
in Section VII, followed by our conclusions in Section VIII.

II. BACKGROUND

A. PCA

The PCA [9] is a statistical method that finds a set of
independent factors to represent a set of correlated random
variables. Given N process parameters X = [x1, x2, . . . , xN ]T,
the process variations ∆X = X − X0, where X0 contains the
mean values of X , are often approximated as zero-mean normal
distributions, and the correlations of∆X can be represented by
a symmetric positive semidefinite correlation matrix R. PCA
decomposes R as

R = V · Σ · V T (1)

where Σ = diag(λ1, λ2, . . . , λN ) contains the eigenvalues of
R and V = [V1, V2, . . . , VN ] contains the corresponding eigen-
vectors that are orthonormal, i.e., V TV = I (I is the identity
matrix). Based on Σ and V , the PCA defines a set of new
random variables

∆Y = Σ−0.5 · V T ·∆X. (2)

These new random variables ∆Y are called the principal com-
ponents or factors. It is easy to verify that ∆Y are independent
and satisfy the standard normal distribution N(0, 1) (i.e., zero
mean and unit standard deviation).

The essence of PCA can be interpreted as a coordinate
rotation of the space defined by the original random vari-
ables. In addition, if the magnitude of the eigenvalues {λi}
decreases quickly, it is possible to use a small number of
random variables, i.e., a small subset of principal components,
to approximate the original N -dimensional space. More details
on PCA can be found in [9].

B. Response Surface Modeling

Given a circuit topology, the circuit performance (e.g.,
gain, delay, etc.) is a function of the design parameters
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(e.g., bias current, transistor sizes, etc.) and the process pa-
rameters (e.g., VTH, TOX, etc.). The design parameters are
optimized and fixed during the design phase; however, the
process parameters must be modeled as random variables to
account for any random variations. After the PCA shown in
(1) and (2), the process variations can be represented by N
independent random variables∆Y that satisfy the standard nor-
mal distribution N(0, 1). Therefore, given a set of fixed design
parameters, the circuit performance f can be approximated by
a linear regression model of ∆Y [1]

f(∆Y ) = BT ·∆Y + C (3)

where B ∈ RN stands for the linear coefficients and C ∈ R
is the constant term. The linear regression model in (3) is
accurate when process variations are small. However, such a
linear model is becoming increasingly inaccurate as process
variations become relatively large in nanoscale technologies.
In addition, the linear regression model in (3) always yields
the conclusion that the worst case performance appears at one
of the process corners. This conclusion might not be valid
for many circuit performances, especially those analog circuit
performances with strong nonlinearities, e.g., the offset voltage
of an analog amplifier. For these reasons, applying quadratic re-
sponse surface models might be required to provide a sufficient
modeling accuracy [3]–[5] as

f(∆Y ) = ∆Y T · A ·∆Y +BT ·∆Y + C (4)

where A ∈ RN×N denotes the quadratic coefficients, B ∈ RN

represents the linear coefficients, and C ∈ R is the constant
term. Without loss of generality, we assume that A is symmetric
in this paper, since any asymmetric quadratic form XTAX
can be easily converted to an equivalent symmetric form 0.5 ·
XT(A+AT)X [10].

The model coefficients in (3) and (4) can be determined
by solving a set of overdetermined linear equations over a
number of sampling points [11]–[13]. These sampling points
are typically generated from SPICE simulations or measure-
ment results. Since generating each sampling point can be
quite expensive, many response surface modeling algorithms
[11]–[13] attempt to minimize the required number of sampling
points while maintaining good modeling quality. For this pur-
pose, a great number of algorithms for design of experiments
(DOE) have been proposed [14], [15]. Many of these DOE
algorithms (e.g., fractional factorial design, orthogonal array,
etc.) generate deterministic sampling points. These sampling
points do not represent the actual probability distributions of
process variations and, therefore, cannot be used for estimating
performance distributions. Even if a DOE algorithm (e.g., Latin
hypercube sampling [15]) generates random sampling points,
the number of these sampling points is typically too small
(e.g., 10–100) to accurately estimate PDF/CDF functions. For
this reason, after the response surface model is created, special
techniques are required to extract the probability distribution.

C. Classical Moment Problem

The classical moment problem was first proposed and studied
by T. Stieltjes in 1894. The Stieltjes moment problem is defined
as follows [16].
Definition 1 (Stieltjes Moment Problem): Given a sequence

of numbers {mk, k = 1, 2, . . .}, find a nondecreasing function
F (f), where f ∈ [0,+∞), such that

mk =

+∞∫
0

fkdF (f). (5)

Note that if the symbol f in (5) represents a random vari-
able, the numbers {mk, k = 1, 2, . . .} are its moments and the
function F (f) is its CDF. In the Stieltjes moment problem, the
random variable f is restricted to be nonnegative, i.e., its CDF
F (f) is defined only for f ≥ 0. By varying the interval in which
F (f) is valid, two further variations of the classical moment
problem can be defined [16].
Definition 2 (Hamburger Moment Problem): Given a se-

quence of numbers {mk, k = 1, 2, . . .}, find a nondecreasing
function F (f), where f ∈ (−∞,+∞), such that

mk =

+∞∫
−∞

fkdF (f). (6)

Definition 3 (Hausdorff Moment Problem): Given a se-
quence of numbers {mk, k = 1, 2, . . .}, find a nondecreasing
function F (f), where f ∈ [0, 1], such that

mk =

1∫
0

fkdF (f). (7)

As shown in (6) and (7), the Hamburger moment prob-
lem and the Hausdorff moment problem are defined in the
interval (−∞,+∞) and [0,1], respectively. In this paper, the
process variations are modeled as normal distributions, which
are unbounded and distributed over (−∞,+∞). Therefore, the
circuit performance approximated by the quadratic model (4)
is also unbounded. The probability extraction problem that we
aim to solve is the Hamburger moment problem in (6).

The classical moment problem has been widely studied by
mathematicians for over 100 years, focusing on the theoretical
aspects of the problem, e.g., the existence and uniqueness of
the solution. Details of these theoretical results can be found
in [16] or other recent publications, e.g., in [17]. However,
the practical applications of this moment problem, especially
the computation efficiency of solving the problem, have not
been sufficiently explored. In this paper, we develop the APEX
algorithm which aims to solve the moment problem efficiently,
i.e., to improve the approximation accuracy and reduce the
computational cost for practical applications.

III. APEX

Given the quadratic response surface model in (4), the ob-
jective of APEX is to estimate the PDF pdf(f) and the CDF
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cdf(f) for the performance f .1 Instead of running expensive
Monte Carlo simulations, the APEX tries to find an M th
order LTI system H whose impulse response h(t) and step
response s(t) are the optimal approximations for pdf(f) and
cdf(f), respectively.2 The optimal approximation is determined
by matching the first 2M moments between h(t) and pdf(f) for
an M th order approximation. In this section, we first describe
the mathematical formulation of the APEX algorithm. Then,
we link the APEX to probability theory and explain why it
is efficient in approximating PDF/CDF functions. Finally, we
prove that the moment-matching method utilized in APEX is
asymptotically convergent when applied to quadratic response
surface models.

A. Mathematical Formulation

We define the time moments [18] for a given circuit perfor-
mance f whose PDF is pdf(f) as follows:

sk =
(−1)k

k!

+∞∫
−∞

fk · pdf(f) · df. (8)

In (8), the definition of time moments is identical to the tradi-
tional definition of moments in probability theory except for the
scaling factor (−1)k/k!.

Similarly, the time moments can be defined for an LTI
system H [18]. Given an M th order LTI system whose transfer
function and impulse response are

H(s) =
M∑
i=1

ai

s − bi
and h(t) =




M∑
i=1

aie
bit, (if t ≥ 0)

0, (if t < 0).
(9)

The time moments of H are defined as [18]

sk =
(−1)k

k!

+∞∫
−∞

tk · h(t) · dt = −
M∑
i=1

ai

bk+1
i

. (10)

In (9), the poles {bi, i = 1, 2, . . . ,M} and residues {ai, i =
1, 2, . . . ,M} are the 2M unknowns that need to be determined.
Matching the first 2M moments in (8) and (10) yields the
following 2M nonlinear equations:

−
(

a1

b1
+

a2

b2
+ · · ·+ aM

bM

)
= s0

−
(

a1

b2
1

+
a2

b2
2

+ · · ·+ aM

b2
M

)
= s1

...
...

−
(

a1

b2M
1

+
a2

b2M
2

+ · · ·+ aM

b2M
M

)
= s2M−1. (11)

1In this paper, ∆X , ∆Y , and ∆Z represent the random variables for mod-
eling process variations, and f represents the circuit performance of interest.
The probability density function and the cumulative distribution function are
functions of f . Therefore, they are denoted as pdf(f) and cdf(f), respectively.

2The variable t in h(t) and s(t) corresponds to the variable f in pdf(f) and
cdf(f).

The nonlinear equations in (11) can be solved using the algo-
rithm proposed in [18], which first solves the poles {bi} and
then the residues {ai}. In what follows, we briefly describe this
two-step algorithm for solving (11).
1) Solving Poles: In order to solve the poles {bi} in (11),

Pillage and Rohrer [18] first formulate the following linear
equations:

−




s0 s1 · · · sM−1

s1 s2 · · · sM
...

...
...

...
sM−1 sM · · · s2M−2


 ·




c0

c1
...

cM−1


 =




sM

sM+1

...
s2M−1


 .

(12)

After solving (12) for {ci, i = 0, 1, . . . ,M − 1}, the poles {bi}
in (11) are equal to the reciprocals of the roots of the following
characteristic polynomial:

c0 + c1b
−1 + c2b

−1 + · · ·+ cM−1b
−M+1 + b−M = 0. (13)

The detailed proof of (12) and (13) can be found in [18].
2) Solving Residues: After the poles {bi} are known, substi-

tute {bi} into (11) and the residues {ai} can be solved by using
the first M moments

−




b−1
1 b−1

2 · · · b−1
M

b−2
1 b−2

2 · · · b−2
M

...
...

