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Abstract 
Current technology trends have led to the growing impact of both 
inter-die and intra-die process variations on circuit performance. 
While it is imperative to model parameter variations for sub-100nm 
technologies to produce an upper bound prediction on timing, it is 
equally important to consider the correlation of these variations for 
the bound to be useful. In this paper we present an efficient block-
based statistical static timing analysis algorithm that can account for 
correlations from process parameters and re-converging paths. The 
algorithm can also accommodate dominant interconnect coupling 
effects to provide an accurate compilation of statistical timing 
information. The generality and efficiency for the proposed 
algorithm is obtained from a novel simplification technique that is 
derived from the statistical independence theories and principal 
component analysis (PCA) methods. The technique significantly 
reduces the cost for mean, variance and covariance computation of a 
set of correlated random variables. 
 

Categories and Subject Descriptors 
B.7.2 [Hardware]: Integrated circuits—Design aids 
 
General Terms 
Algorithms, verification 
 

Keywords 
Statistical timing, process variation 

1. Introduction 
With the decrease in feature sizes for nanoscale CMOS 
technologies, the influence of process variations during 
manufacturing becomes increasingly important. Process variations 
can be broadly categorized into inter-die and intra-die variations. 
Inter-die variations, as they impact a single IC (integrated circuit), 
are fully correlated. Intra-die variations can have a random 
component, but also exhibit strong systematic correlations. The 
increased variability and associated correlations have given a new 
set of problems for circuit timing analysis. Traditional static timing 
analysis uses a corner-based methodology for worst-case analysis, 
which may be overly pessimistic and extremely inaccurate [1].  
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Many approaches have been proposed recently to deal with the 
statistical timing analysis problem. Most of the proposed solutions 
fall into one of two broad categories. The first are path-based 
algorithms [3,4]. The work in [3] uses the JPDFs (joint probability 
density functions) to take into account the correlations from both 
path sharing and global parameters. The recent work in [4] 
decomposes the correlated process parameters into a set of 
uncorrelated principle components and computes the circuit delay 
on this fixed basis. However, while path based algorithms have 
been shown to capture the correlations with sufficient accuracy for a 
single path, it becomes difficult to predict statistical circuit delay 
from path delay. Unlike its deterministic counterpart, statistical 
timing information on an output timing pin is influenced by all of its 
input pins. Therefore, although path-based algorithm can select 
multiple paths, it cannot inherently account for their statistical 
coupling. Furthermore, path selection often excludes potential 
interconnect coupling and thus makes it extremely difficult to 
include the impact of neighboring coupled signals. 
The second category of solutions is based on block-based timing 
analysis algorithms [5,6]. In [5], the delays of the gates and arrival 
times are modeled as independent discrete random variables. The 
approach recently proposed in [6] models the delays as independent 
PDFs (probability density functions) and arrival times as CDFs 
(cumulative density functions). It is known, however, that including 
both correlation and arbitrary PDF modeling in a block-based STA 
approach can create exponential complexity, thereby rendering it 
impractical. For this reason, most block-based statistical approaches 
model delays as independent random variables with arbitrary PDFs 
[5,6]. While the independent delay model assumption renders the 
approach efficient, we will illustrate in Section 2 that the results can 
be unrealistic in the presence of inter-die variation and systematic 
intra-die variation. Moreover, since interconnect coupling can 
impact the timing as much or more than the variations, it must be 
considered as part of the statistical timing analysis process. 
However, the existing block-based and path-based STA approaches 
that have been recently proposed do not include handling of 
dominant interconnect coupling. 
This paper proposes STAC, a block-based statistical timing analysis 
algorithm that can capture the correlations among all delay terms. 
STAC is based on the observation that the gate delay and circuit 
delay can be approximated as normal random variables without 
incurring substantial error. This modeling assumption allows the 
delays to be handled as correlated normal random variables that can 
be defined with only the 1st and 2nd order moments. From these 
moments it is straightforward to characterize their joint distributions 
with arbitrary correlations.  
To build the joint distributions of delays and arrival times requires 
computing the statistical distribution of the Max and Min of a set of 
normal random variables. The work in [2] and more recently in [4] 
use a closed-form formula to approximate the mean, variance and 
covariance of the Max of two normal random variables based on the 

