

Adaptive Post-Silicon Tuning for Analog Circuits: Concept,
Analysis and Optimization

Xin Li, Brian Taylor, YuTsun Chien and Lawrence T. Pileggi
Department of ECE, Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA 15213, USA
{xinli, briant, yutsunc, pileggi}@ece.cmu.edu

ABSTRACT

The well-known Pelgrom model [14] has demonstrated that
the variation between two devices on the same die due to random
mismatch is inversely proportional to the square root of the device
area: σ ~ 1/sqrt(Area). Based on the Pelgrom model, analog
devices are sized to be large enough to average out random
variations. Importantly, with CMOS scaling, variations due to
random doping fluctuations are making it exceedingly difficult to
control device mismatches by sizing alone; namely, the devices
have to be made so large that the benefits of CMOS scaling are
not realized for analog and RF circuits. In this paper we propose a
novel post-silicon tuning methodology to reduce random
mismatches for analog circuits in sub-90nm CMOS. A novel
dynamic programming algorithm is incorporated into a fast Monte
Carlo simulation flow for statistical analysis and optimization of
the proposed tunable analog circuits. We apply the proposed post-
silicon tuning methodology to several commonly-used analog
circuit blocks. We demonstrate that with the post-silicon tuning,
device mismatch exponentially decreases as area increases: σ ~
exp(–α⋅Area).

1. INTRODUCTION

As integrated circuit (IC) technologies scale to 65nm and
beyond, process variations become increasingly critical and make
it continually more challenging to create a reliable, robust design
with high yield [1]. Process variations can be classified into two
broad categories: inter-die variations and intra-die variations.
Inter-die variations model the common/average variations across
the die, while intra-die variations model the individual, but
spatially correlated, local variations (e.g., random device
mismatches) within the same die. Among all sources of variations,
the random mismatches due to doping fluctuations are expected to
become dominant within the next few technology generations [2],
as shown in Figure 1. Such large-scale variations must be
carefully considered within today’s IC design flow.

0%
20%
40%
60%
80%

2005 2006 2007 2008 2009 2010 2011 2012 2013
Year

V
ar

ia
tio

n

Vth (Random Doping) Vth (Other) CD

Figure 1. Process variations in future IC technologies [2].

During the past two decades, various statistical design
methodologies have been proposed for analog circuits [3]-[7]. The
key idea of these methods is to accurately predict random
performance distributions and then leave sufficient performance
margins to accommodate large-scale process variations. With

scaling of CMOS below 90nm, the traditional statistical design
methodologies attempt to reserve larger performance margins than
ever before, thereby making it extremely difficult (or even
infeasible) to achieve a high-performance circuit design. For this
reason, the idea of post-silicon tuning has been proposed and
successfully applied to various applications. For example,
adaptive supply voltage and adaptive body bias are two widely-
used techniques to reduce delay and leakage variations for digital
circuits [8]-[10].

Analog circuits, however, are substantially different in nature.
Most analog circuit designs (e.g., differential pair, switched-
capacitor amplifier, etc.) are ratio-based [23]; namely, their
behaviors depend on the ratio between two analog devices. These
analog circuits are designed to be robust to inter-die variations,
but they are extremely sensitive to device mismatches. Moreover,
analog layouts are based on regular structures, such as concentric
layout [23], which control systematic variations and make random
fluctuations the dominant source of mismatch. Therefore,
reducing random mismatches for analog devices (not only for
transistors but also for resistors, capacitors, etc.) is a top priority
for today’s analog IC design [11].

The traditional approach for reducing random mismatches is
to utilize large devices. According to the well-known Pelgrom
model [12]-[13], the standard deviation of random mismatch is
inversely proportional to the square root of the device area: σ ~
1/sqrt(Area). Namely, if device area is increased by 100x,
mismatch is only reduced by 10x. This fundamental limitation
prevents analog circuits from further scaling to achieve smaller
area, faster speed and lower power. The challenging problem is
how to more effectively reduce random mismatches such that
smaller devices can be used to achieve better performance.

In this paper we propose an adaptive post-silicon tuning
approach to reduce random device mismatches. Instead of over-
sizing analog devices, we propose a methodology that would
decompose each device into N fingers and adaptively select the
best-matched M (M ≤ N) fingers based on post-silicon
measurement. Such a post-silicon tuning was previously applied
to several analog design examples [14]-[15] where simple brute-
force search is used to find the optimal configuration. The
objective of this paper is to develop a generalized methodology
for post-silicon tuning that can be applied to a broad range of
application domains. To do so, we will systematically analyze and
optimize tunable analog designs, and demonstrate the substantial
benefit offered by post-silicon tuning as compared to simple
sizing following the Pelgrom model.

An important contribution of this paper is to propose a
dynamic programming (DP) algorithm to select the best-matched
fingers based on post-silicon measurement. To optimally select M
fingers out of N (M ≤ N) candidates, the number of possible
combinations increases exponentially with N, thereby making
such a discrete selection problem non-trivial to solve. The
proposed dynamic programming partitions the complicated
optimization problem into multiple, interacted sub-problems.

1-4244-1382-6/07/$25.00 ©2007 IEEE 450

Instead of directly searching all N fingers, our sub-problem is
defined to optimally select j fingers out of i (j ≤ i) candidates
where i is initially set to 1 and it is iteratively increased to N. The
sub-problem is solved once and its answer is saved, thereby
avoiding the work of re-computing the answer every time when
the sub-problem is encountered.

