
 

Adaptive Post-Silicon Tuning for Analog Circuits: Concept, 
Analysis and Optimization 

Xin Li, Brian Taylor, YuTsun Chien and Lawrence T. Pileggi 
Department of ECE, Carnegie Mellon University 

5000 Forbes Avenue, Pittsburgh, PA 15213, USA 
{xinli, briant, yutsunc, pileggi}@ece.cmu.edu 

 
ABSTRACT 

The well-known Pelgrom model [14] has demonstrated that 
the variation between two devices on the same die due to random 
mismatch is inversely proportional to the square root of the device 
area: σ ~ 1/sqrt(Area). Based on the Pelgrom model, analog 
devices are sized to be large enough to average out random 
variations. Importantly, with CMOS scaling, variations due to 
random doping fluctuations are making it exceedingly difficult to 
control device mismatches by sizing alone; namely, the devices 
have to be made so large that the benefits of CMOS scaling are 
not realized for analog and RF circuits. In this paper we propose a 
novel post-silicon tuning methodology to reduce random 
mismatches for analog circuits in sub-90nm CMOS. A novel 
dynamic programming algorithm is incorporated into a fast Monte 
Carlo simulation flow for statistical analysis and optimization of 
the proposed tunable analog circuits. We apply the proposed post-
silicon tuning methodology to several commonly-used analog 
circuit blocks. We demonstrate that with the post-silicon tuning, 
device mismatch exponentially decreases as area increases: σ ~ 
exp(–α⋅Area). 
 
1. INTRODUCTION 

As integrated circuit (IC) technologies scale to 65nm and 
beyond, process variations become increasingly critical and make 
it continually more challenging to create a reliable, robust design 
with high yield [1]. Process variations can be classified into two 
broad categories: inter-die variations and intra-die variations. 
Inter-die variations model the common/average variations across 
the die, while intra-die variations model the individual, but 
spatially correlated, local variations (e.g., random device 
mismatches) within the same die. Among all sources of variations, 
the random mismatches due to doping fluctuations are expected to 
become dominant within the next few technology generations [2], 
as shown in Figure 1. Such large-scale variations must be 
carefully considered within today’s IC design flow. 
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Figure 1.  Process variations in future IC technologies [2]. 

During the past two decades, various statistical design 
methodologies have been proposed for analog circuits [3]-[7]. The 
key idea of these methods is to accurately predict random 
performance distributions and then leave sufficient performance 
margins to accommodate large-scale process variations. With 

scaling of CMOS below 90nm, the traditional statistical design 
methodologies attempt to reserve larger performance margins than 
ever before, thereby making it extremely difficult (or even 
infeasible) to achieve a high-performance circuit design. For this 
reason, the idea of post-silicon tuning has been proposed and 
successfully applied to various applications. For example, 
adaptive supply voltage and adaptive body bias are two widely-
used techniques to reduce delay and leakage variations for digital 
circuits [8]-[10]. 

Analog circuits, however, are substantially different in nature. 
Most analog circuit designs (e.g., differential pair, switched-
capacitor amplifier, etc.) are ratio-based [23]; namely, their 
behaviors depend on the ratio between two analog devices. These 
analog circuits are designed to be robust to inter-die variations, 
but they are extremely sensitive to device mismatches. Moreover, 
analog layouts are based on regular structures, such as concentric 
layout [23], which control systematic variations and make random 
fluctuations the dominant source of mismatch. Therefore, 
reducing random mismatches for analog devices (not only for 
transistors but also for resistors, capacitors, etc.) is a top priority 
for today’s analog IC design [11]. 

The traditional approach for reducing random mismatches is 
to utilize large devices. According to the well-known Pelgrom 
model [12]-[13], the standard deviation of random mismatch is 
inversely proportional to the square root of the device area: σ ~ 
1/sqrt(Area). Namely, if device area is increased by 100x, 
mismatch is only reduced by 10x. This fundamental limitation 
prevents analog circuits from further scaling to achieve smaller 
area, faster speed and lower power. The challenging problem is 
how to more effectively reduce random mismatches such that 
smaller devices can be used to achieve better performance. 

In this paper we propose an adaptive post-silicon tuning 
approach to reduce random device mismatches. Instead of over-
sizing analog devices, we propose a methodology that would 
decompose each device into N fingers and adaptively select the 
best-matched M (M ≤ N) fingers based on post-silicon 
measurement. Such a post-silicon tuning was previously applied 
to several analog design examples [14]-[15] where simple brute-
force search is used to find the optimal configuration. The 
objective of this paper is to develop a generalized methodology 
for post-silicon tuning that can be applied to a broad range of 
application domains. To do so, we will systematically analyze and 
optimize tunable analog designs, and demonstrate the substantial 
benefit offered by post-silicon tuning as compared to simple 
sizing following the Pelgrom model. 