343

21.3



formulas derived in [11]. However, the corresponding formulas for 
Min, which are equally important for earliest arrival time and time 
window computation with interconnect coupling, are not available 
in that paper. In STAC, we developed a PCA-based technique that 
can efficiently compute the statistical distribution for both Min and 
Max. The technique dynamically applies PCA to compute the 
correlations. Therefore, it does not require linear gate delay models 
and a fixed base as in [4]. The nonlinear gate delay model makes it 
possible to include large process variations, and the dynamic base 
significantly reduces the size of the projection matrix (which is only 
2×2 in STAC) and improves numerical stability. 
Along with process variations, nanoscale feature sizes also cause 
the dominant portion of wiring capacitance to be the inter-layer 
neighboring wire capacitance. For this reason, the delay of a gate 
can be greatly impacted by the switching activity on neighboring 
wires [8]. Accounting for this cross-talk effect, therefore, is a 
critical part of the statistical timing analysis process. Therefore, we 
modify the STAC algorithm that is proposed in this paper to 
demonstrate the impact of analyzing the statistical timing window 
for circuits with dominant interconnect coupling. The modified 
algorithm uses the iterative time window alignment technique in [8] 
to determine the aligned aggressors for a given victim. By 
constructing new random variables from the boundaries of different 
time windows, this approach inherently takes into account the 
correlations between different time window boundaries and reduces 
the unnecessary pessimism. 
The remainder of this paper is organized as follows. Section 2 
illustrates the validity of normal approximation with some 
experiment data. Section 3 describes the basic formulation and 
implementation of the proposed algorithm. Section 4 presents the 
extension of the algorithm for statistical timing analysis under 
interconnects coupling. Results from running STAC on various 
ISCAS85 benchmark circuits are listed in Section 5. Our 
conclusions and ideas for future work are discussed in section 6. 

2. Normal Delay Distribution Approximations 
The process parameter variations can be described as normal 
distributions [9].  The delays, however, can be theoretically 
modeled as arbitrary distributions for block-based STA. Arbitrary 
distributions provide the most generality for statistical analysis. 
However, they often result in exponential complexity when 
characterizing the joint probability density function between 
different random variables. Reference [5] and [6] provide some 
techniques to handle correlations from re-convergent fanouts, but 
are apparently not applicable when considering correlations from 
global process parameters.  
 
 
 
 
 
 
In contrast, we propose that the gate delays and circuit delays can 
be approximated by normal distributions, even though they are not 
strictly normal random variables. One significant advantage with 
treating the delays as nearly normal distributions is that the joint 
distribution characterization (which includes the correlation 
between different variables) is greatly simplified. We will 

demonstrate through some experimental results that the accuracy 
penalty incurred by this near normal modeling assumption is 
negligible compared with the error incurred by the loss of 
correlation information.  

 
 
 
Based on the central limit theorem, the longer the path the more 
likely the delay distribution will approach a normal distribution. For 
this reason, we choose a small circuit with very short path for our 
analysis and discussions of error. Consider the circuit in Fig. 1, 
which is comprised of an inverter and a NAND gate, implemented 
in the TSMC 0.18-micron CMOS technology. 
Gate delays can be modeled as linear functions of process 
parameters under small process variation assumptions [4,9]. 
However, linear approximations can lead to significant errors as 
process variations become large [10]. In this example, both gate 
delays are extracted as quadratic functions of process and 
environment parameters (LGATE, VTH0, TOX and VDD) via 
CADENCE circuit simulation. The quadratic gate delay model may 
lead to non-normal gate delay distribution; however, the 
corresponding normal approximation can be calculated by directly 
matching the first two moments of the quadratic function. This 
approach minimizes non-Normal error even when the second order 
term in quadratic function is significant. In our example, Monte 
Carlo simulation is used to generate the PDF of the maximum 
output delay. The PDF of the corresponding normal approximation 
is also computed using the mean value and variance of the data 
generated by Monte Carlo simulation. 
 
