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Behavioral Modeling for Analog System-Level
Simulation by Wavelet Collocation Method

Xin Li, Xuan Zeng Member, IEEEDian Zhou, Xieting Ling, and Wei Cai

Abstract—in this paper, we propose a wavelet collocation circuits, log-domain filters, and so forth, continue to appear to
method Wlth.nor.lllnear companding to generate behavioral models meet the specific requirements on circuit speed and power con-
for analog circuits at the system level. During the overall process sumption

of circuit modeling, nonlinear function approximation is an A log ICs h idl ved f th latively |
important issue to accurately capture the nonideal input—output S anaiog ICs have rapidly evVolved iTom the relatively 10w

relations of analog circuit blocks. While a great number of complexity of the early days to the high sophistication of today,
previous research works focus on the high-dimensional top-down the need for more advanced behavioral modeling techniques has
design/synthesis model, which involves large analog design spacespecome increasingly urgent. First, in top-down design, quick ex-
this paper primarily concentrates on the bottom-up verification 4 ration of system architectures should be carried out before

model requiring both simple representation and high accuracy. . A . . .
Taking advantage of the local support of wavelet bases, a nonlinear detailed circuit implementation. System-level simulation based

companding method is developed to control the modeling error ©N behavioral models can provide fast prediction of system per-
distribution based on system-level simulation requirements. It, in formance, which helps to select proper architectures for circuit
turn, significantly improves the simulation efficiency at the system jmplementation and analyze tradeoffs at the early design stages.
level. To demonstrate the promising features of the proposed gecong in bottom-up verification, the overall system specifica-
method, two circuit examples, a fourth-order switched-current . . . .
filter and a voltage-controlled oscillator, are employed to build the tions should be ChECk_Ed after |nd|_\/|duaI_C|rC_U|t blocks are ?Va'_l'
behavioral models. able. However, transistor-level simulation is too expensive in
memory space and computation time to afford the verification of
a whole chip containing a large number of analog components.
Under such circumstance, behavioral models are extracted for
each circuit block and simulated at the system level, providing
. INTRODUCTION the necessary information for verifying system performance.

ITH the remarkable evolution of VLSI technology, the During the past decade, various methodologies have been

complexity of electronic systems, including both digitaproposed for behavioral modeling of analog circuits. First, for
and analog circuits, has increased significantly during the p4§€ar systems, there have been a significant body of works
twenty years. Nowadays, a great number of computations origfiginally evolved from the model order reduction problem
nally carried out in the analog domain are moved to their digiti@" interconnect analysis [1]-{4]. These methods are mathe-
counterparts. However, many analog circuits, especially thd®@!ically elegant and are capable of generating reduced-order
for interfacing purpose such as analog-to-digital (A/D) and di ransfer functions for complicated linear dynamic circuits.
ital-to analog (D/A) converters, are still widely used since th nfortunately, in the community of nonlinear circuit modeling,
real world is analog. In addition, numerous of new analog app/t® such mature techniques exist, although several theoretical

cations, such as radio frequency components, switched-curf@Rfks have been developed in recent years [S]-{7]. Most
practical approaches for nonlinear circuit modeling can be

classified into three categories. First, the regression models
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There exist two approaches to approximate the nonlineaavelet collocation method for behavioral modeling in Sec-
functions encountered in analog circuit modeling: 1) devetion IV. A nonlinear companding algorithm for error distribution
oping the nonlinear function manually by hand analysis [18ntrol is developed in Section V. To demonstrate the computa-
and 2) constructing the nonlinear approximation by data fittirtgpnal efficiency of the proposed method, two circuit examples,
[8]-[10], [12]. The first approach takes into account the internal fourth-order switched-current filter and a voltage-controlled
nonidealities of analog circuits and helps designers to undescillator (VCO), are employed in Section VI to construct the
stand the physical behavior more accurately and intuitivelgehavioral models. Finally, we draw conclusions in Section VII.
However, such a modeling method is restricted to simple circuit
structures and device models. It is awkward, if not impossible, |I. | MPORTANCE OFERRORDISTRIBUTION CONTROL

to manually extract the nonlinearity for complex circuits with The motivation for error distribution control in behav-
sophisticated device models (e.g., BSIM3 model). Compared vatl : ISHDUA . : v
ral modeling can be illustrated by a simple example of

. ) . . |
with the first modeling approach, the second one is mo% . L o
9 app e switched-current memory cell. For switching circuits, a

efficient and flexible. Recently, several new methodologie iah-speed clock is used to samole the inout sianal and convert
including radial basis approximation [8], [9] and data minin 9gn-Spe . . >ample the input sig
e continuous-time signal into its discrete-time counterpart.