An important contribution of this paper is to propose a 
dynamic programming (DP) algorithm to select the best-matched 
fingers based on post-silicon measurement. To optimally select M 
fingers out of N (M ≤ N) candidates, the number of possible 
combinations increases exponentially with N, thereby making 
such a discrete selection problem non-trivial to solve. The 
proposed dynamic programming partitions the complicated 
optimization problem into multiple, interacted sub-problems. 
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Instead of directly searching all N fingers, our sub-problem is 
defined to optimally select j fingers out of i (j ≤ i) candidates 
where i is initially set to 1 and it is iteratively increased to N. The 
sub-problem is solved once and its answer is saved, thereby 
avoiding the work of re-computing the answer every time when 
the sub-problem is encountered. 

In addition, we propose to utilize quantization to efficiently 
lump many similar configurations together as a single DP state, 
thereby further reducing the computational complexity. As will be 
demonstrated by the numerical examples in Section 5, even for 
small-size problems (N = 10~14), the proposed dynamic 
programming algorithm achieves 10~20x speed-up compared with 
a brute-force search. 

We further incorporate the proposed dynamic programming 
algorithm into a fast Monte Carlo analysis flow to efficiently 
predict the performance variations of tunable analog circuits. Note 
that such a statistical analysis problem cannot be easily solved 
using most existing techniques [16]-[19]. These existing methods 
assume continuous variations of uncertain parameters, while our 
proposed adaptive post-silicon tuning is discrete in nature. 

Our statistical analysis demonstrates that if the adaptive post-
silicon tuning is applied, device mismatch exponentially decreases 
as area increases: σ ~ exp(–α⋅Area). For example, a 1.4µm (width) 
x 50nm (length) NFET with post-silicon tuning shows the same 
mismatch variation as a 4×105µm (width) x 50nm (length) NFET 
without post-silicon tuning in a commercial 65nm CMOS process! 

The remainder of this paper is organized as follows. In 
Section 2 we propose two analog circuit examples for adaptive 
post-silicon tuning. In Section 3, we develop a dynamic 
programming algorithm to optimally select M fingers out of N 
candidates for mismatch minimization. The proposed dynamic 
programming is further incorporated into a fast statistical analysis 
flow in Section 4. The efficacy of the proposed post-silicon tuning 
methodology is demonstrated by several numerical examples in 
Section 5. Finally, we conclude in Section 6. 
 
2. ADAPTIVE POST-SILICON TUNING 

We use two analog design examples (i.e., a differential pair 
and a switched-capacitor amplifier) to illustrate the basic concept 
of our proposed adaptive post-silicon tuning. These two circuit 
examples rely on transistor matching and capacitor matching, 
respectively. It should be noted, however, that the proposed post-
silicon tuning methodology can be applied to many other analog 
applications where device matching is critical. 
 
2.1 Tunable Differential Pair 

Shown in Figure 2 is the simplified circuit schematic of a 
traditional differential pair [23]. It utilizes the symmetric topology 
to make the performance (e.g., offset voltage) insensitive to inter-
die variations. However, random device mismatches make the 
circuit asymmetric and, hence, introduce offset voltage. In 
general, the transistors of a differential pair must be sufficiently 
large so that the offset voltage can be minimized. 

An example of tunable differential pair is shown in Figure 3. 
The entire differential pair is decomposed into N branches, where 
each branch can be independently turned on/off by applying the 
proper digital controlling signal to switch the tail current. Based 
on post-silicon measurement, M (M ≤ N) branches will be 
adaptively selected to minimize the random mismatch. 

If M branches {S1, S2, ..., SM} are selected where Si is the 
index of the i-th selected branch, the input-referred offset voltage 
can be represented as [23]: 

1 ∑
=

⋅=
M

i
SiOSOS V

M
V

1
,

1  (1) 

where VOS,Si denotes the input-referred offset voltage of the Si-th 
branch. 

Since {VOS,i; i = 1, 2, ..., N} are caused by random 
mismatches, they are typically modeled as independent, zero-
mean random variables [12]-[13]. In this case, if all branches are 
selected without post-silicon tuning (i.e., M = N), it is easy to 
verify that the standard deviation of the offset voltage is inversely 
proportional to the square root of N: σOS ~ 1/sqrt(N) [22]. This 
result is referred to as the well-known Pelgrom model [12]-[13]. 
In Section 3, we will show how one can achieve a much smaller 
offset voltage by adaptively selecting M (M ≤ N) branches via 
post-silicon tuning. 

 
Figure 2.  Simplified schematic of a traditional differential pair. 

 
Figure 3.  Simplified schematic of a tunable differential pair. 

 
2.2 Tunable Switched-Capacitor (SC) Amplifier 

 
Figure 4.  Simplified schematic of a traditional SC amplifier. 