 
 
 
 
 
 
 
 
 
In order to validate the delay distribution under different correlation 
models, the process parameters are broken into global parameters 
and local parameters. All of the delay variables share the same 
global parameters, while each variable has its own local parameters. 
If global parameters are zero, the delays are totally independent. If 
local parameters are zero, the delays are totally correlated. In all 
other cases, the delays are partially correlated. Figure 2 shows the 
corresponding PDF for the circuit delay. In figure 2-a, variations for 
different parameters are set as ∆LGATE = ±17.5%, ∆VTH0=±5%, 

D1 D2 

D3 

A  

Fig 1. Simple example of signal path 

Fig 2 Circuit Delay PDF under (a) typical process 
variation and (b) large process variation 
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∆TOX = ±5% and ∆VDD=±5%, as applied in [9]. In figure 2-b, the 
variation of ∆LGATE is increased to ±50%. As shown in the plots, the 
PDF of circuit delay changes significantly when the correlation 
changes. In contrast, the normal approximation matches quite well 
with the Monte Carlo simulation even when ∆LGATE reaches ±50%. 
Figure 3 compares the errors at the 99% point in the CDF caused by 
the normal approximation with that incurred by ignoring 
correlations between the delay variables. The x-axis values 
represent the ratio of global process parameters over total process 
parameters. When the nominal delay value is comparable with the 
magnitude of the variations, errors can be measured as the delay 
difference over total delay (∆D/D) [5,6]. However, large nominal 
delays for some circuits can render this error estimation overly 
optimistic. Therefore, the relative error in this paper is measured as 
the delay difference over 6σ (∆delay/6σ) of the delay distribution. 
When the global parameters (inter-die and systematic intra-die 
variation) dominate, the error caused by ignoring the correlation is 
significant, and clearly the independent delay assumption is not 
practical. However, note that the error from the normal 
approximation is negligible, regardless of the correlation. This 
suggests that the normal approximation is valid, even for such a 
small example. As the size of the logic path increases, the delay 
distribution will become more normal based on the central limit 
theorem. 

3. Statistical Timing Analysis Methodology 
STAC employs a block-based statistical timing analysis approach, 
which is performed in a breadth-first manner. The circuit is 
partitioned into different levels through topological sorting. The 
arrival time at the primary input is propagated through the gates at 
each level until it reaches the primary output. 

3.1 Atomic Operation 
A key function in statistical static timing analysis is the propagation 
of arrival times through the gates. In order to compute the statistical 
arrival time distribution at the gate output, three atomic operations 
are required: Sum, Max and Min. Mean, variance and covariance 
for the resulting random variables at the gate output are then 
computed with the normal distribution approximation. The 
remainder of this section focuses on the computation procedures for 
Sum, Max and Min of two random variables. Multi-variable cases 
are easily broken down into multiple two-variable operations. 
 
 
 
 
 
 
 
 
 
 
 

3.1.1 Sum of two normal random variables 
Computing the mean, variance and covariance for the sum of two 
normal random variables is straightforward. Assuming x, y, z, w are 

four normal random variables and z = x + y, the mean, variance and 
covariance for variable z can be computed as 
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+=
++=

+=  

Assuming that x, y and w are normal random variables that have 
already been computed, the values on the right hand side of 
equation (1) exist and can be summarized in the form of a table. 
Figure 4 shows the updated mean and covariance table after the 
computation is completed. 

3.1.2 Max/Min of two normal random variables 
The challenge is the computation of Max and Min of two normal 
random variables, since the result is no longer a strict normal 
random variable. The works in [2] and [4] motivate the 
approximation of the Max as a normal distribution, and apply the 
closed-form formula from [11] to approximate the mean, variance 
and covariance of the Max of two normal random variables. 
However, since we also require the Min as well, in STAC, we 
developed a PCA-based technique that can work for both Max and 
Min. Since the computation for Max and Min are almost identical, 
the rest of this section focuses on the derivation of Max 
computation.  

3.1.2.1 Mean value computation  
The Max operation includes two random variables, Max(x,y). By 
subtracting x from both variables, we can move it to the outside of 
the operator, as shown in equation (2): 

)2(),0(),( xyMaxxyxMax −+=  

Since x and y are both normal random variables, y-x is also a 
normal random variable. It follows that the mean value can be 
computed by: 

)3()),0(()()),(( xyMaxMeanxMeanyxMaxMean −+=  

In (3), Mean(x) has already been computed. Mean(Max(0,y-x)) is a 
one-dimensional function, which can be further simplified as 
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Where µ and σ are the mean and standard deviation of random 
variable y-x. Equation (4) is a one-dimensional function with 
standard normal random variables, and is therefore easily computed 
via table look-up.  