...
...

b−M
1 b−M

2 · · · b−M
M


 ·




a1

a2
...

aM


 =




s0

s1
...

sM−1


 . (14)

The aforementioned algorithm assumes that the poles {bi}
are distinct. Otherwise, if repeated poles exist, the unknown
poles and residues must be solved using a more comprehensive
algorithm described in [18]. Once the poles {bi} and residues
{ai} are determined, the PDF pdf(f) is optimally approximated
by h(t) in (9) and the CDF cdf(f) is optimally approximated by
the step response:

s(t) =

t∫
0

h(τ)dτ =




M∑
i=1

ai

bi
· (ebit − 1), (if t ≥ 0)

0, (if t < 0).
(15)

It should be noted that many implementation issues must be
considered to make our proposed approach, APEX, feasible
and efficient. For example, the impulse response of a causal
LTI system is only nonzero for t ≥ 0, but a PDF in practical
applications can be nonzero for f ≤ 0. In Section IV, we will
propose several schemes to address these problems.

The aforementioned moment-matching method was previ-
ously applied to IC interconnect order reduction [18], [19],
and it is related to the Padé approximation in linear control
theory [20]. In the following section, we will explain why
such a moment-matching approach is efficient in approximating
PDF/CDF functions.
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Fig. 2. Characteristic functions of several typical distributions.

B. Connection to Probability Theory

In probability theory, given a random variable f whose PDF
is pdf(f), the characteristic function is defined as the Fourier
transform of pdf(f) [8]

Φ(ω) =

+∞∫
−∞

pdf(f) · ejωf · df =
+∞∫

−∞

pdf(f) ·
+∞∑
k=0

(jωf)k

k!
· df.

(16)

Substituting (8) into (16) yields

Φ(ω) =
+∞∑
k=0

sk · (−jω)k. (17)

Equation (17) implies an important fact that the time moments
defined in (8) are related to the Taylor expansion of the char-
acteristic function at the expansion point ω = 0. Matching the
first 2M moments in (11) is equivalent to matching the first 2M
Taylor expansion coefficients between the original characteris-
tic function Φ(ω) and the approximated rational function H(s).

To explain why the moment-matching approach is efficient,
we first need to show two important properties of the character-
istic function that are described in [8].
Property 1: A characteristic function has the maximal mag-

nitude at ω = 0, i.e., |Φ(ω)| ≤ Φ(0) = 1.
Property 2: A characteristic function Φ(ω)→ 0 when

ω → ∞.
Fig. 2 shows the characteristic functions for several typical

random distributions. The above two properties imply an inter-
esting fact: Namely, given a random variable f , the magnitude
of its characteristic function decays as ω increases. Therefore,
the optimally approximated H(s) in (9) is a low-pass system.
It is well known that a Taylor expansion is accurate around the
expansion point. Since a low-pass system is mainly determined
by its behavior in the low-frequency range (around ω = 0), it
can be accurately approximated by matching the first several
Taylor coefficients at ω = 0, i.e., the moments. In addition, the
rational function form utilized in APEX is an efficient form to
approximate the transfer function H(s) of a low-pass system.
These conclusions have been verified in other applications

(e.g., IC interconnect order reduction [18], [19]), and they
provide the theoretical background to explain why the APEX
works well for PDF/CDF approximation, as will be demon-
strated by the numerical examples in Section VII.

C. Proof of Convergence

In the previous section, we have intuitively explained why
the moment-matching approach is efficient in approximating
PDF/CDF functions. However, there is a theoretical question
which might be raised: Given a random variable, can the
PDF/CDF functions always be uniquely determined by its
moments? In general, the answer is no. It has been observed
in mathematics that some probability distributions cannot be
uniquely determined by their moments. One example described
in [16] is the following PDF:

pdf(f)=

{
e−0.5·[ln(f)]2

√
2πf

· {1 + a · sin [2π · ln(f)]}, (if f > 0)
0, (if f ≤ 0)

(18)

where a ∈ [−1, 1]. It can be verified that all moments of the
PDF pdf(f) in (18) are independent of a, although varying a
changes pdf(f) significantly [16]. It, in turn, implies that the
PDF in (18) cannot be uniquely determined by its moments.

However, there are special cases for which the moment prob-
lem is guaranteed to converge, i.e., the PDF/CDF functions are
uniquely determined by the moments. The following Carleman
theorem states one of those special cases and gives a sufficient
condition for the convergence of the moment problem.
Theorem 1 (Carleman [16]): A probability distribution on

the interval (−∞,+∞), i.e., the Hamburger moment problem
[see (6)], can be uniquely determined by its moments {mk, k =
1, 2, . . .} if

+∞∑
k=1

(m2k)
−1
2k =∞. (19)

Based on the Carleman theorem, we can prove that the moment-
matching approach utilized in APEX is asymptotically con-
vergent when applied to quadratic response surface models.
Namely, given a quadratic response surface model f that is a
quadratic function of the normally distributed random variables,
the probability distribution of f can be uniquely determined
by its moments {mk, k = 1, 2, . . . ,K} when K approaches
infinity, i.e., K → +∞. The asymptotic convergence of APEX
can be formally stated by the following theorem. The detailed
proof of Theorem 2 is given in Appendix.
Theorem 2: Given the quadratic response surface model f

in (4) where the random variables ∆Y are independent and
satisfy the standard normal distribution N(0, 1), the probability
distribution of f can be uniquely determined by its moments
{mk, k = 1, 2, . . .}.

IV. IMPLEMENTATIONS OF APEX

Our proposed APEX approach is made practically feasible
by applying several novel algorithms, including: 1) a binomial
scheme for high-order moment computation; 2) a modified
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Chebyshev inequality for PDF/CDF shifting; 3) a nonlinear-
companding method to improve approximation accuracy; and
4) a reverse-evaluation technique for best case/worst case
analysis. In this section, we describe the mathematical formu-
lation of each of these algorithms.

A. Binomial Moment Evaluation

A key operation required in APEX is the computation of the
high-order time moments defined in (8) for a given random
variable f . Such a time moment evaluation is equivalent to
computing the expected values of {fk, k = 0, 1, . . . , 2M − 1}.
Given the quadratic response surface model in (4), fk can be
represented as a high-order polynomial of ∆Y

fk(∆Y ) =
∑

i

ci ·∆yα1i
1 ·∆yα2i

2 · · · · ·∆yαNi

N (20)

where ∆yi is the ith element in the vector ∆Y , ci is the
coefficient of the ith product term, and αij is the positive integer
exponent. Since the random variables∆Y are independent after
PCA analysis, we have

E(fk) =
∑

i

ci · E (∆yα1i
1 ) · E (∆yα2i

2 ) · · · · · E (∆yαNi

N )

(21)

where E(•) stands for the expected value operator. In addition,
remember that the random variables ∆Y satisfy the standard
normal distribution N(0, 1), which yields [8]

E(∆yk) =



1, (if k = 0)
0, (if k = 1, 3, 5, . . .)
1 · 3 · · · (k − 1), (if k = 2, 4, 6, . . .).

(22)

Substituting (22) into (21), the expected value of fk can be
determined.

The previous computation scheme is called direct moment
evaluation in this paper. The key disadvantage of such a mo-
ment evaluation is that, as k increases, the total number of
the product terms in (21) will exponentially increase, thereby
quickly making the computation infeasible. To overcome this
difficulty, we propose a novel binomial-moment-evaluation
scheme that consists of two steps: quadratic model diagonaliza-
tion and moment evaluation. The binomial moment evaluation
recursively computes the high-order moments without explic-
itly constructing the high-order polynomial fk in (20).
1) Quadratic Model Diagonalization: The first step of bi-

nomial moment evaluation is to remove the cross product terms
in the quadratic response surface model (4), thereby yielding a
much simpler, but equivalent quadratic model. According to a
matrix theory [10], any symmetric matrix A ∈ RN×N can be
diagonalized as

A = U · Λ · UT (23)

where Λ = diag(σ1, σ2, . . . , σN ) contains the eigenvalues of
A and U = [U1, U2, . . . , UN ] is an orthogonal matrix (i.e.,

UTU = I) containing the eigenvectors. Define the new random
variables ∆Z as follows:

∆Z = UT ·∆Y. (24)

Substituting (24) into (4) yields

f(∆Z) =∆ZT · Λ ·∆Z +QT ·∆Z + C

=
N∑

i=1

(
σi ·∆z2

i + qi ·∆zi

)
+ C (25)

where ∆zi is the ith element in the vector ∆Z and Q =
[q1, q2, . . . , qN ]T = UTB. Equation (25) implies that there is
no cross product term in the quadratic model after the diagonal-
ization. In addition, the following theorem guarantees that the
random variables ∆Z defined in (24) are still independent and
satisfy the standard normal distribution N(0, 1).
Theorem 3: Given a set of independent random variables

∆Y satisfying the standard normal distribution N(0, 1) and an
orthogonal matrix U , the random variables ∆Z defined in (24)
are independent, and satisfy the standard normal distribution
N(0, 1).

Proof: Since the random variables∆Z are the linear com-
binations of the zero-mean normal distributions ∆Y , ∆Z are
also normally distributed and have zero mean. The correlation
matrix for∆Z is given by

E(∆Z ·∆ZT) =E(UT ·∆Y ·∆Y T · U)
=UT · E(∆Y ·∆Y T) · U. (26)

Remember that ∆Y are a set of independent random vari-
ables satisfying the standard normal distribution N(0, 1), i.e.,
E(∆Y ·∆Y T) = I , and the matrix U is orthogonal, i.e.,
UTU = I . Thus, we have

E(∆Z ·∆ZT) = UT · E(∆Y ·∆Y T) · U = UT · I · U = I.
(27)

Equation (27) implies that the random variables in ∆Z are
uncorrelated and their variances are all equal to one. In addition,
uncorrelated random variables with normal distributions are
also independent [8]. �
2) Moment Evaluation: We now demonstrate the use of the

simplified quadratic model (25) for fast moment evaluation.
Based on (25), we define a set of new random variables

gi =σi ·∆z2
i + qi ·∆zi

hl =
l∑

i=1

gi + C =
l∑

i=1

(
σi ·∆z2

i + qi ·∆zi

)
+ C. (28)

Comparing (28) with (25), it is easy to verify that when
l = N , hN = f . Instead of computing the high-order moments
of f directly, the proposed binomial moment evaluation succes-
sively computes the moments of hl, as shown in the following
algorithm.
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Algorithm 1 (Binomial Moment Evaluation)

1) Start from h0 = C and compute E(hk
0) = Ck for each

{k = 0, 1, . . . , 2M − 1}. Set l = 1.
2) For each {k = 0, 1, . . . , 2M − 1}, compute

E
(
gk

l

)
=E

[(
σl ·∆z2

l + ql ·∆zl

)k]

=
k∑

i=0

(
k

i

)
· σi

lq
k−i
l · E

(
∆zk+i

l

)
(29)

E
(
hk

l

)
=E

[
(hl−1 + gl)k

]
=

k∑
i=0

(
k

i

)
· E
(
hi

l−1

)
· E
(
gk−i

l

)
. (30)

3) If l = N , then go to Step 4). Otherwise, l = l + 1 and
return Step 2).