In addition, we propose to utilize quantization to efficiently
lump many similar configurations together as a single DP state,
thereby further reducing the computational complexity. As will be
demonstrated by the numerical examples in Section 5, even for
small-size problems (N = 10~14), the proposed dynamic
programming algorithm achieves 10~20x speed-up compared with
a brute-force search.

We further incorporate the proposed dynamic programming
algorithm into a fast Monte Carlo analysis flow to efficiently
predict the performance variations of tunable analog circuits. Note
that such a statistical analysis problem cannot be easily solved
using most existing techniques [16]-[19]. These existing methods
assume continuous variations of uncertain parameters, while our
proposed adaptive post-silicon tuning is discrete in nature.

Our statistical analysis demonstrates that if the adaptive post-
silicon tuning is applied, device mismatch exponentially decreases
as area increases: σ ~ exp(–α⋅Area). For example, a 1.4µm (width)
x 50nm (length) NFET with post-silicon tuning shows the same
mismatch variation as a 4×105µm (width) x 50nm (length) NFET
without post-silicon tuning in a commercial 65nm CMOS process!

The remainder of this paper is organized as follows. In
Section 2 we propose two analog circuit examples for adaptive
post-silicon tuning. In Section 3, we develop a dynamic
programming algorithm to optimally select M fingers out of N
candidates for mismatch minimization. The proposed dynamic
programming is further incorporated into a fast statistical analysis
flow in Section 4. The efficacy of the proposed post-silicon tuning
methodology is demonstrated by several numerical examples in
Section 5. Finally, we conclude in Section 6.

2. ADAPTIVE POST-SILICON TUNING

We use two analog design examples (i.e., a differential pair
and a switched-capacitor amplifier) to illustrate the basic concept
of our proposed adaptive post-silicon tuning. These two circuit
examples rely on transistor matching and capacitor matching,
respectively. It should be noted, however, that the proposed post-
silicon tuning methodology can be applied to many other analog
applications where device matching is critical.

2.1 Tunable Differential Pair

Shown in Figure 2 is the simplified circuit schematic of a
traditional differential pair [23]. It utilizes the symmetric topology
to make the performance (e.g., offset voltage) insensitive to inter-
die variations. However, random device mismatches make the
circuit asymmetric and, hence, introduce offset voltage. In
general, the transistors of a differential pair must be sufficiently
large so that the offset voltage can be minimized.

An example of tunable differential pair is shown in Figure 3.
The entire differential pair is decomposed into N branches, where
each branch can be independently turned on/off by applying the
proper digital controlling signal to switch the tail current. Based
on post-silicon measurement, M (M ≤ N) branches will be
adaptively selected to minimize the random mismatch.

If M branches {S1, S2, ..., SM} are selected where Si is the
index of the i-th selected branch, the input-referred offset voltage
can be represented as [23]:

1 ∑
=

⋅=
M

i
SiOSOS V

M
V

1
,

1 (1)

where VOS,Si denotes the input-referred offset voltage of the Si-th
branch.

Since {VOS,i; i = 1, 2, ..., N} are caused by random
mismatches, they are typically modeled as independent, zero-
mean random variables [12]-[13]. In this case, if all branches are
selected without post-silicon tuning (i.e., M = N), it is easy to
verify that the standard deviation of the offset voltage is inversely
proportional to the square root of N: σOS ~ 1/sqrt(N) [22]. This
result is referred to as the well-known Pelgrom model [12]-[13].
In Section 3, we will show how one can achieve a much smaller
offset voltage by adaptively selecting M (M ≤ N) branches via
post-silicon tuning.

Figure 2. Simplified schematic of a traditional differential pair.

Figure 3. Simplified schematic of a tunable differential pair.

2.2 Tunable Switched-Capacitor (SC) Amplifier

Figure 4. Simplified schematic of a traditional SC amplifier.

Figure 4 shows the simplified circuit schematic of a traditional
SC (switched-capacitor) amplifier. For simplicity we assume that
the operational amplifier in Figure 4 is ideal. The gain of the SC
amplifier is determined by the ratio between the two capacitors: CI
and CF. We further assume that CI equals CF and the SC amplifier
has a unit gain. The random mismatch between these two
capacitors is one of the major sources of gain error.

Our proposed tunable SC amplifier is shown in Figure 5. Both

451

CI and CF are decomposed into N fingers. Based on post-silicon
measurement, M (M ≤ N) fingers will be adaptively selected to
minimize the random mismatch.

Figure 5. Simplified schematic of a tunable SC amplifier.

If M fingers {SI,1, SI,2, ..., SI,M} and {SF,1, SF,2, ..., SF,M} are
selected for CI and CF respectively, the variations (i.e., the
deviation from the mean value) of CI and CF can be expressed as:

2 ∑
=

∆=∆
M

i
SiII CC

1
, (2)

3 ∑
=

∆=∆
M

i
SiFF CC

1
, (3)

where ∆CI,Si and ∆CF,Si denote the capacitance variations of the Si-
th selected fingers for CI and CF respectively. The average
capacitor mismatch is defined as:

4

∆−∆⋅=∆ ∑∑

==

M

i
SiF

M

i
SiIMIS CC

M
C

1
,

1
,

1 (4)

Note that Eqn. (4) has a slightly different form than that in (1).
What remains is the modeling and optimization method that can
be used to minimize the mismatch as expressed in (4).