3.1.2.2 Variance and covariance computation  
By moving one random variable to the outside of the Max operator, 
the variance of Max(x,y) can also be rewritten as 
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In equation (5), the first term Var(x) has already been computed. 
The third term Var(Max(0,y-x)) can be further simplified into 
equation (6) where µ and σ are the mean and standard deviation of 
random variable y-x. Like equation (4), Equation (6) can also be 
easily computed via one-dimensional look-up tables. 

Fig 4 Updated mean and covariance tables 
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The second term in equation (5), Cov(x,Max(0,y-x)), however, is 
still a two-dimensional function. Therefore STAC applies a PCA-
based (Principle Component Analysis) technique to simplify its 
computation. Before explaining this PCA-based technique, we first 
review two important theorems [7]. 
Theorem 1: If normal random variables x1 and x2 are uncorrelated, 
they are also independent. 
Theorem 2: If x1 and x2 are statistically independent and f(x1) and 
g(x2) are continuous, then f(x1) and g(x2) are statistically 
independent. 
Based on the definition of covariance, Cov(x,Max(0,y-x)) can be 
expanded as 
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In the equation (7), x-µx and (y-x)-µy-x are correlated normal 
random variables. With PCA, they can be decomposed into two 
orthogonal standard normal random variables as shown in equation 
(8) 
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Note that α1 and α2 are both independent standard normal random 
variables, and their covariance matrix is the identity matrix. 
Therefore, the covariance matrix of x-µx and (y-x)-µy-x can be 
expressed as  
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The covariance matrix of x-µx and (y-x)-µy-x is the same as the 
covariance matrix of x and y-x, which can be computed from the 
covariance matrix of x and y. Given that the covariance matrix is 
positive definitive, one can compute the projection matrix P in 
equation (8) from equation (9). Since the base used in PCA is not 
fixed and the size of the matrix P is only 2×2, this computation 
maintains high numerical stability and low cost, which is often 
difficult to achieve for PCA with large matrices and fixed base 
[4,7]. Then, the random variable x-µx can be decomposed as the 
linear combination of two orthogonal random variables via Gram-
Schmidt Orthogonalization: 
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In equation (10), k is the projection factor of random variable x-µx 
on (y-x)-µy-x. (x-µx)⊥ is uncorrelated with (y-x)-µy-x. Based on 
theorem 1, it is also statistically independent with (y-x)-µy-x. 
Following theoreom 2 and knowing that (x-µx)⊥ and (y-x)-µy-x are 
both normal random variables, (x-µx)⊥ and Max(-µy-x, (y-x)-µy-x) are 
also statistically independent. Substituting (10) into (7), the 

covariance between x and y-x can be further simplified as a one-
dimensional function (11) and also computed via a look-up table: 
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The same technique can be directly used to compute the covariance 
between any random variable w and Max(x,y). Due to the limited 
space available in this paper, the derivation is not included.  

Table 1: Built-in table for max / min computation. 
 ),( φµ−f  ),( φµφ −⋅ f  ),(2 φµ−f  

µ < -5 -µ / 0 0 / 1 µ2 / 1 
µ > 5 0 / -µ 1 / 0 1 / µ2 

-5 < µ < 5 Table-value Table-value Table-value 
 
Substituting Max operators with Min operators in the above 
equations yields the Min computation for our approach. Table 1 
lists the look-up tables used in the mean, variance and covariance 
computation for the Max and Min of two normal random variables, 
where φ is a standard normal random variable and f represents the 
max or min function.  

3.2 Arrival Time Propagation 
Once the atomic operations are available, they can be applied to 
compute the distribution of the arrival times at each node and level 
of the circuit until all primary outputs are reached.  