Figure 4 shows the simplified circuit schematic of a traditional 
SC (switched-capacitor) amplifier. For simplicity we assume that 
the operational amplifier in Figure 4 is ideal. The gain of the SC 
amplifier is determined by the ratio between the two capacitors: CI 
and CF. We further assume that CI equals CF and the SC amplifier 
has a unit gain. The random mismatch between these two 
capacitors is one of the major sources of gain error. 

Our proposed tunable SC amplifier is shown in Figure 5. Both 
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CI and CF are decomposed into N fingers. Based on post-silicon 
measurement, M (M ≤ N) fingers will be adaptively selected to 
minimize the random mismatch. 

 
Figure 5.  Simplified schematic of a tunable SC amplifier. 

If M fingers {SI,1, SI,2, ..., SI,M} and {SF,1, SF,2, ..., SF,M} are 
selected for CI and CF respectively, the variations (i.e., the 
deviation from the mean value) of CI and CF can be expressed as: 

2 ∑
=

∆=∆
M

i
SiII CC

1
,  (2) 

3 ∑
=

∆=∆
M

i
SiFF CC

1
,  (3) 

where ∆CI,Si and ∆CF,Si denote the capacitance variations of the Si-
th selected fingers for CI and CF respectively. The average 
capacitor mismatch is defined as: 
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Note that Eqn. (4) has a slightly different form than that in (1). 
What remains is the modeling and optimization method that can 
be used to minimize the mismatch as expressed in (4). 
 
3. DISCRETE OPTIMIZATION FOR 

TUNABLE ANALOG CIRCUITS 
The key problem posed by the proposed post-silicon tuning 

methodology is how to optimally select the best configuration to 
minimize the matching error. Such an optimization problem can 
be stated as follows: Given {VOS,i; i = 1, 2, ..., N} for the tunable 
differential pair or {∆CI,i, ∆CF,i; i = 1, 2, ..., N} for the tunable SC 
amplifier, select M branches/fingers out of N (M ≤ N) candidates 
such that the absolute value of the mismatch defined in (1) or (4) 
is minimized. For this optimization problem, M can be either pre-
determined or variable. If M is a variable, we should select the 
optimal M value to achieve the minimal mismatch. This requires 
exploration of all possible values for M to select the optimal 
scenario. Therefore, in what follows, we focus on the situation 
where M is variable, since any other optimization with a pre-
determined M is a sub-problem of this general case. 

The aforementioned optimization problem is discrete in 
nature. To solve it, one straightforward approach is to enumerate 
all possible combinations (referred to as brute-force search in this 
paper). However, the total number of all possible configurations 
exponentially increases with N, thereby quickly making the 
computation infeasible. Theoretically, it can be proven that our 
discrete optimization problem for mismatch minimization is NP-
hard. Namely, any algorithm that exactly solves the problem must 
require exponential runtime in worst case. 

Motivated by this observation, we propose a dynamic 
programming [24] approach to search for the optimal 
configuration that yields the minimal matching error. The essence 

of the proposed dynamic programming is to partition the 
complicated discrete optimization problem into multiple, 
interacted sub-problems. Instead of directly searching all N 
branches/fingers, our sub-problem is defined to optimally select j 
branches/fingers out of i (j ≤ i) candidates where i is initially set to 
1 and it is iteratively increased to N. The sub-problem is solved 
once and its answer is saved, thereby avoiding the work of re-
computing the answer every time when the sub-problem is 
encountered. In addition, we propose to utilize quantization to 
lump many similar configurations together as a single DP state, 
thereby further reducing the computational complexity. In what 
follows, we first develop the dynamic programming algorithm for 
the tunable differential pair in Figure 3, and then extend it to 
optimize the tunable SC amplifier in Figure 5. 
 
3.1 Dynamic Programming for Differential Pair 

A. Mathematic Formulation 
Our proposed dynamic programming follows the standard 

formulation described in [24]. It consists of two major 
components: (1) a finite set Ω that contains a number of quantized 
matching error values and (2) a three-dimensional table T(i, j, k) 
that saves all possible DP states (i.e., matching errors in our 
application). 

The finite set Ω is used to quantize matching errors such that 
similar error values are approximated as a single numerical 
number. It, in turn, allows us to lump many configurations with 
similar matching errors as a single DP state. 

Given the offset voltage for each branch {VOS,i; i = 1, 2, ..., N} 
and M selected branches {S1, S2, ..., SM}, we define the matching 
error as: 

5 ∑
=

=
M

i
SiOSOS VErr

1
, . (5) 

Eqn. (5) is identical to (1) except for a scaling factor M. It is easy 
to verify that for any M ∈ {1, 2, ..., N} the matching error in (5) is 
bounded by: 
6 ∑

<

=
0

,
,iOSV

iOSL VB  (6) 

7 ∑
>

=
0

,
,iOSV

iOSU VB  (7) 

where BL and BU represent the lower bound and the upper bound, 
respectively. Discretizing the interval [BL, BU] yields the finite set: 
8 { }UULL BhBhBB ,,,, −+=Ω  (8) 
where h is the step size. For example, if BL = –1, BU = 1 and h = 
0.5, then Ω = {–1, –0.5, 0, 0.5, 1}. 