4) For each {k = 0, 1, . . . , 2M − 1}, we have E(fk) =
E(hk

N ).

Step 2) in Algorithm 1 is the key operation required by the
binomial-moment-evaluation algorithm. In Step 2), both (29)
and (30) utilize the binomial theorem to get the binomial series.
Therefore, we refer to this algorithm as the binomial moment
evaluation in this paper.

In (29), the expected values E(∆zk+i
l ) can be easily evalu-

ated using the closed-form expression (22), since ∆zl satisfies
the standard normal distribution N(0, 1). Equation (30) utilizes
the property that hl−1 and gl are independent, because hl−1 is
a function of {∆zi, i = 1, 2, . . . , l − 1}, gl is a function of∆zl

and all {∆zi, i = 1, 2, . . . , N} are mutually independent (see
Theorem 3). Therefore, E(hi

l−1 · gk−i
l ) = E(hi

l−1) · E(gk−i
l ),

where the values of E(hi
l−1) and E(gk−i

l ) have already been
computed in previous steps.

The main advantage of the binomial-moment-evaluation al-
gorithm is that, unlike the direct moment evaluation in (21),
it does not explicitly construct the high-order polynomial fk.
Therefore, unlike the direct moment evaluation where the total
number of the product terms will exponentially increase, both
E(gk

l ) in (29) and E(hk
l ) in (30) contain at most 2M product

terms. Since {k = 0, 1, . . . , 2M − 1} and {l = 0, 1, . . . , N}
for an M th order APEX approximation with N independent
random variables, the total number of E(gk

l ) and E(hk
l ) that

need to be computed is O(MN). In addition, the matrix diago-
nalization in (23) is only required once and has a complexity
of O(N3). Therefore, the computational complexity of the
proposed algorithm is O(M2N) +O(N3). In most circuit-
level applications, N is small (around 5–100) after PCA analy-
sis, and selecting M = 7−10 provides sufficient accuracy for
moment matching. With these typical values of M and N , the
proposed binomial moment evaluation is extremely fast, as we
will demonstrate by the numerical examples in Section VII.

It should be noted that as long as the circuit performance f
is approximated by the quadratic model in (4) and the process
variations are normally distributed, the proposed binomial mo-
ment evaluation yields the exact high-order moment values
(except for numerical errors). There is no further assumption
or approximation made by the algorithm.

Fig. 3. PDF/CDF shifting is required in two cases.

Fig. 4. Phase plots of the Fourier transforms of pdf(f) and pdf(f + f0).
(a) The phase plot of pdf(f) presents a large phase shift. (b) The phase plot
of pdf(f + f0) shows a phase reduction of ωf0.

In summary, the binomial moment evaluation utilizes a sta-
tistical independence theory to efficiently compute the high-
order moments that are required by the moment matching
of APEX. Compared with the direct moment evaluation in
(20)–(22) whose computational complexity is O(NM ), the
proposed binomial-moment-evaluation algorithm reduces the
complexity to O(M2N) +O(N3).

B. PDF/CDF Shifting

APEX approximates the unknown PDF pdf(f) as the im-
pulse response h(t) of an LTI system. The impulse response of
a causal system is only nonzero for t ≥ 0, but a PDF in practical
applications can be nonzero for f ≤ 0. In such cases, we need
to right shift the unknown pdf(f) by f0 and use the impulse
response h(t) to approximate the shifted function pdf(f − f0),
as shown in Fig. 3 (case 1).

In addition, even if the unknown PDF pdf(f) is zero for all
f ≤ 0, it can be far away from the origin f = 0, as shown in
Fig. 3 (case 2). As such, the corresponding impulse response
h(t) presents a large delay in the time domain, which cor-
responds to a large phase shift in the frequency domain, as
shown in Fig. 4(a). Since each pole or zero in an LTI system
contributes to a phase shift of 90◦, the large phase shift must be
approximated using a great number of poles or zeros, resulting
in a high-order transfer function. In such cases, we need to left
shift the unknown pdf(f) by f0 and, therefore, reduce the phase
by ωf0, as shown in Fig. 4(b). The shifted function pdf(f + f0)
can be accurately approximated by the impulse response h(t) of
a low-order LTI system, since it has a much smaller phase shift
in the frequency domain.

The previous analysis implies that it is crucial to deter-
mine the correct value of f0 for PDF/CDF shifting. Over-
shifting the unknown PDF to either left or right side can
increase the approximation error. In this paper, process varia-
tions are modeled as normal distributions, which are unbounded
and distributed over (−∞,+∞). Therefore, any circuit per-
formance f approximated by the quadratic model in (4) is
also unbounded. It is difficult to completely shift pdf(f) to the
positive axis.
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However, since f is a random variable, pdf(f) can be left
shifted by f0

3 such that the probability P (f − f0 ≤ 0) is
sufficiently small. As shown in Fig. 3, the PDF/CDF shifting
problem can be stated as follows: Find the value ξ and left
shift pdf(f) by f0 = µ − ξ, where µ is the mean value of f ,
such that the probability P (f − f0 ≤ 0) is not greater than a
given error tolerance ε. In addition, we want to select the value
ξ to be as small as possible, i.e., find the smallest ξ satisfying
P (f − f0 ≤ 0) ≤ ε. A small ξ results in a small time-domain
delay in h(t) and, therefore, high approximation accuracy for
pdf(f). To estimate ξ, we need the following theorem.

Theorem 4: Given a random variable f , for any ξ ≥ 0 and
k = 2, 4, 6, . . .

P (|f − µ| ≥ ξ) ≤
E
[
(f − µ)k

]
ξk

(31)

where µ is the mean value of f .
Proof: For any k = 2, 4, 6, . . ., we have

P (|f − µ| ≥ ξ) =
∫

|f−µ|≥ξ

pdf(f) · df

≤
∫

|f−µ|≥ξ

(f − µ)k

ξk
· pdf(f) · df

≤
+∞∫

−∞

(f − µ)k

ξk
· pdf(f) · df

=
E
[
(f − µ)k

]
ξk

. (32)

Note that the proof is not restricted to any specific probability
distribution. �

Based on (31), if the PDF pdf(f) is left shifted by
f0 = µ − ξ, we have

P (f − f0 ≤ 0) =P (f − µ+ ξ ≤ 0) = P (−f + µ ≥ ξ)

≤P (|f − µ| ≥ ξ) ≤
E
[
(f − µ)k

]
ξk

(33)

where k = 2, 4, 6, . . .. Therefore, one sufficient condition for
P (f − f0 ≤ 0) ≤ ε is

E
[
(f − µ)k

]
ξk

≤ ε (k = 2, 4, 6, . . .) (34)

which is equivalent to

ξ ≥
{

E
[
(f − µ)k

]
ε

} 1
k

(k = 2, 4, 6, . . .). (35)

Equation (35) estimates ξ using high-order central moments.
In an M th order approximation, after the high-order moments
{E(fk), k = 0, 1, . . . , 2M − 1} are computed by the binomial

3f0 is negative in case of right shifting.

moment evaluation in Algorithm 1, the central moments can be
easily calculated using the binomial theorem

E
[
(f − µ)k

]
=

k∑
i=0

(
k

i

)
· E(f i) · (−µ)k−i (36)

where µ = E(f). Then, using (35), an estimated ξ is computed
for each k = 2, 4, . . . ., 2M − 2, which is denoted as ξk. The
minimal value of all these ξk values is utilized as the final ξ
for PDF/CDF shifting, since we aim to find the smallest ξ to
achieve high approximation accuracy.

It is worth mentioning that when k = 2, (31) is the well-
known Chebyshev inequality [8]. We have modified the second-
order Chebyshev inequality to higher orders and, therefore,
refer to (31) as the modified Chebyshev inequality. In practical
applications, we find that high-order moments provide a much
tighter (i.e., smaller) estimation of ξ, as will be demonstrated
by the numerical examples in Section VII.

In summary, the proposed modified Chebyshev inequality
(31) provides an effective way to estimate the boundary for
PDF/CDF shifting. As such, the major part of the unknown
PDF/CDF can be moved to the positive axis, which is then ac-
curately approximated by the impulse/step response of a causal
LTI system. For a specific circuit performance, the PDF/CDF
boundary can also be determined by other available knowledge,
in addition to using the modified Chebyshev inequality. For
example, the bandwidth of an amplifier is always positive, re-
sulting in a lower bound of zero for the bandwidth performance.

C. Nonlinear Companding

Given a random variable f , the deviation of the PDF pdf(f)
from a normal distribution can be measured using the skewness

Skewness(f) =
E
[
(f − µ)3

]
{E [(f − µ)2]}1.5 (37)

where µ is the mean value of f . Note that the skewness is zero
if the random variable f is a normal distribution. Although
the moment matching is a general methodology, we find that
its approximation accuracy depends on the skewness of the
unknown probability distribution, as illustrated by the following
simple example:

f(∆x) = θ ·∆x2 + (1− |θ|) ·∆x (38)

where ∆x is a random variable satisfying the standard normal
distribution N(0, 1) and θ ∈ [−1, 1] is a parameter controlling
the nonlinearity of the quadratic function f(∆x). The skewness
of f can be changed by varying the parameter θ, as shown
in Fig. 5. For most practical applications, the performance
variation should be dominated by the linear term in the response
surface model. Given this assumption, the value of θ in (38)
should be in the range of [−1/3, 1/3]. If θ = ±1/3, both the
quadratic term and the linear term in (38) are around ±3 at
the ±3σ point of ∆x, i.e., ∆x = ±3. Otherwise, if |θ| ≥ 1/3,
the quadratic term dominates the linear term in (38), which



24 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 1, JANUARY 2007

Fig. 5. Skewness depends on the coefficient θ in (38).