 

 

 

 

 

 

 

 

Figure 5 shows the timing graph of the ISCAS85 benchmark circuit 
C17. As shown in the figure, once arrival times for A1 and A2 are 
computed, A3 can be computed as A3 = Max (A1+D1, A2+D2), 
which requires two SUM operations and one MAX operation. Three 
extra variables are inserted to the mean and variance tables. During 
the computation, the mean value table and covariance matrix keeps 
growing, which may increase memory consumption. However, once 
the gate output arrival time (A3) is computed, its delay (D1, D2) 
and temporary variables (A1+D1, A2+D2) will no longer be used    
and can be deleted from the table. When the output arrival times for    
all gates in the same level have been computed, the input arrival 
time at that level (A1, A2…) can also be deleted. This dynamic 
memory allocation heuristic is very useful in the reduction of 
memory consumption, which becomes important with large circuits. 

In the proposed algorithm, each gate in a circuit graph is assigned 
two level numbers via depth-first search, as shown in figure 5. The 
first level (compute_level) represents the order in which the gate 

A1 

A2 

D1 

D2 

A3 

(1,3) 

(1,2) 

(2,3) 

(2,3) 

(3,4) 

(3,4) 

Fig 5 Timing Graph for ISCAS85 C17 
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can be computed, which is decided by its latest computed input 
gate. The second level (del_level) represents the order in which the 
output arrival time for the gate can be deleted, which is decided 
from its latest computed fan-out gate. The entire algorithm for the 
proposed statistical timing analysis is described in the following 
pseudo code. 

Sort circuit timing graph; //Set compute_level and del_level 
Setup delay variables for gate; //2n variables for n-input gate 
Compute mean and covariance tables for delay variables; 
For level = 1: max_level, 
    For each gate, if compute_level == level,  
        Compute and insert output arrival time into mean and  
        covariance  tables; 
        Delete gate delay variables and all temporary variables from  
        mean and covariance tables; 
    End 
    For each gate, if del_level == level, 
        Delete output arrival time from mean/covariance tables; 
    End 
End; 
Save mean and covariance tables for primary output. 

4. STAC with Coupling 
In nominal static timing analysis, the problem of delay computation 
in the presence of crosstalk can be formulated as computing the 
earliest and latest arrival time among all possible waveforms of 
aligned aggressors. An iterative algorithm to compute the time 
window for a given circuit was proposed in [8].  In each loop, the 
early and late arrival times at the primary inputs are propagated to 
the primary outputs taking into account the influence of aggressor 
gates. The resulting timing window of each net is compared with its 
aggressors to decide the aligned aggressors. The aggressors whose 
time windows are not overlapped with the victim net will be set as 
unaligned aggressors in the next loop to shrink the time window. As 
shown in figure 6, the time windows for two nets are overlapped if 
and only if t1<t4 and t3<t2 where t1, t3 are the early arrival times 
and t2, t4 are the late arrival times. 

 

 

 

 

 

 

 

 

 

Following this iterative time window alignment procedure, STAC 
can be extended to consider the impact of variations and coupling 
effects concurrently. In the scenario of statistical timing analysis, 
the earliest arrival time and latest arrival time for a time window of 
a given net become random variables, as shown in figure 6. The 
overlap of two time windows can no longer be simply determined 
by the condition t1<t4 and t3<t2. On the other hand, since t1, t2, t3, 
t4 are all random variables, we can construct new random variables 
(t4-t1) and (t2-t3) and redefine the overlap condition as follows:  
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By using the 3σ values to determine the overlap of two time 
windows, the proposed method prevents the over-shrink of the time 
windows and preserves the earliest and latest arrival times. 
Furthermore, the correlations between different arrival times are 
inherently incorporated into the new random variables, which 
remove any unnecessary pessimism in the time window alignment. 
The mean value and the standard deviation for new random variable 
ti-tj can be computed from the existing mean and covariance tables: 

)13()(),(2)(

)()(

tjVartjtiCovtiVar

tjMeantiMean

tjti

tjti

+−=

−=

−

−

σ

µ  

5. Results  
The proposed block-based statistical timing analysis approach has 
been implemented in C++ and we present results for various 
ISCAS85 benchmark circuits. These ISCAS85 circuit examples 
have been mapped using a library implemented with TSMC 0.18-
micron technology. The quadratic delay models with different 
process parameters for different gates are extracted from Cadence 
simulations. The amplitudes for the process variation used in model 
extraction are ∆LGATE = ±17.5%, ∆VTH0=±5%, ∆TOX = ±5% and 
∆VDD=±5%, as described in reference [9]. All process parameters 
are further decomposed into global process parameter components 
and local process parameter components to model the correlations 
between different delay random variables. 