3. DISCRETE OPTIMIZATION FOR

TUNABLE ANALOG CIRCUITS
The key problem posed by the proposed post-silicon tuning

methodology is how to optimally select the best configuration to
minimize the matching error. Such an optimization problem can
be stated as follows: Given {VOS,i; i = 1, 2, ..., N} for the tunable
differential pair or {∆CI,i, ∆CF,i; i = 1, 2, ..., N} for the tunable SC
amplifier, select M branches/fingers out of N (M ≤ N) candidates
such that the absolute value of the mismatch defined in (1) or (4)
is minimized. For this optimization problem, M can be either pre-
determined or variable. If M is a variable, we should select the
optimal M value to achieve the minimal mismatch. This requires
exploration of all possible values for M to select the optimal
scenario. Therefore, in what follows, we focus on the situation
where M is variable, since any other optimization with a pre-
determined M is a sub-problem of this general case.

The aforementioned optimization problem is discrete in
nature. To solve it, one straightforward approach is to enumerate
all possible combinations (referred to as brute-force search in this
paper). However, the total number of all possible configurations
exponentially increases with N, thereby quickly making the
computation infeasible. Theoretically, it can be proven that our
discrete optimization problem for mismatch minimization is NP-
hard. Namely, any algorithm that exactly solves the problem must
require exponential runtime in worst case.

Motivated by this observation, we propose a dynamic
programming [24] approach to search for the optimal
configuration that yields the minimal matching error. The essence

of the proposed dynamic programming is to partition the
complicated discrete optimization problem into multiple,
interacted sub-problems. Instead of directly searching all N
branches/fingers, our sub-problem is defined to optimally select j
branches/fingers out of i (j ≤ i) candidates where i is initially set to
1 and it is iteratively increased to N. The sub-problem is solved
once and its answer is saved, thereby avoiding the work of re-
computing the answer every time when the sub-problem is
encountered. In addition, we propose to utilize quantization to
lump many similar configurations together as a single DP state,
thereby further reducing the computational complexity. In what
follows, we first develop the dynamic programming algorithm for
the tunable differential pair in Figure 3, and then extend it to
optimize the tunable SC amplifier in Figure 5.

3.1 Dynamic Programming for Differential Pair

A. Mathematic Formulation
Our proposed dynamic programming follows the standard

formulation described in [24]. It consists of two major
components: (1) a finite set Ω that contains a number of quantized
matching error values and (2) a three-dimensional table T(i, j, k)
that saves all possible DP states (i.e., matching errors in our
application).

The finite set Ω is used to quantize matching errors such that
similar error values are approximated as a single numerical
number. It, in turn, allows us to lump many configurations with
similar matching errors as a single DP state.

Given the offset voltage for each branch {VOS,i; i = 1, 2, ..., N}
and M selected branches {S1, S2, ..., SM}, we define the matching
error as:

5 ∑
=

=
M

i
SiOSOS VErr

1
, . (5)

Eqn. (5) is identical to (1) except for a scaling factor M. It is easy
to verify that for any M ∈ {1, 2, ..., N} the matching error in (5) is
bounded by:
6 ∑

<

=
0

,
,iOSV

iOSL VB (6)

7 ∑
>

=
0

,
,iOSV

iOSU VB (7)

where BL and BU represent the lower bound and the upper bound,
respectively. Discretizing the interval [BL, BU] yields the finite set:
8 { }UULL BhBhBB ,,,, −+=Ω (8)
where h is the step size. For example, if BL = –1, BU = 1 and h =
0.5, then Ω = {–1, –0.5, 0, 0.5, 1}.

Given the set Ω in (8), we quantize {VOS,i; i = 1, 2, ..., N} by
mapping each VOS,i to the nearest element in Ω. It, in turn, yields:
9 { }NiV iOS ,,2,1;, =Ω . (9)
For example, if {VOS,1 = –0.3, VOS,2 = 0.9} and Ω = {–1, –0.5, 0,
0.5, 1}, then {VOS,1Ω = –0.5, VOS,2Ω = 1}.

The second key component of the proposed dynamic
programming is a three-dimensional table T(i, j, k), where i, j ∈
{1, 2, ..., N} and k ∈ Ω. Note that the index k can be a rational or
real (not integer) number, depending on the discretization in (8):

• T(i, j, k) = 1 (true) if and only if ∃A ∈ 2{1, 2, ..., i} such that:
10 jA = (10)

11 kV
Ai

iOS =∑
∈

Ω
, (11)

452

where |A| stands for the size of the set A and 2{1, 2, ..., i} denotes
the power set of {1,2,...,i} (i.e., the collection of all subsets of
{1,2,...,i}). For instance, 2{1, 2} = {{}, {1}, {2}, {1,2}}.

• T(i, j, k) = 0 (false) otherwise.

The three-dimensional table T(i, j, k) contains all possible
matching errors when selecting j branches from {1, 2, ..., i}.
Starting from i = 1, we recursively find the best-matched j
branches out of i (j ≤ i) candidates, save the answer in T(i, j, k),
and increase i until i = N. As i eventually reaches N, T(N, j, k)
provides all possible matching errors when selecting j branches
out of N candidates. Similar tables have been widely used to solve
many other dynamic programming problems [24]. Next, we will
demonstrate how to efficiently fill the table T(i, j, k) for our
proposed post-silicon tuning problem.

Creating T(i, j, k) involves two major steps: (1) initialization
and (2) recursive iteration. The first initialization step is to fill in
all table entries for j = 1. This step is trivial, since we only
consider the cases where a single branch is selected.