Given the set Ω in (8), we quantize {VOS,i; i = 1, 2, ..., N} by 
mapping each VOS,i to the nearest element in Ω. It, in turn, yields: 
9 { }NiV iOS ,,2,1;, =Ω . (9) 
For example, if {VOS,1 = –0.3, VOS,2 = 0.9} and Ω = {–1, –0.5, 0, 
0.5, 1}, then {VOS,1Ω = –0.5, VOS,2Ω = 1}. 

The second key component of the proposed dynamic 
programming is a three-dimensional table T(i, j, k), where i, j  ∈ 
{1, 2, ..., N} and k ∈ Ω. Note that the index k can be a rational or 
real (not integer) number, depending on the discretization in (8): 

• T(i, j, k) = 1 (true) if and only if ∃A ∈ 2{1, 2, ..., i} such that: 
10 jA =  (10) 

11 kV
Ai

iOS =∑
∈

Ω
,  (11) 
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where |A| stands for the size of the set A and 2{1, 2, ..., i} denotes 
the power set of {1,2,...,i} (i.e., the collection of all subsets of 
{1,2,...,i}). For instance, 2{1, 2} = {{}, {1}, {2}, {1,2}}. 

• T(i, j, k) = 0 (false) otherwise. 

The three-dimensional table T(i, j, k) contains all possible 
matching errors when selecting j branches from {1, 2, ..., i}. 
Starting from i = 1, we recursively find the best-matched j 
branches out of i (j ≤ i) candidates, save the answer in T(i, j, k), 
and increase i until i = N. As i eventually reaches N, T(N, j, k) 
provides all possible matching errors when selecting j branches 
out of N candidates. Similar tables have been widely used to solve 
many other dynamic programming problems [24]. Next, we will 
demonstrate how to efficiently fill the table T(i, j, k) for our 
proposed post-silicon tuning problem. 

Creating T(i, j, k) involves two major steps: (1) initialization 
and (2) recursive iteration. The first initialization step is to fill in 
all table entries for j = 1. This step is trivial, since we only 
consider the cases where a single branch is selected. 

12 ( ) 
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=
= ΩΩΩ

iOSOSOS VVVk

Ni
kiT

,2,1, ,,,

,,2,1
1,1, . (12) 

Next, during the second step, we need to create a recurrence 
relation that allows us to iteratively fill in all other entries of the 
table T(i, j, k). Note that T(i, j, k) = 1 if and only if any of the 
following two conditions is satisfied: 

• T(i–1, j, k) = 1, i.e., selecting j branches from {1, 2, ..., i–1} 
yields the error value k and the i-th element VOS,iΩ will not be 
selected for T(i, j, k) to be true. 

• T(i–1, j–1, k–VOS,iΩ) = 1, i.e., selecting j–1 branches from {1, 
2, ..., i–1} yields the error value k–VOS,iΩ and the i-th element 
VOS,iΩ will be selected for T(i, j, k) to be true. 

Based on this observation, we conclude the following 
recurrence relation: 
13 ( ) ( ) ( )Ω−−−∨−= iOSVkjiTkjiTkjiT ,,1,1,,1,,  (13) 
where ∨ stands for the logic operator OR. Given (12) and (13), 
one can iteratively fill in the three-dimensional table T(i, j, k), 
thereby yielding the matching error values for all possible 
configurations. During this process, a list of index values {S1, S2, 
..., Sj} can be saved for each table entry that is 1 (true), if one 
wants to know which branches are selected for T(i, j, k) to be true. 

After the table T(i, j, k) is available, the final step is to search 
for all entries that are 1 (true) and scale the matching error in (5) 
back to the offset voltage in (1). For example, if T(N, j, k) = 1, 
meaning that selecting j branches out of N candidates results in 
the matching error k, the corresponding offset voltage is k/j. 
Algorithm 1 summaries the proposed dynamic programming 
algorithm for the tunable differential pair. 

Algorithm 1: dynamic programming for differential pair 
(1) Start from a given set of {VOS,i; i = 1, 2, ..., N} and a given 

step size h. 
(2) Calculate the lower bound and upper bound using the 

equations (6)-(7). 
(3) Create the finite set Ω in (8). 
(4) Map {VOS,i; i = 1, 2, ..., N} to {VOS,iΩ; i = 1, 2, ..., N} in (9). 
(5) Initialize the table T(i, j, k) based on (12). 
(6) Iteratively fill in all other entries of the table T(i, j, k) using 

the recurrence relation in (13). 
(7) For any j ∈ {1, 2, ..., N} and k ∈ Ω, if T(N, j, k) = 1, calculate 

the corresponding offset voltage VOS = k/j based on the 
definition in (1). 