Fig. 6. Moment-matching error depends on the skewness of the unknown
probability distribution.

rarely happens in practice. It, in turn, yields the typical ranges
θ ∈ [−1/3, 1/3] and Skewness ∈ [−2.1, 2.1] shown in Fig. 5.

Fig. 6 shows the relation between the moment-matching
error and the skewness of the function f in (38). The f value
at the 99% point of the CDF is estimated by the moment
matching. This moment-matching result is compared with the
Monte Carlo simulation result with 106 samples. The relative
difference between these two results is used as a measure of
the estimation error in Fig. 6. Two observations can be made
from the data in Fig. 6. First, the moment matching is most
accurate when the skewness is close to zero, i.e., the probability
distribution is close to symmetric. As the nonlinearity increases
and the unknown probability distribution becomes asymmetric,
the moment-matching error increases. Second, the moment
matching error is not a symmetric function of the skewness.
As shown in Fig. 6, within the typical range Skewness ∈
[−2.1, 2.1], the maximal error for the negative skewness (more
than 21% when the skewness is equal to −2.1) is much larger
than its counterpart for the positive skewness (less than 5%
when the skewness is equal to 2.1). Therefore, it is more critical
to reduce the moment-matching error when it is applied to the
probability distributions with large negative skewness.

In this section, we propose a nonlinear-companding scheme
to address this skewness problem and further improve the

Fig. 7. Illustration of nonlinear companding. (a) The probability distribution
of f has a negative skewness. (b) The probability distribution of f has a positive
skewness.

approximation accuracy of APEX. Our main idea here is to
automatically compress and/or expand the unknown probability
distribution, such that the transformed probability distribution
almost has a zero skewness and can be approximated accurately.
1) Algorithm of Nonlinear Companding: Given a PDF

pdf1(f), we define a nonlinear mapping g = map(f). After this
nonlinear mapping, the transformed PDF becomes pdf2(g). If
the original PDF pdf1(f) has a nonzero skewness, we can select
a specific mapping function g = map(f) to compress or expand
pdf1(f) such that the transformed PDF pdf2(g) almost has a
zero skewness, as shown in Fig. 7. Compared with directly
applying the moment matching to estimate pdf1(f), applying
the moment matching to approximate the transformed PDF
pdf2(g) can significantly change the approximation error due
to the following two reasons.

First, as shown in Fig. 6, the moment matching is most ac-
curate when the unknown PDF has a zero skewness. Therefore,
applying the moment matching to pdf2(g), which almost has a
zero skewness, can achieve better approximation accuracy than
directly estimating pdf1(f). Second, if the moment matching is
applied to estimate the transformed performance value g at a
specific point (e.g., the 1% point or the 99% point) on CDF, the
estimation error∆g can be represented as

∆g = g0 − g (39)

where g0 and g are the exact and estimated values of the trans-
formed performance, respectively. Substituting g = map(f)
into (39) yields

∆g = map(f0)− map(f) = map′(f0) ·∆f (40)

where f0 and f are the exact and estimated values of the
original performance respectively, map′(f0) denotes the deriv-
ative value of the function g = map(f) at f = f0, and ∆f =
f0 − f is the estimation error of the original performance.
Equation (40) reveals an important fact that, due to nonlinear
companding, the estimation error is scaled by the derivative
map′(f0) when the performance value g is transformed back
to the original value f . Therefore, depending on the value of
map′(f0), ∆f can be either reduced [if map′(f0) is large] or
increased [if map′(f0) is small].

The total error change due to nonlinear companding is a
combination of the aforementioned two effects. For example,
if the probability distribution of f has a negative skewness,
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transforming f to g yields an accurate approximation pdf2(g),
i.e., a small estimation error∆g, due to the close-to-zero skew-
ness of pdf2(g). After the performance value g is transformed
back to the original performance value f , the estimation error
∆f at the 99% point on CDF is further reduced, since the
nonlinear function g = map(f) has a large derivative around
the 99% point, as shown in Fig. 7(a).

On the other hand, if the probability distribution of f has
a positive skewness, pdf2(g) can be once again approximated
accurately. However, the nonlinear function g = map(f) has a
small derivative around the 99% point on CDF. Therefore, when
the performance value g is transformed back to the original
performance value f , the estimation error ∆f at the 99% point
is increased, as shown in Fig. 7(b). In this case, the total
estimation error can be either reduced or increased. In other
words, applying the nonlinear companding does not always
improve the estimation accuracy of the 99% point on CDF, if
the unknown probability distribution has a positive skewness.

In APEX, we apply the nonlinear companding to those prob-
ability distributions with large negative skewness, especially
when the skewness is smaller than −0.5, in order to reduce
the estimation error of the 99% point on CDF. In such cases,
the direct moment-matching error is substantially large (shown
in Fig. 6), and applying nonlinear companding is guaranteed
to improve the accuracy. For those probability distributions
with positive skewness, the moment matching can be applied
directly to estimate the 99% point on CDF. In our numerical
experiments, we do not find any cases where the positive
skewness of a circuit performance is so large that the direct
moment matching yields a substantially large error.

In summary, the nonlinear-companding technique can be se-
lectively applied to reduce the estimation error of the 99% point
on CDF. For estimating the 1% point on CDF, we will apply
another reverse-evaluation technique to improve the accuracy,
which will be discussed in detail in Section IV-D.
2) Constructing Companding Function: Given a PDF

pdf1(f), a specific companding function g = map(f) should
be selected such that the transformed PDF pdf2(g) almost has a
zero skewness. In this section, we describe the methodology for
constructing such a companding function automatically. Since
nonlinear companding is only applied to negative skewness, we
will limit our discussion to those probability distributions with
negative skewness.

In addition to the skewness requirement, i.e., the transformed
PDF pdf2(g) should have a close-to-zero skewness, a good
companding function should further satisfy the following two
requirements.

1) Monotonicity. A companding function should be
monotonically increasing or decreasing. In other words,
the companding function g = map(f) should establish a
one-to-one mapping between f and g. Otherwise, given
a performance value g, it is not guaranteed to transform
g back to f and find the original performance value.

2) Efficiency. In order to make the nonlinear companding
efficient, the companding function should be easy to use.
This efficiency requirement has a twofold meaning. First,
given any PDF pdf1(f), the companding function g =

Fig. 8. Relation between the skewness and the scaling factor r for nonlinear
companding.

map(f) should be constructed automatically and quickly.
Second, after the PDF pdf1(f) is transformed to pdf2(g),
the high-order moments of pdf2(g) should be easy to
compute such that the transformed PDF pdf2(g) can be
efficiently approximated using the moment matching.

Although there are many ways to build the companding
function, we will use the following exponential function due
to its simplicity:

g = exp(α · f + β) (41)

where α and β are two parameters controlling the nonlinearity.
When the PDF pdf1(f) has a negative skewness, α in (41)
should be positive, as shown in Fig. 7(a).

Given a random variable f , we first compute

µ =E(f)

σ =
√

E [(f − µ)2] (42)

to normalize f , such that the mean and variance of (f − µ)/σ
are equal to 0 and 1, respectively. At this stage, the normaliza-
tion is done using the first- and second-order moments of f .
Then, in the next step, the third-order moment, i.e., the skew-
ness, of the normalized random variable (f − µ)/σ is used as
a criterion to select a proper scaling factor r and construct the
companding function in (41) where

α = r/σ

β = − rµ/σ. (43)

In order to determine the relation between the skewness of
the normalized random variable (f − µ)/σ and the scaling
factor r in (43), we repeatedly change the parameter θ in
(38) and generate a number of random distributions pdf1(f)
with negative skewness. Then, using the companding function
defined in (41)–(43), an r value is optimized for each of these
distributions to force the transformed distribution pdf2(g) to
have a zero skewness. Based on these experiments, a one-
dimensional table is generated, as shown in Fig. 8.
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The aforementioned algorithm for constructing the com-
panding function is extremely fast, since it only involves the
moment computation up to the third order and a one-
dimensional table lookup. However, it should be noted that
the curve in Fig. 8 is extracted by using the simple quadratic
function f in (38), which only includes one random variable
∆x. When such a lookup table is applied to the general mul-
tidimensional quadratic function f in (4), the skewness of the
transformed PDF pdf2(g) might not be exactly zero, since the
PDF is not uniquely determined by the first three moments. In
such cases, determining the companding function to achieve an
exactly zero skewness requires the information of high-order
moments, which is computationally expensive. Therefore, in
APEX, we simply construct the companding function using
the first three moments, in order to make the computation task
tractable. It should be noted that, even if the transformed PDF
pdf2(g) does not have an exactly zero skewness, the proposed
companding function defined in (41)–(43) with the positive
coefficient α always pushes the negative skewness toward zero,
thereby always improving the approximation accuracy.
3) Moment Evaluation in Companding: After the compand-

ing function in (41) is determined, the high-order moments of
the random variable g must be computed efficiently such that
the transformed PDF pdf2(g) can be approximated using the
moment matching. In this section, we describe the algorithm
to compute the moments for the transformed performance g in
(41). Since any quadratic response surface model in (4) can be
converted to the equivalent model in (25), we will assume that
the quadratic function f has the form of (25) in our moment
computation.

Substituting the quadratic model in (25) into the companding
function in (41) yields

g(∆Z)=exp

[
N∑

i=1

(
α·σi ·∆z2

i +α·qi ·∆zi

)
+α · C+β

]
.

(44)

Therefore, the kth order moment of g can be computed as

E(gk)=E

[
exp

(
k · α · C
+ k · β

)
·

N∏
i=1

exp
(

k · α · σi ·∆z2
i

+ k · α · qi ·∆zi

)]

= exp
(

k · α · C
+ k · β

)
·

N∏
i=1

E

[
exp

(
k · α · σi ·∆z2

i

+ k · α · qi ·∆zi

)]
.