12 ()

=

=
= ΩΩΩ

iOSOSOS VVVk

Ni
kiT

,2,1, ,,,

,,2,1
1,1, . (12)

Next, during the second step, we need to create a recurrence
relation that allows us to iteratively fill in all other entries of the
table T(i, j, k). Note that T(i, j, k) = 1 if and only if any of the
following two conditions is satisfied:

• T(i–1, j, k) = 1, i.e., selecting j branches from {1, 2, ..., i–1}
yields the error value k and the i-th element VOS,iΩ will not be
selected for T(i, j, k) to be true.

• T(i–1, j–1, k–VOS,iΩ) = 1, i.e., selecting j–1 branches from {1,
2, ..., i–1} yields the error value k–VOS,iΩ and the i-th element
VOS,iΩ will be selected for T(i, j, k) to be true.

Based on this observation, we conclude the following
recurrence relation:
13 () () ()Ω−−−∨−= iOSVkjiTkjiTkjiT ,,1,1,,1,, (13)
where ∨ stands for the logic operator OR. Given (12) and (13),
one can iteratively fill in the three-dimensional table T(i, j, k),
thereby yielding the matching error values for all possible
configurations. During this process, a list of index values {S1, S2,
..., Sj} can be saved for each table entry that is 1 (true), if one
wants to know which branches are selected for T(i, j, k) to be true.

After the table T(i, j, k) is available, the final step is to search
for all entries that are 1 (true) and scale the matching error in (5)
back to the offset voltage in (1). For example, if T(N, j, k) = 1,
meaning that selecting j branches out of N candidates results in
the matching error k, the corresponding offset voltage is k/j.
Algorithm 1 summaries the proposed dynamic programming
algorithm for the tunable differential pair.

Algorithm 1: dynamic programming for differential pair
(1) Start from a given set of {VOS,i; i = 1, 2, ..., N} and a given

step size h.
(2) Calculate the lower bound and upper bound using the

equations (6)-(7).
(3) Create the finite set Ω in (8).
(4) Map {VOS,i; i = 1, 2, ..., N} to {VOS,iΩ; i = 1, 2, ..., N} in (9).
(5) Initialize the table T(i, j, k) based on (12).
(6) Iteratively fill in all other entries of the table T(i, j, k) using

the recurrence relation in (13).
(7) For any j ∈ {1, 2, ..., N} and k ∈ Ω, if T(N, j, k) = 1, calculate

the corresponding offset voltage VOS = k/j based on the
definition in (1).

(8) Select the best configuration that yields the minimal offset
voltage.

Algorithm 2: adaptive control for the quantization step size h
(1) Start from a given step size h.
(2) Set r = 1.
(3) Apply Algorithm 1 to estimate the minimal offset voltage

VOS
r, where the superscript r stands for the estimation result

from the r-th iteration.
(4) If the estimated offset voltage value is unchanged between

two successive iterations, i.e.,

14 ε≤
− −

r
OS

r
OS

r
OS

V

VV 1

 (14)

where ε is a pre-defined error tolerance, then stop. Otherwise,
r = r+1, h = h/2 and return Step (3).

Algorithm 1 is based on a given step size h. In practice, the
value of h can be adaptively controlled for a given accuracy
requirement. Starting from a large step size h, h should be
iteratively reduced (e.g., divided by 2) if the error is not
sufficiently small. Algorithm 2 outlines a simplified algorithm for
adaptive step control.

In summary, we have proposed a dynamic programming
algorithm to optimally select M branches out of N candidates such
that the random mismatch is minimized for the tunable differential
pair in Figure 3. The proposed dynamic programming applies
quantization to approximate the solution of the original discrete
optimization problem that is NP-hard. In what follows, we will
theoretically analyze the computational complexity of the
proposed algorithm and demonstrate why it is much more
efficient than a simple brute-force search.

B. Computational Complexity

The computational complexity of the proposed dynamic
programming is mainly determined by the size of the table T(i, j,
k), where
15 () () hBBNkjiT LU −⋅= 2,, (15)
denotes the size of the table T(i, j, k). To determine the relation
between |T(i, j, k)| and N, we need to further know how BU, BL and
h depend on the value N.

Studying (6), one can easily notice that the lower bound BL is
bounded by:

16 ∑
=

−≥
N

i
iOSL VB

1
, . (16)

Since the offset voltages {VOS,i; i = 1, 2, ..., N} are typically
modeled as independent random variables [12]-[13], the standard
deviation of the random variable |VOS,1| + |VOS,2| + ... + |VOS,N| is
proportional to the square root of N [22], yielding:
17 NBL −~ . (17)
The relation between BU and N can be similarly derived as:
18 NBU ~ . (18)

On the other hand, for a given accuracy requirement, the step
size h depends on the final matching error ErrOS defined in (5).
For example, if ErrOS is small, a small h should be automatically
selected by Algorithm 2 to keep the relative error smaller than ε in
(14). As will be demonstrated by the numerical examples in
Section 5.1, for the tunable differential pair in Figure 3, the

453

matching error exponentially decreases as N increases. Therefore,
given a fixed error tolerance ε in (14), the step size h is an
exponential function of N:
19 Neh ⋅−α~ (19)
where α is a positive real number. Substituting (17)-(19) into (15)
gives the final computational complexity of the proposed dynamic
programming:
20 ()NeNNO ⋅⋅⋅ α2 . (20)
The computational complexity in (20) exponentially increases
with N. However, as will be demonstrated by our numerical
examples in Section 5.1, the proposed dynamic programming is
still much faster than the brute-force search that has a complexity
of O(2N). We observe that the proposed dynamic programming
algorithm achieves 10x speed-up, even if N is as small as 14. We
expect that the efficiency of the proposed dynamic programming
will be more pronounced as N further increases.