(8) Select the best configuration that yields the minimal offset 
voltage. 

Algorithm 2: adaptive control for the quantization step size h 
(1) Start from a given step size h. 
(2) Set r = 1. 
(3) Apply Algorithm 1 to estimate the minimal offset voltage 

VOS
r, where the superscript r stands for the estimation result 

from the r-th iteration. 
(4) If the estimated offset voltage value is unchanged between 

two successive iterations, i.e., 

14 ε≤
− −

r
OS

r
OS

r
OS

V

VV 1

 (14) 

where ε is a pre-defined error tolerance, then stop. Otherwise, 
r = r+1, h = h/2 and return Step (3). 

Algorithm 1 is based on a given step size h. In practice, the 
value of h can be adaptively controlled for a given accuracy 
requirement. Starting from a large step size h, h should be 
iteratively reduced (e.g., divided by 2) if the error is not 
sufficiently small. Algorithm 2 outlines a simplified algorithm for 
adaptive step control. 

In summary, we have proposed a dynamic programming 
algorithm to optimally select M branches out of N candidates such 
that the random mismatch is minimized for the tunable differential 
pair in Figure 3. The proposed dynamic programming applies 
quantization to approximate the solution of the original discrete 
optimization problem that is NP-hard. In what follows, we will 
theoretically analyze the computational complexity of the 
proposed algorithm and demonstrate why it is much more 
efficient than a simple brute-force search. 
 
B. Computational Complexity 

The computational complexity of the proposed dynamic 
programming is mainly determined by the size of the table T(i, j, 
k), where 
15 ( ) ( ) hBBNkjiT LU −⋅= 2,,  (15) 
denotes the size of the table T(i, j, k). To determine the relation 
between |T(i, j, k)| and N, we need to further know how BU, BL and 
h depend on the value N. 

Studying (6), one can easily notice that the lower bound BL is 
bounded by: 

16 ∑
=

−≥
N

i
iOSL VB

1
, . (16) 

Since the offset voltages {VOS,i; i = 1, 2, ..., N} are typically 
modeled as independent random variables [12]-[13], the standard 
deviation of the random variable |VOS,1| + |VOS,2| + ... + |VOS,N| is 
proportional to the square root of N [22], yielding: 
17 NBL −~ . (17) 
The relation between BU and N can be similarly derived as: 
18 NBU ~ . (18) 

On the other hand, for a given accuracy requirement, the step 
size h depends on the final matching error ErrOS defined in (5). 
For example, if ErrOS is small, a small h should be automatically 
selected by Algorithm 2 to keep the relative error smaller than ε in 
(14). As will be demonstrated by the numerical examples in 
Section 5.1, for the tunable differential pair in Figure 3, the 
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matching error exponentially decreases as N increases. Therefore, 
given a fixed error tolerance ε in (14), the step size h is an 
exponential function of N: 
19 Neh ⋅−α~  (19) 
where α is a positive real number. Substituting (17)-(19) into (15) 
gives the final computational complexity of the proposed dynamic 
programming: 
20 ( )NeNNO ⋅⋅⋅ α2 . (20) 
The computational complexity in (20) exponentially increases 
with N. However, as will be demonstrated by our numerical 
examples in Section 5.1, the proposed dynamic programming is 
still much faster than the brute-force search that has a complexity 
of O(2N). We observe that the proposed dynamic programming 
algorithm achieves 10x speed-up, even if N is as small as 14. We 
expect that the efficiency of the proposed dynamic programming 
will be more pronounced as N further increases. 
 
3.2 Dynamic Programming for SC Amplifier 

A. Mathematic Formulation 

Algorithm 3: dynamic programming for SC amplifier 
(1) Start from a given set of {∆CI,i, ∆CF,i; i = 1, 2, ..., N} and a 

given step size h. 
(2) Apply the dynamic programming described in Algorithm 1 to 

build the three-dimensional tables TI(i, j, kI) and TF(i, j, kF) for 
∆CI in (2) and ∆CF in (3), respectively. 

(3) For any possible values of j, kI and kF, if TI(N, j, kI) = 1 and 
TF(N, j, kF) = 1, calculate the corresponding capacitor 
mismatch CMIS = (kI–kF)/j based on the definition in (4). 

(4) Select the best configuration that yields the minimal capacitor 
mismatch. 

Algorithm 1 can be extended to solve the capacitor matching 
problem in (4). The basic idea is to first apply the same dynamic 
programming to calculate the capacitance variations for ∆CI in (2) 
and ∆CF in (3) respectively. Next, all possible combinations of 
∆CI and ∆CF are checked and the optimal configuration with the 
smallest mismatch CMIS (defined in (4)) is selected. Algorithm 3 
summarizes the major steps for the dynamic programming of the 
SC amplifier. Although Algorithm 3 assumes a given step size h, 
the value of h can be iteratively determined by an adaptive control 
scheme similar to Algorithm 2. 
 