 

 
 

5.1 Accuracy and efficiency 
Figure 7 shows circuit delay distribution for the circuit C432 with 
different correlations. If gate delays are modeled as independent 
variables, the circuit delay distribution is characterized by a sharp 
PDF. When gate delays are correlated, the PDF of the circuit delay 
shows significantly larger variation. The difference between the 
delays with different strength of correlation is significant. However, 
the normal approximation results produced using STAC precisely 
approximate the delay distribution for all correlations. 

Table 2 compares the error in latest arrival time incurred from 
ignoring the correlations versus that due to the normal 
approximation assumption in STAC. For the partial correlation 
columns in the table, the ratio of global process parameter variation 

early late 

t4 

t1 t2 

t3 

Fig 6 Statistical Timing with 

Fig 7 Delay Distribution for ISCAS85 

347



over total process parameter variation (∆Global/∆Total) is 50%. For 
the full correlation columns, the ratio is 100%. The comparisons are 
made against 10,000-run Monte Carlo simulation. The error is 
measured as the difference in delay value over 6σ of the delay 
distribution (∆delay/6σ). As can be seen from the table, the error 
from the STAC approximation is almost negligible compared with 
the error from ignoring the correlations. 

Table 2 Comparisons on 99% point of latest arrival time CDF  
Partial Correlation Full Correlation 99% Max 

Delay Ind. Stac Ind. Stac 
C432 11.80% 2.74% 18.34% 0.58% 
C499 13.33% 2.12% 21.03% 0.75% 
C880 18.04% 0.52% 27.25% 0.64% 
C1355 13.85% 0.23% 22.06% 0.27% 
C1908 21.68% 0.58% 28.29% 0.13% 
C2670 20.13% 0.24% 30.24% 1.96% 
C3540 13.15% 0.23% 22.69% 0.46% 
C6288 27.63% 0.91% 4.86% 0.66% 
C7552 25.27% 1.10% 32.52% 1.39% 

 

Table 3 Runtime for ISCAS85 Benchmark Circuits (Seconds) 
Circuit C432 C499 C880 C1355 C1908 
STAC 0.162 0.217 0.987 1.368 2.975 
MC 97.35 142.42 419.03 814.8 1848 

Circuit C2670 C3540 C5315 C6288 C7552 
STAC 9.725 15.53 44.068 48.711 91.084 
MC 3640 8206 16921 23227 37223 

 

The run times for different benchmarks in Tables 2 are listed in 
table 3. In our implementation, several heuristics are applied for 
runtime efficiency. First, the covariance matrix is stored as a static 
matrix to reduce access time. Secondly, instead of physically 
deleting an unused variable, the variable is marked as being deleted 
to prevent large operation on the covariance matrix. 

 
 

5.2 Impact of coupling 
Using the C432 benchmark circuit we illustrate the accuracy of 

the proposed method for statistical timing analysis with coupling. In 
our experiment, the maximum number of aggressors for each net is 
limited to three, which in practice has been found to be sufficient 

for most circuits [8]. For this example, the coupling analysis 
iterations converge very fast, in two iterations. Figure 8 shows the 
resulting time window at one of the primary outputs (node 370). 
While taking into account the interconnect coupling, the time 
window expands. As is shown in Figure 8, the results from the 
proposed algorithm match very well with Monte Carlo simulation in 
the presence of interconnect coupling. The Monte Carlo with 
coupling essentially overlaps the STAC with coupling. 

6. Conclusion and Future Work 
This paper presents a new block-based statistical timing analysis 
algorithm that can handle correlations from process parameters and 
re-converging paths without loss of generality. The algorithm can 
also take into account the interconnect coupling during timing 
analysis. The proposed algorithm models delays and arrival times in 
the circuit as normal random variables. An efficient technique is 
developed to compute the mean, variance and covariance of the 
Max and Min of two normal random variables. Results from 
different ISCAS85 benchmarks are presented which show high 
accuracy and efficiency. 

As future work we plan to test the algorithm on industrial examples 
with extracted coupling and inter/intra die variation information. 
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