3.2 Dynamic Programming for SC Amplifier

A. Mathematic Formulation

Algorithm 3: dynamic programming for SC amplifier
(1) Start from a given set of {∆CI,i, ∆CF,i; i = 1, 2, ..., N} and a

given step size h.
(2) Apply the dynamic programming described in Algorithm 1 to

build the three-dimensional tables TI(i, j, kI) and TF(i, j, kF) for
∆CI in (2) and ∆CF in (3), respectively.

(3) For any possible values of j, kI and kF, if TI(N, j, kI) = 1 and
TF(N, j, kF) = 1, calculate the corresponding capacitor
mismatch CMIS = (kI–kF)/j based on the definition in (4).

(4) Select the best configuration that yields the minimal capacitor
mismatch.

Algorithm 1 can be extended to solve the capacitor matching
problem in (4). The basic idea is to first apply the same dynamic
programming to calculate the capacitance variations for ∆CI in (2)
and ∆CF in (3) respectively. Next, all possible combinations of
∆CI and ∆CF are checked and the optimal configuration with the
smallest mismatch CMIS (defined in (4)) is selected. Algorithm 3
summarizes the major steps for the dynamic programming of the
SC amplifier. Although Algorithm 3 assumes a given step size h,
the value of h can be iteratively determined by an adaptive control
scheme similar to Algorithm 2.

B. Computational Complexity

The computational cost of Algorithm 3 is dominated by three
major tasks: (1) creating the table TI(i, j, kI), (2) creating the table
TF(i, j, kF), and (3) checking all combinations between TI(N, j, kI)
and TF(N, j, kF) to calculate all possible values of the capacitor
mismatch. As discussed in Section 3.1B, the computational
complexities of the first two tasks are respectively determined by:
21 () hNNkjiT II ⋅2~,, (21)

22 () hNNkjiT FF ⋅2~,, (22)
where |TI(i, j, kI)| and |TF(i, j, kF)| denote the size of the tables TI(i,
j, kI) and TF(i, j, kF), respectively.

The computational complexity of the third task is determined
by:

23 () () () 232
~,,,, hNhNNkjNTkjNT FFII =⋅⋅ (23)

where TI(N, j, kI) and TF(N, j, kF) are both two-dimensional tables,
since their first-dimension index is fixed to N.

On the other hand, given a fixed error tolerance ε in (14), the
step size h exponentially decreases as N increases, similar to the
case discussed in Section 3.1B. If h is expressed as the
exponential function in (19), the overall computational complexity
of Algorithm 3 is dominated by (23):
24 ()NeNO ⋅⋅ α23 . (24)
As will be demonstrated by the numerical examples in Section
5.2, the computational complexity of Algorithm 3 is much lower
than the complexity of the brute-force search which is close to 22N
in this particular application. The proposed dynamic programming
algorithm achieves 20x speed-up, even if N is as small as 10.

4. STATISTICAL ANALYSIS FOR

TUNABLE ANALOG CIRCUITS
To quantitatively demonstrate the substantial benefit offered

by the proposed post-silicon tuning, the statistical performance
distribution with post-silicon tuning must be estimated and
compared with the well-known Pelgrom model when no post-
silicon tuning is applied. For this purpose, we propose a fast
statistical analysis flow for tunable analog circuits in this section.
The proposed statistical analysis flow is facilitated by a
combination of controlled random sampling and dynamic
programming.

Note that our statistical analysis problem cannot be easily
solved using most existing techniques [16]-[19]. These existing
methods assume continuous variations of uncertain parameters,
while the proposed adaptive post-silicon tuning is discrete in
nature.

The proposed fast Monte Carlo analysis flow is shown in
Algorithm 4. Instead of directly drawing random samples from a
random number generator, the proposed fast Monte Carlo analysis
creates sampling points from a controlled random sequence (i.e.,
Latin hypercube sampling) such that high estimation accuracy can
be achieved by using a small number of sampling points [20]-
[21]. The key idea of Latin hypercube sampling is to fill the high-
dimensional random space based on the given probability density
function pdf(•) and make the sampling point distribution close to
pdf(•) as much as possible. Next, for each Latin hypercube
sampling point, the dynamic programming algorithm proposed in
Section 3 is applied to find the minimal mismatch. Finally, the
mismatch values calculated from all random samples are utilized
to estimate the probability distribution. The proposed fast Monte
Carlo analysis flow will be applied to several circuit examples in
Section 5.

Algorithm 4: fast Monte Carlo analysis for tunable circuits
(1) Generate L random samples {VOS,i(l); i = 1, 2, ..., N; l = 1, 2, ...,

L} or {∆CI,i
(l), ∆CF,i

(l); i = 1, 2, ..., N; l = 1, 2, ..., L} using
Latin hypercube sampling [20]-[21], where the subscript i
denotes the i-th branch/finger and the superscript l stands for
the l-th sampling point.

(2) For each random sample l ∈ {1, 2, ..., L}, apply dynamic
programming (Algorithm 1 or Algorithm 3) to estimate the
minimal mismatch (VOS

(l) or CMIS
(l)).