(45)

Equation (45) utilizes the property that all {exp(k · α · σi ·
∆z2

i + k · α · qi ·∆zi), i = 1, 2, . . . , N} are mutually inde-
pendent, because each exp(k · α · σi ·∆z2

i + k · α · qi ·∆zi) is
a function of ∆zi and all {∆zi, i = 1, 2, . . . , N} are mutually
independent (see Theorem 3). Therefore, the expected value of
the cross product is equal to the cross product of all expected
values. Since all {∆zi, i = 1, 2, . . . , N} satisfy the standard

normal distribution N(0, 1), the expected value of each
exp(k · α · σi ·∆z2

i + k · α · qi ·∆zi) is equal to

E [exp
(
k · α · σi ·∆z2

i + k · α · qi ·∆zi

)]

=
1√
2π

−∞∫
−∞

exp
(

k · α · σi ·∆z2
i

+ k · α · qi ·∆zi

)

· exp
(
−0.5 ·∆z2

i

)
· d∆zi

=
1√
2π

−∞∫
−∞

exp
[
(k · α · σi − 0.5)

·∆z2
i + k · α · qi ·∆zi

]
· d∆zi

=
1√
2π

· exp
[

−k2α2q2
i

4 · (k · α · σi − 0.5)

]

·
−∞∫

−∞

exp

{(
k · α · σi

−0.5

)

·
[
∆zi +

k · α · qi

2 · (k · α · σi − 0.5)

]2}
· d∆zi

=
1√

2 · (0.5− k · α · σi)
· exp

[
−k2α2q2

i

4 · (k · α · σi − 0.5)

]

(if k · α · σi ≤ 0.5). (46)

Substituting (46) into (45), the kth order moment of the trans-
formed performance g is obtained.

It should be noted that the expected value in (46) exists if
and only if the condition k · α · σi ≤ 0.5 is satisfied. Otherwise,
the integration in (46) does not converge. In (46), the maximal
value of k is determined by the APEX approximation order M .
The moments up to 2M − 1th order are required in an M th
order approximation. The value of σi in (46) is the coefficient
of the quadratic response model in (25), and it is fixed during
model fitting. Finally, the value of α in (46) is the coefficient
of the companding function in (41), and it is determined when
constructing the companding function in (41)–(43). For an M th
order approximation with a given quadratic response model, the
values of k and σi are fixed. Therefore, in order to satisfy the
condition k · α · σi ≤ 0.5, the value of α in the companding
function (41) must be restricted by

α ≤ 0.5
(2M − 1) · σi

(i=1, 2, . . . , N where σi > 0). (47)

Equation (47) poses the new constraints for the companding
function g = map(f). If the value of α is too large when using
the equations in (41)–(43) and the lookup table in Fig. 8 to
construct the companding function, α must be reduced such
that the constraints in (47) are satisfied. In these cases, the
skewness of the transformed PDF pdf2(g) might not be exactly
zero; however, the proposed companding function defined in
(41)–(43) with the positive coefficient α always pushes the
negative skewness toward zero, thereby always improving the
approximation accuracy.
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Fig. 9. Illustration of the reverse evaluation.

For an M th order approximation with N independent
random variables {∆zi, i = 1, 2, . . . , N}, computing the first
2M − 1 moments using (45) and (46) has a complexity of
O(MN). In addition, the matrix diagonalization in (23) is only
required once and has a complexity of O(N3). Therefore, the
computational complexity of the moment evaluation in (45)
and (46) is O(MN) +O(N3), which is even lower than the
binomial moment evaluation proposed in Section IV-A.

In summary, the aforementioned nonlinear-companding
scheme is applied to improve the APEX approximation accu-
racy, if the skewness of the unknown probability distribution is
smaller than −0.5. In many practical applications, we find that
the nonlinear companding is not required since the skewness
of the circuit performance is not so far away from zero. The
nonlinear-companding scheme is applied only to a few strongly
nonlinear circuit performances, e.g., the offset voltage of an
analog amplifier, as will be demonstrated by the numerical
examples in Section VII.

D. Reverse Evaluation

In many practical applications, such as robust circuit op-
timization [4], [21], the best case performance (e.g., the 1%
point on CDF) and the worst case performance (e.g., the 99%
point on CDF) are two important metrics to be evaluated. As
discussed in Section III-B, APEX matches the first 2M Taylor
expansion coefficients between the original characteristic func-
tion Φ(ω) and the approximated rational function H(s). Recall
that the Taylor expansion is most accurate around the expansion
point ω = 0. According to the final value theorem of Laplace
transform, accurately approximatingΦ(ω) at ω = 0 provides an
accurate pdf(f) at f → ∞. It, in turn, implies that the proposed
approach can accurately estimate the 99% point of the random
distribution, as shown in Fig. 9.

The previous analysis motivates us to apply a reverse-
evaluation scheme for accurately estimating the 1% point. As
shown in Fig. 9, the reverse-evaluation algorithm flips the
original pdf(f) to pdf(−f). The 1% point of the original pdf(f)
now becomes the 99% point of the flipped pdf(−f) which can
be accurately evaluated by APEX.

After the reverse evaluation is applied, however, the skew-
ness of the unknown probability distribution will be changed.
For example, if the original pdf(f) has a negative skewness,
the flipped pdf(−f) will have a positive skewness, as shown
in Fig. 9. Depending on the skewness of the unknown proba-
bility distribution, Table II summarizes three cases where the
nonlinear companding and/or the reverse evaluation should be
selectively applied.

E. Summary

Algorithm 2 (Asymptotic Probability Extraction)
1. Start from the quadratic response surface model in (4)

and a given approximation order M .
2. Diagonalize the quadratic model based on (23)–(25).
3. Compute the first three moments {E(fk), k = 1, 2, 3}

using the binomial moment evaluation in Algorithm 1.
4. Compute the central moments {E[(f − µ)k], k =
1, 2, 3 using (36), where µ is the mean value of f .

5. Compute the skewness of f and based on Table II,
determine if the nonlinear companding is required or not.
If the nonlinear companding is not required:

6. Compute the high-order moments {E(fk), k = 1, 2,
. . . , 2M − 1} using the binomial moment evaluation in
Algorithm 1.

7. Compute the central moments {E[(f − µ)k], k = 1, 2,
. . . , 2M−1}using (36), where µ is the meanvalueof f .

8. Determine the value of ξ using (35) and f0 = µ − ξ,
where µ is the mean value of f .

9. Compute the time moments {sk=(−1)k/k! ·E[(f−
f0)k], k = 1, 2, . . . , 2M − 1}, where E[(f − f0)k] is
similarly evaluated by replacing µ by f0 in (36).

10. Substitute {sk, k = 1, 2, . . . , 2M − 1} into (11) and
solve the problem unknowns {ai, i = 1, 2, . . . ,M} and
{bi, i = 1, 2, . . . ,M}.

11. The shifted pdf(f + f0) is approximated by the impulse
response in (9) and the shifted cdf(f + f0) is approxi-
mated by the step response in (15).

12. Shift pdf(f + f0) and cdf(f + f0) back to pdf(f) and
cdf(f).
Else if the nonlinear companding is required:

13. Determine the companding function g = map(f) using
the equations in (41)–(43), the lookup table in Fig. 8 and
the constraints in (47).

14. Compute the high-order moments {E(gk), k = 1, 2, . . . ,
2M − 1} using (45) and (46).

15. Compute the central moments {E[(g − µ)k], k = 1, 2,
. . . , 2M − 1} using (36), where µ is the mean value
of g.

16. Determine the value of ξ using (35) and g0 = µ − ξ,
where µ is the mean value of g.

17. Compute the time moments {sk = (−1)k/k! · E[(g−
g0)k], k = 1, 2, . . . , 2M − 1}, where E[(g − g0)k] is
similarly evaluated by replacing µ by g0 in (36).

18. Substitute {sk, k = 1, 2, . . . , 2M − 1} into (11) and
solve the problem unknowns {ai, i = 1, 2, . . . ,M} and
{bi, i = 1, 2, . . . ,M}.

19. The shifted pdf2(g + g0) is approximated by the impulse
response in (9) and the shifted cdf2(g + g0) is approxi-
mated by the step response in (15).

20. Shift pdf2(g + g0) and cdf2(g + g0) back to pdf2(g) and
cdf2(g).

21. Transform pdf2(g) and cdf2(g) back to pdf1(f) and
cdf1(f) using the relation:

pdf1(f) = pdf2 [map(f)] · map′(f)
cdf1(f) = cdf2 [map(f)] . (48)

End If
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TABLE II
SELECTIVELY APPLYING THE NONLINEAR COMPANDING AND/OR THE REVERSE EVALUATION IN APEX

Algorithm 2 summarizes the overall implementation of
APEX without the reverse evaluation. If the reverse evaluation
is required to improve the estimation accuracy for the 1% point
on CDF, we need to replace f by −f in Step 3) and run all the
subsequent steps for computing pdf(−f) and cdf(−f).

Algorithm 2 is based on a given approximation order M .
Pillage and Rohrer [18] and Celik et al. [19] proposed several
methods for iteratively determining M based on the approx-
imation error. The approximation order should be increased
if the error is large. These methods can also be applied to
APEX. In addition, it is worth mentioning that using an approx-
imation order greater than ten can result in serious numerical
problems [18], [19]. In most practical applications, we find
that selecting M in the range of 7–10 can achieve the best
accuracy.

V. HANDLING NONNORMAL PROCESS VARIATIONS

The moment-matching method used in APEX is general
and is not limited to normal process variations. However, the
binominal moment evaluation proposed in Section IV-A relies
on the normal distribution assumption for process parame-
ters. If the binominal moment evaluation fails to work due
to nonnormal process variations, the moment values cannot
be easily computed and, therefore, the APEX algorithm is no
longer computationally efficient. In this section, we propose a
nonlinear transform method to overcome this problem: i.e., if
the nonnormal random variables are mutually independent, they
can be converted to normal distributions by a nonlinear map-
ping. However, the nonlinear transform approach is not valid
for correlated nonnormal distributions. Handling the correlated
nonnormal distributions is extremely difficult and even Monte
Carlo simulation becomes impractical in such cases.