B. Computational Complexity 

The computational cost of Algorithm 3 is dominated by three 
major tasks: (1) creating the table TI(i, j, kI), (2) creating the table 
TF(i, j, kF), and (3) checking all combinations between TI(N, j, kI) 
and TF(N, j, kF) to calculate all possible values of the capacitor 
mismatch. As discussed in Section 3.1B, the computational 
complexities of the first two tasks are respectively determined by: 
21 ( ) hNNkjiT II ⋅2~,,  (21) 

22 ( ) hNNkjiT FF ⋅2~,,  (22) 
where |TI(i, j, kI)| and |TF(i, j, kF)| denote the size of the tables TI(i, 
j, kI) and TF(i, j, kF), respectively. 

The computational complexity of the third task is determined 
by: 

23 ( ) ( ) ( ) 232
~,,,, hNhNNkjNTkjNT FFII =⋅⋅  (23) 

where TI(N, j, kI) and TF(N, j, kF) are both two-dimensional tables, 
since their first-dimension index is fixed to N. 

On the other hand, given a fixed error tolerance ε in (14), the 
step size h exponentially decreases as N increases, similar to the 
case discussed in Section 3.1B. If h is expressed as the 
exponential function in (19), the overall computational complexity 
of Algorithm 3 is dominated by (23): 
24 ( )NeNO ⋅⋅ α23 . (24) 
As will be demonstrated by the numerical examples in Section 
5.2, the computational complexity of Algorithm 3 is much lower 
than the complexity of the brute-force search which is close to 22N 
in this particular application. The proposed dynamic programming 
algorithm achieves 20x speed-up, even if N is as small as 10. 
 
4. STATISTICAL ANALYSIS FOR 

TUNABLE ANALOG CIRCUITS 
To quantitatively demonstrate the substantial benefit offered 

by the proposed post-silicon tuning, the statistical performance 
distribution with post-silicon tuning must be estimated and 
compared with the well-known Pelgrom model when no post-
silicon tuning is applied. For this purpose, we propose a fast 
statistical analysis flow for tunable analog circuits in this section. 
The proposed statistical analysis flow is facilitated by a 
combination of controlled random sampling and dynamic 
programming. 

Note that our statistical analysis problem cannot be easily 
solved using most existing techniques [16]-[19]. These existing 
methods assume continuous variations of uncertain parameters, 
while the proposed adaptive post-silicon tuning is discrete in 
nature. 

The proposed fast Monte Carlo analysis flow is shown in 
Algorithm 4. Instead of directly drawing random samples from a 
random number generator, the proposed fast Monte Carlo analysis 
creates sampling points from a controlled random sequence (i.e., 
Latin hypercube sampling) such that high estimation accuracy can 
be achieved by using a small number of sampling points [20]-
[21]. The key idea of Latin hypercube sampling is to fill the high-
dimensional random space based on the given probability density 
function pdf(•) and make the sampling point distribution close to 
pdf(•) as much as possible. Next, for each Latin hypercube 
sampling point, the dynamic programming algorithm proposed in 
Section 3 is applied to find the minimal mismatch. Finally, the 
mismatch values calculated from all random samples are utilized 
to estimate the probability distribution. The proposed fast Monte 
Carlo analysis flow will be applied to several circuit examples in 
Section 5. 

Algorithm 4: fast Monte Carlo analysis for tunable circuits 
(1) Generate L random samples {VOS,i(l); i = 1, 2, ..., N; l = 1, 2, ..., 

L} or {∆CI,i
(l), ∆CF,i

(l); i = 1, 2, ..., N; l = 1, 2, ..., L} using 
Latin hypercube sampling [20]-[21], where the subscript i 
denotes the i-th branch/finger and the superscript l stands for 
the l-th sampling point. 

(2) For each random sample l ∈ {1, 2, ..., L}, apply dynamic 
programming (Algorithm 1 or Algorithm 3) to estimate the 
minimal mismatch (VOS

(l) or CMIS
(l)). 

(3) Given the L samples for the performance of interest (i.e., VOS
(l) 

or CMIS
(l)), estimate the statistical characteristics (e.g., standard 

deviation, probability distribution, etc.). 
 
5. NUMERICAL EXAMPLES 

We demonstrate the efficacy of the proposed post-silicon 
tuning methodology using two circuit examples: a differential pair 
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and a switched-capacitor amplifier. Both circuit examples are 
implemented with a commercial 65nm CMOS process. All 
numerical experiments are run on a Linux 2.6GHz server. Two 
major observations will be concluded from our numerical 
experiments. 