(3) Given the L samples for the performance of interest (i.e., VOS
(l)

or CMIS
(l)), estimate the statistical characteristics (e.g., standard

deviation, probability distribution, etc.).

5. NUMERICAL EXAMPLES

We demonstrate the efficacy of the proposed post-silicon
tuning methodology using two circuit examples: a differential pair

454

and a switched-capacitor amplifier. Both circuit examples are
implemented with a commercial 65nm CMOS process. All
numerical experiments are run on a Linux 2.6GHz server. Two
major observations will be concluded from our numerical
experiments.

• When applying the adaptive post-silicon tuning, the standard
deviation of random mismatch exponentially decreases as N
(the number of total branches/fingers) increases. This result is
dramatically better than the well-known Pelgrom model when
no post-silicon tuning is applied.

• The proposed dynamic programming significant reduces the
computational cost compared with the brute-force search (i.e.,
simply enumerating all possible configurations). We
demonstrate 10~20x speed-up even if N is as small as 10~14.

5.1 Tunable Differential Pair

We applied the proposed post-silicon tuning methodology to
the tunable differential pair in Figure 3. All transistor fingers in
the differential pair have the size of 100nm (width) x 50nm
(length), which is the minimal feature size of this technology.

A. Offset Voltage Characterization

We characterized the offset voltage {VOS,i; i = 1, 2, ..., N} of
one branch by transistor-level Monte Carlo simulation. The device
model provided by the foundry contains statistical information to
model both inter-die variations and local device mismatches. Our
Monte Carlo simulation result verifies that the offset voltage VOS,i
is almost independent of inter-die variations. For this reason,
{VOS,i; i = 1, 2, ..., N} of different branches are modeled as
independent random variables. In addition, our Monte Carlo
analysis shows that the offset voltage VOS,i can be approximated
as a zero-mean Normal distribution, as shown in Figure 6. Note
that we have normalized VOS,i in Figure 6 such that its standard
deviation is equal to 1, as required by our non-disclosure
agreement with the foundry. {VOS,i; i = 1, 2, ..., N} are modeled as
N independent standard Normal distributions (i.e., zero mean and
unit variance) in this example.

-4 -2 0 2 4
0

50

100

150

200

250

300

V
OS

,
i
 (Normalized)

N
um

be
r

of
 S

am
pl

es

Figure 6. Random offset voltage (VOS,i) of one branch estimated

by 2000 transistor-level Monte Carlo simulation samples.

B. Post-Tuning Offset Estimation

Given the normalized offset voltages {VOS,i; i = 1, 2, ..., N},
we ran Monte Carlo analysis (Algorithm 4) with 104 samples to
estimate the standard deviation σOS of the offset voltage VOS
defined in (1) after post-silicon tuning is applied. For testing and
comparison, both the proposed dynamic programming (DP-MC)
and the brute-force search (BS-MC) are utilized within the Monte

Carlo flow to search for the optimal configuration that yields the
minimal mismatch. We set the error tolerance ε = 1% in (14) to
adaptively select the quantization step size h for dynamic
programming. Figure 7 shows the values of the estimated σOS as
the total number of branches N varies from 1 to 14.

From the result in Figure 7, we find that the proposed post-
silicon tuning methodology achieves σOS ~ exp(–0.54N), while the
well-known Pelgrom model predicts an improvement of only σOS
~ 1/sqrt(N). To further demonstrate the substantial benefit offered
by the proposed post-silicon tuning, Table 1 outlines the required
transistor sizes to achieve the same σOS when post-silicon tuning is
and is not applied. Note that a 1.4µm (width) x 50nm (length)
transistor with post-silicon tuning offers the same mismatch
variation as a 4×105µm (width) x 50nm (length) transistor without
post-silicon tuning in this differential pair example!

0 5 10 15
10

-4

10
-3

10
-2

10
-1

10
0

Number of Branches (N)
σ O

S
 (N

or
m

al
iz

ed
)

w/ Tuning (BS-MC)
w/ Tuning (DP-MC)
w/o Tuning (Pelgrom)

NOS 1~σ

N
OS e 54.0~ −σ

Figure 7. The standard deviation of the offset voltage (σOS)

decreases as the total number of branches (N) increases.

Table 1. Required total gate width to achieve the given σOS
(assuming minimal gate length 50nm for all cases)

/w Tuning w/o Tuning σOS
(Normalized) # of Branches Width (µm) Width (µm)

1.00 × 100 1 0.1 1.00 × 10-1
4.63 × 10-1 2 0.2 4.67 × 10-1
1.44 × 10-1 4 0.4 4.79 × 100
5.08 × 10-2 6 0.6 3.88 × 101
1.91 × 10-2 8 0.8 2.74 × 102
7.63 × 10-3 10 1.0 1.72 × 103
2.77 × 10-3 12 1.2 1.30 × 104
4.85 × 10-4 14 1.4 4.24 × 105

It is important to note that the proposed post-silicon tuning

methodology requires control and measurement circuitries for
adaptive configuration. The area overhead for these additional
circuitries is not included in Table 1. However, we expect that the
additional cost for post-silicon configuration is easily warranted
based on the significant area reduction shown in Table 1.

C. Comparison of Accuracy and Complexity

As discussed in Section 3.1B, the quantization step size h in
Algorithm 1 should be decreased to satisfy the given relative error
tolerance, as the total number of branches N increases and the
offset variation σOS decreases. Given the error tolerance ε = 1% in
(14), Algorithm 2 adaptively determine the step size h for each
value of N, as shown in Figure 8. Note that h exponentially
decreases as N increases.