A. Independent Nonnormal Process Variations

Given a set of random variables ∆X = [∆x1,∆x2, . . . ,
∆xN ]T, we assume that all these random variables
{∆xi, i = 1, 2, . . . , N} are mutually independent.4 A set of
one-dimensional functions {∆yi = gi(∆xi), i = 1, 2, . . . , N}
can be constructed to convert ∆X to ∆Y = [∆y1,∆y2, . . . ,
∆yN ]T such that {∆yi, i = 1, 2, . . . , N} satisfy normal distri-
butions [8]. The detailed algorithm for finding the transform
function gi(•) is described in [8]. Since the random variables

4Correlated normal distributions can be decomposed into independent ones
by principal component analysis.

Fig. 10. Probability density function of the log-normal distribution ∆x ∼
exp[N(0, 1/3)], i.e., the logarithm of ∆x is a normal distribution whose mean
is 0 and standard deviation is 1/3.

∆X are mutually independent, ∆Y are also mutually inde-
pendent and their joint PDF is given by

pdf(∆y1,∆y2, . . . ,∆yN ) = pdf(∆y1) · pdf(∆y2)

· · · · · pdf(∆yN ). (49)

It is easy to verify that the random variables ∆Y constitute a
multivariate normal distribution [8]. Therefore, if the response
surface model is constructed as a function of the transformed
random variables ∆Y , i.e., f(∆Y ) as shown in (4), the APEX
algorithm can be directly applied to estimate the probability
distribution of the performance f .

The additional nonlinear transforms {∆yi = gi(∆xi),
i = 1, 2, . . . , N}, however, generally increase the nonlinearity
of the response surface model f(∆Y ), thereby making it more
difficult to approximate f(∆Y ) as a quadratic function. This
nonlinearity problem can be illustrated by the following simple
example.

Given a log-normal distribution ∆x ∼ exp[N(0, 1/3)] as
shown in Fig. 10, the logarithm of x is a normal distribution
∆y = log(∆x) ∼ N(0, 1/3). The mean and standard devia-
tion of ∆y are 0 and 1/3, respectively. For simplicity, we
assume that the performance f is a simple linear function of
∆x, i.e., f = ∆x. Substituting ∆y = log(∆x) into f = ∆x
yields f = exp(∆y) which is no longer a linear or quadratic
function. Approximating f = exp(∆y) as a quadratic response
surface model introduces additional errors, as shown in Fig. 11.
If the process variations {∆xi, i = 1, 2, . . . , N} are more
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Fig. 11. Function f = exp(∆y) is approximated as a quadratic model within
the ±3σ range of ∆y.

different from normal distributions, the transforms {gi(•), i =
1, 2, . . . , N} become more nonlinear and, therefore, larger re-
sponse surface modeling error is expected for approximating
f(∆Y ).

In summary, we propose to convert the independent non-
normal process variations ∆X to the normal distributions ∆Y
by a nonlinear transform. As such, the APEX algorithm can
be directly applied to the quadratic response surface model
f(∆Y ). The proposed nonlinear transform approach, however,
cannot be applied to correlated nonnormal variations, as will be
discussed in the next section.

B. Correlated Nonnormal Process Variations

At first glance, the aforementioned nonlinear transform ap-
proach seems applicable to the correlated nonnormal variations.
The one-dimensional nonlinear functions {∆yi = gi(∆xi), i =
1, 2, . . . , N} can be constructed to convert each nonnormal
random variable ∆xi to a normal variable ∆yi. However, after
the nonlinear transform is performed, the random variables
{∆yi, i = 1, 2, . . . , N} are not mutually independent and their
joint PDF is not equal to the product of the marginal PDFs, i.e.

pdf(∆y1,∆y2, . . . ,∆yN )

�= pdf(∆y1) · pdf(∆y2) · · · · · pdf(∆yN ). (50)

In this case, the random variables {∆yi, i = 1, 2, . . . , N} are
not guaranteed to constitute a multivariate normal distribu-
tion. In other words, even if the random variables {∆yi, i =
1, 2, . . . , N} are marginally normal, they might not be jointly
normal [8]. This property can be understood from the following
example described in [8].

Consider two random variables ∆y1 and ∆y2, and their
joint PDF

pdf(∆y1,∆y2) = pdf1(∆y1) · pdf2(∆y2)

·
{
1 + ρ · [2 · cdf1(∆y1)− 1]

· [2 · cdf2(∆y2)− 1]

}
(51)

where |ρ| < 1, and pdf1(∆y1) and pdf2(∆y2) are two PDFs
with respective CDFs cdf1(∆y1) and cdf2(∆y2). It is easy to
verify that [8]

pdf (∆y1,∆y2) ≥ 0
+∞∫

−∞

+∞∫
−∞

pdf(∆y1,∆y2) · d∆y1 · d∆y2 =1. (52)

Equation (52) shows that the function in (51) is a valid joint
PDF. In addition, directly integrating the joint PDF yields [8]

+∞∫
−∞

pdf(∆y1,∆y2) · d∆y2 = pdf1(∆y1)

+∞∫
−∞

pdf(∆y1,∆y2) · d∆y1 = pdf2(∆y2) (53)

implying that pdf1(∆y1) and pdf2(∆y2) in (51) are the mar-
ginal PDFs of ∆y1 and ∆y2, respectively. In particular, let
pdf1(∆y1) and pdf2(∆y2) be normal distributions. In this case,
both ∆y1 and ∆y2 are marginally normal; however, their joint
PDF in (51) is not a multivariate normal distribution.

In addition, correlated nonnormal random variables cannot
be decomposed into independent ones using the PCA [9].
They must be characterized by their joint PDF, thereby making
them extremely difficult to handle in statistical analysis. Even
Monte Carlo simulation becomes impractical, if not impossible,
in such cases, since it is difficult to draw random samples
from a general multidimensional joint PDF [22]. In addition,
using the correlated nonnormal distributions also increases the
difficulty of process characterization, because extracting the
multidimensional joint PDF from the process testing data is
not trivial. Most IC foundries do not use correlated nonnor-
mal distributions in their process characterizations. Therefore,
handling correlated nonnormal process variations is beyond the
scope of this paper.

VI. APPLICATIONS OF APEX

APEX can be applied to many statistical analysis and opti-
mization problems (e.g., [3]–[7] and [21]) where estimating the
probability distribution of the circuit performance is required.
For example, we have applied the APEX to a robust analog
design flow in [21]. The robust analog design method proposed
in [21] starts from building a quadratic response surface model
f(DV,∆Y ), where f is the circuit performance of interest,
DV = [dν1, dν2, . . .]T contains the design variables that can be
controlled by the designer (e.g., bias current, transistor sizes,
etc.), and ∆Y = [∆y1,∆y2, . . . ,∆yN ]T models the process
variations. The quadratic model f(DV,∆Y ) is typically cre-
ated by running a number of SPICE simulations. Next, based on
the model f(DV,∆Y ), a robust optimization is performed to
search the optimal design variable values that yield the best cir-
cuit performance. During this optimization step, the probability
distribution of the performance f is repeatedly estimated with
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different design variable values. Since the probability extraction
is repeated for many times, its computational cost can be quite
expensive, if using Monte Carlo simulation in the loop. In such
cases, significant speedup can be achieved if APEX is utilized
for probability extraction, as demonstrated in [21].

VII. NUMERICAL EXAMPLES

In this section, we demonstrate the efficacy of the APEX
using several circuit examples. All of our experiments are run
in MATLAB on a 1-GHz SUN SPARC server. For testing and
comparison, both linear and quadratic response surface models
are created using the standard model fitting algorithm [12],
and these models are utilized for generating performance distri-
butions. The accuracy and cost of the probability extraction are
compared against Monte Carlo simulation. A Monte Carlo sim-
ulation typically consists of three steps, including: 1) generating
a set of random samples; 2) evaluating the performance values
at all sampling points; and 3) estimating the probability distri-
bution of the performance. In order to make a fair comparison,
the following two issues are considered when implementing the
Monte Carlo simulation.

First, instead of running transistor-level simulations, our
Monte Carlo simulation evaluates the performance values using
the quadratic response surface model in (4). As such, the APEX
error can be accurately tested by excluding the response surface
modeling error.

Second, various advanced techniques exist to improve the
accuracy of Monte Carlo simulation. For example, instead
of directly drawing sampling points from a random number
generator, they can be created by a controlled sampling scheme,
e.g., the Latin hypercube sampling [14]. In addition, a kernel
smoothing method [23] can be further utilized to accurately ex-
tract the performance distributions (i.e., PDF/CDF functions).
Given an accuracy requirement, these advanced techniques
can reduce the total number of the required sampling points;
however, they involve an additional computational effort for
preprocessing and/or postprocessing. Applying these advanced
techniques is efficient in those applications where evaluat-
ing the circuit performance is expensive, e.g., by running a
transistor-level simulator. Otherwise, if the circuit performance
can be easily evaluated, e.g., by using a response surface model,
the additional computational cost required by these advanced
techniques can become a dominant portion of the total cost.
For this reason, a simple random number generator is used to
generate the sampling points, and a simple bin-based histogram
is used to estimate the performance distributions in this paper.

A. Single-Variable Quadratic Model

We first consider a simple example of the single-variable
quadratic model in (38). Such a simple example allows us to
make a full comparison between the APEX and other traditional
probability extraction techniques. By varying the parameter θ
in (38), we change the nonlinearity of the function and generate
a number of unknown probability distributions with different
skewness. As discussed at the beginning of Section IV-C, we
assume that the linear term dominates the quadratic term in

Fig. 12. Estimation error of various probability extraction techniques.

Fig. 13. Circuit schematic of the longest path in the ISCAS’89 S27 bench-
mark circuit.

(38), which is the typical case in most practical applications.
Therefore, the value of θ is in the range of [−1/3, 1/3] and the
skewness of f is in the range of [−2.1, 2.1].