• When applying the adaptive post-silicon tuning, the standard 
deviation of random mismatch exponentially decreases as N 
(the number of total branches/fingers) increases. This result is 
dramatically better than the well-known Pelgrom model when 
no post-silicon tuning is applied. 

• The proposed dynamic programming significant reduces the 
computational cost compared with the brute-force search (i.e., 
simply enumerating all possible configurations). We 
demonstrate 10~20x speed-up even if N is as small as 10~14. 

 
5.1 Tunable Differential Pair 

We applied the proposed post-silicon tuning methodology to 
the tunable differential pair in Figure 3. All transistor fingers in 
the differential pair have the size of 100nm (width) x 50nm 
(length), which is the minimal feature size of this technology. 
 
A. Offset Voltage Characterization 

We characterized the offset voltage {VOS,i; i = 1, 2, ..., N} of 
one branch by transistor-level Monte Carlo simulation. The device 
model provided by the foundry contains statistical information to 
model both inter-die variations and local device mismatches. Our 
Monte Carlo simulation result verifies that the offset voltage VOS,i 
is almost independent of inter-die variations. For this reason, 
{VOS,i; i = 1, 2, ..., N} of different branches are modeled as 
independent random variables. In addition, our Monte Carlo 
analysis shows that the offset voltage VOS,i can be approximated 
as a zero-mean Normal distribution, as shown in Figure 6. Note 
that we have normalized VOS,i in Figure 6 such that its standard 
deviation is equal to 1, as required by our non-disclosure 
agreement with the foundry. {VOS,i; i = 1, 2, ..., N} are modeled as 
N independent standard Normal distributions (i.e., zero mean and 
unit variance) in this example. 
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Figure 6.  Random offset voltage (VOS,i) of one branch estimated 

by 2000 transistor-level Monte Carlo simulation samples. 

 
B. Post-Tuning Offset Estimation 

Given the normalized offset voltages {VOS,i; i = 1, 2, ..., N}, 
we ran Monte Carlo analysis (Algorithm 4) with 104 samples to 
estimate the standard deviation σOS of the offset voltage VOS 
defined in (1) after post-silicon tuning is applied. For testing and 
comparison, both the proposed dynamic programming (DP-MC) 
and the brute-force search (BS-MC) are utilized within the Monte 

Carlo flow to search for the optimal configuration that yields the 
minimal mismatch. We set the error tolerance ε = 1% in (14) to 
adaptively select the quantization step size h for dynamic 
programming. Figure 7 shows the values of the estimated σOS as 
the total number of branches N varies from 1 to 14. 

From the result in Figure 7, we find that the proposed post-
silicon tuning methodology achieves σOS ~ exp(–0.54N), while the 
well-known Pelgrom model predicts an improvement of only σOS 
~ 1/sqrt(N). To further demonstrate the substantial benefit offered 
by the proposed post-silicon tuning, Table 1 outlines the required 
transistor sizes to achieve the same σOS when post-silicon tuning is 
and is not applied. Note that a 1.4µm (width) x 50nm (length) 
transistor with post-silicon tuning offers the same mismatch 
variation as a 4×105µm (width) x 50nm (length) transistor without 
post-silicon tuning in this differential pair example! 
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Figure 7.  The standard deviation of the offset voltage (σOS) 

decreases as the total number of branches (N) increases. 

Table 1.  Required total gate width to achieve the given σOS 
(assuming minimal gate length 50nm for all cases) 

/w Tuning w/o Tuning σOS 
(Normalized) # of Branches Width (µm) Width (µm) 

1.00 × 100 1 0.1 1.00 × 10-1 
4.63 × 10-1 2 0.2 4.67 × 10-1 
1.44 × 10-1 4 0.4 4.79 × 100 
5.08 × 10-2 6 0.6 3.88 × 101 
1.91 × 10-2 8 0.8 2.74 × 102 
7.63 × 10-3 10 1.0 1.72 × 103 
2.77 × 10-3 12 1.2 1.30 × 104 
4.85 × 10-4 14 1.4 4.24 × 105 

 
It is important to note that the proposed post-silicon tuning 

methodology requires control and measurement circuitries for 
adaptive configuration. The area overhead for these additional 
circuitries is not included in Table 1. However, we expect that the 
additional cost for post-silicon configuration is easily warranted 
based on the significant area reduction shown in Table 1. 
 
C. Comparison of Accuracy and Complexity 

As discussed in Section 3.1B, the quantization step size h in 
Algorithm 1 should be decreased to satisfy the given relative error 
tolerance, as the total number of branches N increases and the 
offset variation σOS decreases. Given the error tolerance ε = 1% in 
(14), Algorithm 2 adaptively determine the step size h for each 
value of N, as shown in Figure 8. Note that h exponentially 
decreases as N increases. 