We used the same set of Monte Carlo samples for both the
proposed dynamic programming (DP-MC) and the brute-force
search (BS-MC). It, in turn, allows us to compare the estimated

455

σOS values from DP-MC and BS-MC, and use their relative
difference as a criterion to measure the error incurred by the
quantization of the DP-MC flow. In this example, the relative
estimation errors of σOS are well-controlled (<1%) for all values of
N, as shown in Figure 9.

Figure 10 shows the computational time for both the proposed
dynamic programming (DP-MC) and the brute-force search (BS-
MC). The brute-force search has a complexity of O(2N), since it
enumerates all possible configurations. In this example, even if
the value of N is as small as 14, the proposed dynamic
programming algorithm achieves 10x speed-up compared with the
brute-force search. We expect that the efficiency of the dynamic
programming will be more pronounced as N further increases.

0 5 10 15
10

-3

10
-2

10
-1

10
0

Number of Branches (N)

S
te

p
S

iz
e

(h
)

Figure 8. The quantization step size (h) decreases for dynamic

programming as the total number of branches (N) increases.

0 5 10 15
0

0.2

0.4

0.6

0.8

1

Number of Branches (N)

R
el

at
iv

e
σ O

S
 E

rr
or

 (
%

)

Figure 9. The relative estimation errors of σOS for DP-MC are

smaller than 1% for all values of N.

0 5 10 15
10

-2

10
0

10
2

10
4

Number of Branches (N)

C
om

pu
ta

tio
na

l T
im

e
(S

ec
.)

BS-MC
DP-MC

Figure 10. Computational time comparison of dynamic

programming (DP-MC) and brute-force search (BS-MC).

5.2 Tunable SC Amplifier

We applied the proposed post-silicon tuning methodology to
the tunable SC amplifier in Figure 5. The capacitor mismatch

defined in (4) is independent of inter-die process variations;
therefore, only local mismatches are considered in this example.
The capacitor mismatches {∆CI,i, ∆CF,i; i = 1, 2, ..., N} of all
fingers are normalized and modeled as independent standard
Normal distributions.

A. Capacitor Mismatch Estimation

We ran Monte Carlo analysis (Algorithm 4) with 104 samples
to estimate the standard deviation σMIS of the capacitor mismatch
defined in (4) after post-silicon tuning is applied. The error
tolerance in (14) is set to ε = 1% for adaptive step size control.
Figure 11 shows the values of the estimated σMIS where both the
proposed dynamic programming (DP-MC) and the brute-force
search (BS-MC) are utilized to search for the optimal
configuration with the minimal mismatch. Note that, in this
example, the proposed post-silicon tuning methodology achieves
σMIS ~ exp(–0.94N), while the well-known Pelgrom model
predicts an improvement of only σMIS ~ 1/sqrt(N).

0 2 4 6 8 10

10
-4

10
-2

10
0

Number of Fingers (N)

σ M
IS

 (N
or

m
al

iz
ed

)
w/ Tuning (BS-MC)
w/ Tuning (DP-MC)
w/o Tuning (Pelgrom)

NMIS 1~σ

N
MIS e 94.0~ −σ

Figure 11. The standard deviation of the capacitor mismatch
(σMIS) decreases as the total number of fingers (N) increases.

B. Comparison of Accuracy and Complexity

0 2 4 6 8 10
10

-3

10
-2

10
-1

10
0

Number of Fingers (N)

S
te

p
S

iz
e

(h
)

Figure 12. The quantization step size (h) decreases for dynamic

programming as the total number of fingers (N) increases.

As shown in Figure 12 and Figure 13, the step size h is
adaptively controlled for the proposed dynamic programming
(DP-MC) such that the estimation error of σMIS is smaller than the
given error tolerance ε = 1%. Figure 14 shows the computational
time for both the proposed dynamic programming (DP-MC) and
the brute-force search (BS-MC). The brute-force search
enumerates all possible configurations and its complexity is close
to O(22N). The proposed dynamic programming significantly
reduces the computational cost in this example. Even if the value
of N is as small as 10, the computational time is reduced from 7.5
hours (by BS-MC) to 25 minutes (by DP-MC) which is a 17x

456

speed-up. It should be noted that the computational time shown in
Figure 14 is the total runtime for 104 Monte Carlo samples. The
dynamic programming cost for configuring one chip (i.e., the
computational cost of one Monte Carlo sample) is much smaller.

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Fingers (N)

R
el

at
iv

e
σ M

IS
 E

rr
or

 (
%

)

Figure 13. The relative estimation errors of σMIS for DP-MC are

smaller than 1% for all values of N.

0 2 4 6 8 10
10

-2

10
0

10
2

10
4

10
6

Number of Fingers (N)

C
om

pu
ta

tio
na

l T
im

e
(S

ec
.)

BS-MC
DP-MC

Figure 14. Computational time comparison of dynamic

programming (DP-MC) and brute-force search (BS-MC).

6. CONCLUSIONS

In this paper, an adaptive post-silicon tuning methodology has
been proposed to effectively reduce random device mismatches
for analog circuits. Two tunable analog examples (i.e., a
differential pair and a switched-capacitor amplifier) were
discussed in detail. A novel dynamic programming algorithm was
proposed to efficiently determine the optimal tuning configuration
that yields the minimal mismatch. The proposed dynamic
programming achieves significant (10~20x) speed-up compared
with a brute-force search. The dynamic programming technique
was further incorporated into a fast Monte Carlo analysis flow for
efficient statistical analysis of the proposed tunable analog
circuits. Our numerical results demonstrate that if the adaptive
post-silicon tuning is applied, device mismatch exponentially
decreases as area increases: σ ~ exp(–α⋅Area).