Three different approaches, i.e., linear regression, Legendre
approximation, and APEX, are respectively applied to estimate
the unknown distributions. The linear regression approach ap-
proximates the quadratic function f in (38) by a best fitted
linear model with least squares error, resulting in a normal
probability distribution for f . The Legendre approximation is
often utilized in traditional mathematics [23]. It expands the
unknown PDF by the Legendre polynomials and determines the
expansion coefficients based on moment matching.

For each probability extraction technique, the f value at the
99% point of the CDF is estimated and compared with the
Monte Carlo simulation result with 106 samples. Their relative
difference is used as a measure of the estimation error for
accuracy comparison, as shown in Fig. 12. The estimation error
at the 1% point on CDF has a similar pattern, since the reverse-
evaluation method proposed in Section IV-D flips the unknown
PDF pdf(f) and the 1% point of the original pdf(f) is the 99%
point of the flipped pdf(−f). As shown in Fig. 12, the proposed
APEX approach is the most accurate one in this example. In
addition, compared with the error curve in Fig. 6, the nonlinear-
companding technique proposed in Section IV-C significantly
reduces the estimation error (up to 20× in this example), when
the skewness of the unknown distribution is less than −0.5.

B. ISCAS’89 S27

1) Response Surface Modeling: We create a physical imple-
mentation for the ISCAS’89 S27 benchmark circuit using the
ST CMOS 0.13-µm process. Given a set of fixed gate sizes, the
longest path delay in the benchmark circuit (shown in Fig. 13)
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TABLE III
COMPUTATIONAL COST FOR MOMENT EVALUATION

is a function of the process variations (e.g.,∆VTH,∆TOX,∆L,
etc.). Since the circuit only consists of six gates which can be
put close to each other in the layout, the interdie variations
will dominate the intradie variations and the gate delay will
dominate the (local) interconnect delay in this example. There-
fore, for simplicity, we only consider the interdie variations
for the CMOS transistors in this example. The probability
distributions and the correlation information of the interdie
transistor variations are obtained from the ST design kit. After
PCA analysis, six principal random factors are identified to
represent these process variations. We should note, however,
that nothing precludes us from including more detailed intradie
and/or interconnect variation models in APEX as well.

We approximate the longest path delay as a function of the
process variations by a linear regression model and a quadratic
response surface (i.e., second-order polynomial) model, respec-
tively. The fitting error is 4.48% for the linear model and 1.10%
for the quadratic model (4× difference). The skewness of the
approximated quadratic delay model is equal to 0.28. There-
fore, based on Table II, the nonlinear-companding technique
proposed in Section IV-C is not required in this example.

It is worth noting that while the linear modeling error in this
example is not very large, as IC technologies are scaled to finer
feature size, the process variations will become relatively larger,
thereby making the nonlinear terms in the quadratic model even
more important.
2) Moment Evaluation: Table III compares the computation

time required for the direct moment evaluation and our pro-
posed binomial moment evaluation. During the direct moment
evaluation, the number of product terms increases exponen-
tially, thereby making the computation task quickly infeasible.
The binomial moment evaluation, however, is extremely fast
and achieves more than 106× speedup over the direct moment
evaluation in this example. In addition, we verify that the
moment values obtained from both approaches are identical
except for numerical errors.
3) PDF/CDF Shifting: As discussed in Section IV-B,

PDF/CDF shifting is necessary to make the proposed APEX
approach feasible and efficient. A key operation for PDF/CDF
shifting is to determine the ξ value based on (35) (also see
Fig. 3). We select an error tolerance ε = 10−3 in (35). Fig. 14
shows the estimated ξ values using various high-order mo-
ments. From Fig. 14, we find that the high-order moments
(k > 2) provide a much tighter (i.e., smaller) estimation of ξ.

Fig. 14. Estimated ξ values using high-order moments.

Fig. 15. Cumulative distribution function of the performance delay.

However, after the moment order k > 10, further increases in k
do not have a significant impact on reducing ξ.
4) PDF/CDF Evaluation: Fig. 15 shows the CDFs for two

different approximation orders. In Fig. 15, the “exact” CDF
is evaluated by a Monte Carlo simulation with 106 samples.
Note that the CDF obtained from the high-order approximation
(Order = 4) is not accurate and contains numerical oscillations.
However, once the approximation order is increased to eight,
these oscillations are eliminated and the approximated CDF
asymptotically approaches the exact CDF. Similar behavior
has been noted in moment matching of the LTI models of
interconnect circuits [18], [19].
5) Comparison of Accuracy and Speed: Table IV compares

the estimation accuracy and speed for four different probability
extraction approaches: linear regression, Legendre approxima-
tion, Monte Carlo simulation with 104 samples, and APEX.
The delay values at several specific points of the CDF are
estimated by these probability extraction techniques. The 1%
point and the 99% point, for example, denote the best case
delay and the worst case delay, respectively. After the CDF
is obtained, the best case delay, the worst case delay, and any
other specific points on CDF can be easily found using a binary
search algorithm. These delay values are compared with the
Monte Carlo simulation results with 106 samples. Their relative
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TABLE IV
ESTIMATION ERROR (COMPARED AGAINST MONTE CARLO WITH 106

SAMPLES) AND COMPUTATIONAL COST

Fig. 16. Circuit schematic of a low-noise amplifier (LNA).

difference is used as a measure of the estimation error for
accuracy comparison, as shown in Table IV. The computational
cost in Table IV is the total computation time for estimating the
unknown PDF and CDF.

Note from Table IV that the linear regression approach has
the largest error. APEX achieves a speedup of 8.7× over the
Monte Carlo simulation with 104 samples while still providing
better accuracy. In this example, applying a reverse evaluation
on pdf(−f) reduces the 1% point estimation error by 4×, from
0.20% to 0.04%. This observation demonstrates the efficacy of
the reverse-evaluation method proposed in Section IV-D.

C. Low-Noise Amplifier (LNA)

1) Response Surface Modeling: We consider a LNA de-
signed in the IBM BiCMOS 0.25-µm process, as shown in
Fig. 16. In this example, the variations on both MOS transistors
and passive components (resistor, capacitor, and inductor) are
considered. The probability distributions and the correlation
information of these variations are provided in the IBM design
kit. After PCA analysis, eight principal factors are identified to
represent the process variations.

The performance of the LNA is characterized by eight dif-
ferent specifications. Given a fixed circuit design, each circuit
performance is a function of the process variations. We ap-
proximate these unknown functions by linear regression models
and quadratic response surface (i.e., second-order polynomial)
models, respectively. Table V shows the response surface mod-
eling error and the model skewness for all these eight perfor-

TABLE V
RESPONSE SURFACE MODELING ERROR AND MODEL

SKEWNESS OF THE LNA

mances. In this example, the quadratic modeling error is 7.5×
smaller than the linear modeling error on average. In addition,
the skewness of all performances is in the range of [−0.5,
0.5]. Therefore, based on Table II, the nonlinear-companding
technique proposed in Section IV-C is not required in this
example.
2) Comparison of Accuracy and Speed: Tables VI and VII

compare the estimation accuracy for five different statisti-
cal analysis approaches: corner simulation, linear regression,
Legendre approximation, Monte Carlo simulation with 104

samples, and APEX. The lower bound and upper bound of each
LNA performance are estimated by these statistical analysis
techniques. These performance values are compared with the
Monte Carlo simulation results with 106 samples. Their relative
difference is used as a measure of the estimation error for
accuracy comparison.

The corner simulation approach computes the best case and
worst case performances by enumerating all process corners,
i.e., combining the extreme values of all process parameters.
The corner simulation approach is simple, but it can result in
extremely large errors, as shown in Tables VI and VII. The
linear regression approach provides more accurate results than
the corner simulation, but the errors are expected to increase
as IC technologies continue to scale. APEX achieves better
accuracy than the Monte Carlo simulation with 104 samples and
is 10× faster, as shown in Table VIII.

D. Operational Amplifier

1) Response Surface Modeling: Fig. 17 shows a two-stage
folded-cascode operational amplifier designed in the IBM
BiCMOS 0.25-µm process. In this example, 49 principal factors
are extracted by the PCA to represent the process variations,
including both the interdie variations and the device mis-
matches. Modeling the mismatches is extremely important for
this operational amplifier, since they significantly impact many
circuit performances, e.g., input offset voltage. The probability
distributions and the correlation information of all random
variations are obtained from the IBM design kit.

The performance of the Op Amp is characterized by eight
different specifications. Given a fixed circuit design, each
circuit performance is a function of the process variations.
We approximate these unknown functions by linear regres-
sion models and quadratic response surface (i.e., second-order
polynomial) models, respectively. Table IX shows the response
surface modeling error and the model skewness for all these
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TABLE VI
ESTIMATION ERROR FOR THE LOWER BOUND OF THE LNA PERFORMANCE (1% POINT ON CDF)

TABLE VII
ESTIMATION ERROR FOR THE UPPER BOUND OF THE LNA PERFORMANCE (99% POINT ON CDF)

TABLE VIII
COMPUTATIONAL COST FOR THE PROBABILITY EXTRACTION OF THE LNA (SEC.)

Fig. 17. Circuit schematic of an operational amplifier.

eight performances. In this example, the skewness of two
performances, i.e., gain and offset, is not in the range of [−0.5,
0.5]. Therefore, based on Table II, the nonlinear-companding
technique proposed in Section IV-C should be applied to these
two performances to improve the approximation accuracy.
2) Comparison of Accuracy and Speed: Tables X and XI

compare the estimation accuracy for four different statistical
analysis approaches: linear regression, Legendre approxima-
tion, Monte Carlo simulation with 104 samples, and APEX. The
lower bound and upper bound of each Op-Amp performance are
estimated by these statistical analysis techniques. These perfor-

TABLE IX
RESPONSE SURFACE MODELING ERROR AND MODEL

SKEWNESS OF THE OP AMP

mance values are compared with the Monte Carlo simulation
results with 106 samples. Their relative difference is used as a
measure of the estimation error for accuracy comparison.