We used the same set of Monte Carlo samples for both the 
proposed dynamic programming (DP-MC) and the brute-force 
search (BS-MC). It, in turn, allows us to compare the estimated 
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σOS values from DP-MC and BS-MC, and use their relative 
difference as a criterion to measure the error incurred by the 
quantization of the DP-MC flow. In this example, the relative 
estimation errors of σOS are well-controlled (<1%) for all values of 
N, as shown in Figure 9. 

Figure 10 shows the computational time for both the proposed 
dynamic programming (DP-MC) and the brute-force search (BS-
MC). The brute-force search has a complexity of O(2N), since it 
enumerates all possible configurations. In this example, even if 
the value of N is as small as 14, the proposed dynamic 
programming algorithm achieves 10x speed-up compared with the 
brute-force search. We expect that the efficiency of the dynamic 
programming will be more pronounced as N further increases. 
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Figure 8.  The quantization step size (h) decreases for dynamic 

programming as the total number of branches (N) increases. 
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Figure 9.  The relative estimation errors of σOS for DP-MC are 

smaller than 1% for all values of N. 

0 5 10 15
10

-2

10
0

10
2

10
4

Number of Branches (N)

C
om

pu
ta

tio
na

l T
im

e 
(S

ec
.)

BS-MC
DP-MC

 
Figure 10.  Computational time comparison of dynamic 

programming (DP-MC) and brute-force search (BS-MC). 

 
5.2 Tunable SC Amplifier 

We applied the proposed post-silicon tuning methodology to 
the tunable SC amplifier in Figure 5. The capacitor mismatch 

defined in (4) is independent of inter-die process variations; 
therefore, only local mismatches are considered in this example. 
The capacitor mismatches {∆CI,i, ∆CF,i; i = 1, 2, ..., N} of all 
fingers are normalized and modeled as independent standard 
Normal distributions. 
 
A. Capacitor Mismatch Estimation 

We ran Monte Carlo analysis (Algorithm 4) with 104 samples 
to estimate the standard deviation σMIS of the capacitor mismatch 
defined in (4) after post-silicon tuning is applied. The error 
tolerance in (14) is set to ε = 1% for adaptive step size control. 
Figure 11 shows the values of the estimated σMIS where both the 
proposed dynamic programming (DP-MC) and the brute-force 
search (BS-MC) are utilized to search for the optimal 
configuration with the minimal mismatch. Note that, in this 
example, the proposed post-silicon tuning methodology achieves 
σMIS ~ exp(–0.94N), while the well-known Pelgrom model 
predicts an improvement of only σMIS ~ 1/sqrt(N). 
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Figure 11.  The standard deviation of the capacitor mismatch 
(σMIS) decreases as the total number of fingers (N) increases. 

 
B. Comparison of Accuracy and Complexity 
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Figure 12.  The quantization step size (h) decreases for dynamic 

programming as the total number of fingers (N) increases. 

As shown in Figure 12 and Figure 13, the step size h is 
adaptively controlled for the proposed dynamic programming 
(DP-MC) such that the estimation error of σMIS is smaller than the 
given error tolerance ε = 1%. Figure 14 shows the computational 
time for both the proposed dynamic programming (DP-MC) and 
the brute-force search (BS-MC). The brute-force search 
enumerates all possible configurations and its complexity is close 
to O(22N). The proposed dynamic programming significantly 
reduces the computational cost in this example. Even if the value 
of N is as small as 10, the computational time is reduced from 7.5 
hours (by BS-MC) to 25 minutes (by DP-MC) which is a 17x 
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speed-up. It should be noted that the computational time shown in 
Figure 14 is the total runtime for 104 Monte Carlo samples. The 
dynamic programming cost for configuring one chip (i.e., the 
computational cost of one Monte Carlo sample) is much smaller. 
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Figure 13.  The relative estimation errors of σMIS for DP-MC are 

smaller than 1% for all values of N. 
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Figure 14.  Computational time comparison of dynamic 

programming (DP-MC) and brute-force search (BS-MC). 

 
6. CONCLUSIONS 

In this paper, an adaptive post-silicon tuning methodology has 
been proposed to effectively reduce random device mismatches 
for analog circuits. Two tunable analog examples (i.e., a 
differential pair and a switched-capacitor amplifier) were 
discussed in detail. A novel dynamic programming algorithm was 
proposed to efficiently determine the optimal tuning configuration 
that yields the minimal mismatch. The proposed dynamic 
programming achieves significant (10~20x) speed-up compared 
with a brute-force search. The dynamic programming technique 
was further incorporated into a fast Monte Carlo analysis flow for 
efficient statistical analysis of the proposed tunable analog 
circuits. Our numerical results demonstrate that if the adaptive 
post-silicon tuning is applied, device mismatch exponentially 
decreases as area increases: σ ~ exp(–α⋅Area). 
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