7. ACKNOWLEDGEMENT

This work has been supported by the National Science
Foundation (NSF) under contract CCF-0702278.

8. REFERENCES
[1] S. Nassif, “Modeling and analysis of manufacturing

variations,” IEEE CICC, pp. 223-228, 2001.
[2] Semiconductor Industry Associate, International

Technology Roadmap for Semiconductors, 2005.
[3] G. Gielen and R. Rutenbar, “Computer-aided design of

analog and mixed-signal integrated circuits,” Proceedings of

the IEEE, vol. 88, no. 12, pp. 1825-1852, Dec. 2000.
[4] G. Debyser and G. Gielen, “Efficient analog circuit

synthesis with simultaneous yield and robustness
optimization,” IEEE ICCAD, pp. 308-311, 1998.

[5] A. Seifi, K. Ponnambalam and J. Vlach, “A unified
approach to statistical design centering of integrated circuits
with correlated parameters,” IEEE Trans. CAS – I, vol. 46,
no. 1, pp. 190-196, Jan. 1999.

[6] F. Schenkel, M. Pronath, S. Zizala, R. Schwencker, H.
Graeb and K. Antreich, “Mismatch analysis and direct yield
optimization by spec-wise linearization and feasibility-
guided search,” IEEE DAC, pp. 858-863, 2001.

[7] X. Li, P. Gopalakrishnan, Y. Xu and L. Pileggi, “Robust
analog/RF circuit design with projection-based performance
modeling,” IEEE Trans. CAD, vol.26, no. 1, pp. 2-15, Jan.
2007.

[8] J. Tschanz, J. Kao, S. Narendra, R. Nair, D. Antoniadis, A.
Chandrakasan and V. De, “Adaptive body bias for reducing
impacts of die-to-die and within-die parameter variations on
microprocessor frequency and leakage,” IEEE JSSC, vol.
27, no. 11, pp. 1396-1402, Nov. 2002.

[9] T. Chen and S. Naffziger, “Comparison of adaptive body
bias (ABB) and adaptive supply voltage (ASV) for
improving delay and leakage under the presence of process
variation,” IEEE Trans. VLSI, vol. 11, no. 5, pp. 888-899,
2003.

[10] M. Mani, A. Singh and M. Orshansky, “Joint design-time
and post-silicon minimization of parametric yield loss using
adjustable robust optimization,” IEEE ICCAD, pp. 19-26,
2006.

[11] P. Kinget, “Device mismatch and tradeoffs in the design of
analog circuits,” IEEE JSSC, vol. 40, no. 6, pp. 1212-1224,
Jun. 2005.

[12] M. Pelgrom, A. Duinmaijer and A. Welbers, “Matching
properties of MOS transistors,” IEEE JSSC, vol. 24, no. 5,
pp. 1433-1440, Oct. 1989.

[13] P. Drennan and C. McAndrew, “Understanding MOSFET
mismatch for analog design,” IEEE JSSC, vol. 38, no. 3, pp.
450-456, Mar. 2003.

[14] S. Ray and B. Song, “A 13b linear 40MS/s pipelined ADC
with self-configured capacitor matching,” IEEE ISSCC, pp.
852-861, 2006.

[15] K. Chan and I. Galton, “A 14b 100MS/s DAC with fully
segmented dynamic element matching,” IEEE ISSCC, pp.
2390- 2399, 2006.

[16] A. Dharchoudhury and S. Kang, “Worse-case analysis and
optimization of VLSI circuit performance,” IEEE Trans.
CAD, vol. 14, no. 4, pp. 481-492, Apr. 1995.

[17] E. Felt, S. Zanella, C. Guardiani and A. Sangiovanni-
Vincentelli, “Hierarchical statistical characterization of
mixed-signal circuits using behavioral modeling,” IEEE
ICCAD, pp. 374-380, 1996.

[18] M. Sengupta, S. Saxena, L. Daldoss, G. Kramer, S.
Minehane and J. Chen, “Application-specific worst case
corners using response surfaces and statistical models,”
IEEE Trans. CAD, vol. 24, no. 9, pp. 1372-1380, Sep. 2005.

[19] X. Li, J. Le, P. Gopalakrishnan and L. Pileggi, “Asymptotic
probability extraction for nonnormal performance
distributions,” IEEE Trans. CAD, vol. 26, no. 1, pp. 16-37,
Jan. 2007.

[20] M. Mckay, R. Beckman and W. Conover, “A comparison of
three methods for selecting values of input variables in the
analysis of output from a computer code,” Technometrics,
vol. 21, no. 2, pp. 239-245, May. 1979.

[21] E. Pebesma and G. Heuvelink, “Latin hypercube sampling
of Gaussian random fields,” Technometrics, vol. 41, no. 4,
pp. 303-312, Nov. 1999.

[22] A. Papoulis and S. Pillai, Probability, Random Variables
and Stochastic Processes, McGraw-Hill, 2001.

[23] B. Razavi, Design of Analog CMOS Integrated Circuits,
McGraw, 2001.

[24] D. Bertsekas, Dynamic Programming and Optimal Control,
Athena Scientific, 2005.

457

	Main
	ICCAD2007
	Front Matter
	Table of Contents
	Author Index