As shown in Tables X and XI, the linear regression and
the Legendre approximation yield large estimation errors, es-
pecially when the circuit performance has a large skewness,
e.g., gain and offset. Because of their strong nonlinearities, the
probability distributions of gain and offset are extremely diffi-
cult to approximate. Most traditional approaches in Tables X
and XI fail to estimate the upper bounds and the lower bounds
of these two performances accurately. By using the proposed
nonlinear-companding technique, APEX achieves a significant
error reduction. Without the nonlinear companding, the APEX
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TABLE X
ESTIMATION ERROR FOR THE LOWER BOUND OF THE OP-AMP PERFORMANCE (1% POINT ON CDF)

TABLE XI
ESTIMATION ERROR FOR THE UPPER BOUND OF THE OP-AMP PERFORMANCE (99% POINT ON CDF)

TABLE XII
COMPUTATIONAL COST FOR THE PROBABILITY EXTRACTION OF THE OP AMP (SEC.)

error for the 99% point of the performance gain is 5.37% (16×
larger) and the APEX error for the 1% point of the performance
offset is 23.47% (40× larger). For most circuit performances in
this example, APEX achieves better accuracy than the Monte
Carlo simulation with 104 samples and is 7.2× faster, as shown
in Table XII.

VIII. CONCLUSION

As IC technologies reach nanoscale, process variations are
becoming relatively large and nonlinear (e.g., quadratic) re-
sponse surface models might be required to accurately char-
acterize the large-scale variations. In this paper, we propose an
APEX method for estimating the nonnormal random distrib-
ution resulting from the nonlinear response surface modeling.
Four novel algorithms, i.e., binomial moment evaluation,
CDF/PDF shifting, nonlinear companding, and reverse evalua-
tion, are proposed to reduce the computational cost and improve
the estimation accuracy. As is demonstrated by the numerical
examples, applying the APEX results in better accuracy than a
Monte Carlo simulation with 104 samples and achieves up to
10× more efficiency. APEX can be incorporated into a para-
metric yield optimization loop or a statistical timing analysis
environment for efficient probability extraction and worst case
analysis. For example, the efficacy of applying APEX to robust
analog design is further discussed in [21].

APPENDIX

PROOF OF THEOREM 2

Proof: The model diagonalization procedure proposed in
Section IV-A demonstrates that any quadratic response surface
model in (4) can be converted to an equivalent model in (25)
without any cross-product terms. Therefore, from now on, we
will assume that there is no cross-product term in the quadratic
function. The quadratic response surface model in (25) can be
rewritten as

f(∆Z) =
N∑

i=1

(
σi ·∆z2

i + qi ·∆zi

)
+ C

=
N∑

i=1

[
σi ·

(
∆zi +

qi

2σi

)2
]
+

(
−

N∑
i=1

q2
i

4σi
+ C

)
.

(54)

Therefore, we have

|f(∆Z)|≤
N∑

i=1

[
|σi|·

(
|∆zi|+

∣∣∣∣ qi

2σi

∣∣∣∣
)2
]
+

∣∣∣∣∣−
N∑

i=1

q2
i

4σi
+C

∣∣∣∣∣ .
(55)
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Let

α = max
i

|σi| βi =
qi

2σi
γ =

√√√√ 1
αN

·
∣∣∣∣∣−

N∑
i=1

q2
i

4σi
+ C

∣∣∣∣∣ (56)

and substituting (56) into (55) yields

|f(∆Z)| ≤ |α| ·
[

N∑
i=1

(|∆zi|+ |βi|)2 +Nγ2

]

≤ |α| ·
N∑

i=1

(|∆zi|+ |βi|+ |γ|)2

≤ |α| ·
[

N∑
i=1

(|∆zi|+ |βi|+ |γ|)
]2

. (57)

The high-order moments of f satisfy

m2k=E(f2k)≤E


|α|2k ·

(
N∑

i=1

|∆zi|+
N∑

i=1

|βi|+
N∑

i=1

|γ|
)4k



=|α|2k ·
+∞∫

−∞

· · ·
+∞∫

−∞

(
N∑

i=1

|∆zi|+
N∑

i=1

|βi|+
N∑

i=1

|γ|
)4k

· pdf(∆z1, . . . ,∆zN )·d∆z1 · · · d∆zN . (58)

Since the random variables ∆Z are independent, and satisfy
the standard normal distribution N(0, 1) (see Theorem 3), the
integration in (58) is over a symmetric function. Using this
symmetric property yields

m2k≤2N ·|α|2k ·
+∞∫
0

· · ·
+∞∫
0

(
N∑

i=1

∆zi+
N∑

i=1

|βi|+
N∑

i=1

|γ|
)4k

· pdf(∆z1, . . . ,∆zN )·d∆z1 · · · d∆zN . (59)

Compared with (58), the absolute operator is removed for
{∆zi, i = 1, 2, . . . , N} in (59), because the function in (59)
is only integrated over positive {∆zi, i = 1, 2, . . . , N}. The
function

(
N∑

i=1

∆zi +
N∑

i=1

|βi|+
N∑

i=1

|γ|
)4k

· pdf(∆z1, . . . ,∆zN )

(60)

is nonnegative. Therefore, expanding the integration interval in
(59) yields

m2k ≤ 2N ·|α|2k ·
+∞∫

−∞

· · ·
+∞∫

−∞

(
N∑

i=1

∆zi+
N∑

i=1

|βi|+
N∑

i=1

|γ|
)4k

· pdf(∆z1, . . . ,∆zN ) · d∆z1 · · · d∆zN

=2N ·|α|2k ·E



(

N∑
i=1

∆zi+
N∑

i=1

|βi|+
N∑

i=1

|γ|
)4k




=2N ·|α|2k ·E
[(√

N ·∆z+
√

N ·β
)4k
]

(61)

where

∆z=
1√
N

·
N∑

i=1

∆zi and β=
1√
N

·
(

N∑
i=1

|βi|+
N∑

i=1

|γ|
)

.

(62)

It is easy to verify that the random variable ∆z in (62) also
satisfies the standard normal distribution N(0, 1), since it is
the linear combination of N independent random variables
{∆zi, i = 1, 2, . . . , N} with the standard normal distribution
N(0, 1). Therefore, (61) can be rewritten as

m2k ≤ 2N ·|α|2k ·N2k ·E
[
(∆z+β)4k

]

=2N ·|α|2k ·N2k ·




−β∫
−∞
(∆z+β)4k ·pdf(∆z)·d∆z

+
+β∫
−β

(∆z+β)4k ·pdf(∆z)·d∆z

+
+∞∫
+β

(∆z+β)4k ·pdf(∆z)·d∆z



(63)

where β is a positive number defined in (62) and pdf(∆z) is the
PDF of the random variable∆z. Note that the three integrations
in (63) are over different intervals. It is easy to verify the
following inequalities:

{
(∆z + β)4k ≤ (2∆z)4k (if |∆z| ≥ β)
(∆z + β)4k ≤ (2β)4k (if |∆z| ≤ β).

(64)

Since the PDF pdf(∆z) is nonnegative, (64) yields




−β∫
−∞
(∆z + β)4k · pdf(∆z) · d∆z

≤
−β∫
−∞
(2∆z)4k · pdf(∆z) · d∆z

+β∫
−β

(∆z + β)4k · pdf(∆z) · d∆z

≤
+β∫
−β

(2β)4k · pdf(∆z) · d∆z

+∞∫
+β

(∆z + β)4k · pdf(∆z) · d∆z

≤
+∞∫
+β

(2∆z)4k · pdf(∆z) · d∆z.

(65)
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Substituting (65) into (63) yields

m2k ≤ 2N · |α|2k · N2k ·




−β∫
−∞
(2∆z)4k · pdf(∆z) · d∆z

+
+β∫
−β

(2β)4k · pdf(∆z) · d∆z

+
+∞∫
+β

(2∆z)4k · pdf(∆z) · d∆z




.

(66)

m2k ≤ 2N · |α|2k · N2k ·




+∞∫
−∞
(2∆z)4k · pdf(∆z) · d∆z

+
+∞∫
−∞
(2β)4k · pdf(∆z) · d∆z




=2N+4k · |α|2k · N2k · E
[
(∆z)4k

]
+ 2N+4k · |α|2k · N2k · β4k. (67)

Recall that the random variable ∆z has the standard normal
distribution N(0, 1) and their high-order moments can be com-
puted using the closed-form expression (22). Substituting (22)
into (67) yields

m2k ≤ 2N+4k · |α|2k · N2k · [1 · 3 · · · · · (4k − 1)]
+ 2N+4k · |α|2k · N2k · β4k

≤ 2N+4k · |α|2k · N2k · (4k)2k

+ 2N+4k · |α|2k · N2k · β4k. (68)

Therefore, we have

+∞∑
k=1

(m2k)
−1
2k ≥ 1

4 · |α| · N ·
+∞∑
k=1

[
2N ·(4k)2k+2N ·β4k

]−1
2k

=
1

4 · |α| · N ·
K∑

k=1

[
2N ·(4k)2k+2N ·β4k

]−1
2k

+
1

4 · |α| · N ·
+∞∑
k=K

[
2N ·(4k)2k+2N ·β4k

]−1
2k .

(69)

The value of K in (69) can be selected to be sufficiently large
such that

4k ≥ β2 (∀k ≥ K). (70)

Combining (69) and (70) yields

+∞∑
k=1

(m2k)
−1
2k ≥ 1

4 · |α| · N ·
K∑

k=1

[
2N · (4k)2k + 2N · β4k

]−1
2k

+
1

4 · |α| · N ·
+∞∑
k=K

[
2N+1 · (4k)2k

]−1
2k

≥ 1
4 · |α| · N ·

K∑
k=1

[
2N · (4k)2k + 2N · β4k

]−1
2k

+
1

4 · |α| · N ·
+∞∑
k=K

(
1

2k
√
2N+1

· 1
4k

)

≥ 1
4 · |α| · N ·

K∑
k=1

[
2N · (4k)2k + 2N · β4k

]−1
2k

+
1

16 · |α| · N · 2N+1
·

+∞∑
k=K

1
k

=∞. (71)

Equation (71) demonstrates that the condition in (19) is sat-
isfied. Therefore, based on Theorem 1, the probability dis-
tribution of f can be uniquely determined by its moments
{mk, k = 1, 2, . . .}, which proves the asymptotic convergence
of APEX. �
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