[10], etc., have been developed to efficiently approxima o general buroose circuit simulators such as SPICE. wil
the high-dimensional nonlinear functions for analog circui g burp reuit simuia Suer ~= Wi
end a large amount of computation time in analyzing the

modeling. These techniques mainly focus on the problem ) . . L r=
top—dowg design/syntheqsis, whereythe dimensionpof analg%ns'em behavior during each clock switching, resulting in ex-

design space, i.e., the number of free variables, is extrem? ISIVe simulation cost for sv_wtc_hmg r_letvx{orks. A well-known
large. echnique for analyzing switching circuit is to model the

The work of this paper, on the other hand, primaril concer?famF)led_datzi operation by a discrete-time system, because
paper, on e P Iy col ?nly the steady-state behavior at the end of each clock phase is
trates on the bottom-up verification problem. After individual f . ircuit desi
circuit blocks are available, the analog design space has alref?ldgreat Interest to CII’CU!I esigners. oo .
' or example, shown in Fig. 1 is the circuit schematic for a

bgen fixed gnd, consequeqtly, we don't face the. h'gh'd'megésic switched-current memory cell and its discrete-time system
sional function approximation in bottom-up verification, a odel. The current memory cell works in two nonoverlapping
is the case for top-down design. The most challenging taé :

ck phasesP; and ®,. The memory transistor M (shown in

involved here is how to accurately characterize the nonidq_a} : : : .
: : . : X . 1) sinks th it,, h f
input-output relation with simple model representation. Ang ) sinks the input currert, () during phaseb, from time

. . . ) _point(n — 1) to (n — 1/2), memories the curredt, (n — 1/2),
sl an e befviorl ode) = ek for St conducts € 10 the w0 g praser from

L P _anaog 9 |4ne point(n — 1/2) to n. It is worth noticing that the cir-
system consisting of a great number of circuit blocks should he

simulated with sufficient accuracy and acceptable computati Uit state at each phase depends on the nonidealities such as
. y cep . puta 8Harge injection, mismatch and finite input/output conductance
time as well as small memory consumption. While there is

neral tradeoff between modelin ; nd model @3], [25]. Moreover, the state of the circuit could be settled to a
general tradeotl belween modeling accuracy ar ode C(.)steady-state value during each phase switching, and the transi-
plexity, controlling error distribution of the behavioral model i

Yion behavior, which may be ringing or slewing, is not important.

an effective way to improve the overall simulation efﬁuencgnly the final current level at the end of each clock phase will

and, in the meantime, to save memory space. Namely, if t fect the future response of the circuit. However, this current

behavioral modeling error is equalized and minimized based %r\]/el, for examplel, .. (n), tends to be different from the ideal

system-level simulation requirement, the simulation efficiengyalue OfT(n — 1/2) as a result of the comprehensive effect of
can bﬁ_ significantly improved. | I . hod all nonidealities. The modeling objective here is to model each
In this paper, we propose a wavelet collocation method Wil ent memory cell in the presence of those nonidealities using

nonlinear companding to address this error distribution contr, mpled data points for different input values, as expressed by
problem, which has been insufficiently studied in previous r?l '

search works. Wavelet methods have originally been develope
for imaging compression and signal decomposition [15]-[17], _ S f[ln(n=1)], whend, = high
and later been employed to compress the integral operator “out n) = {0 when®, = low.
encountered in electromagnetics computations [18]—[20]. 7
The work in [21], [22] is the first one to apply the wavelefunction f(e) in (1) [also shown in Fig. 1(b)] describes the
collocation method to circuit simulation. That work is extendedonlinearity of the switched-current memory cell. As shown in
to behavioral modeling of analog circuits in [23]. The purposEig. 2, f(e) is very simple in this example. However, a simple
of this paper is to further develop and study the behaviorf(e) helps us to make a full comparison between various ap-
modeling problem using the spline wavelet collocation methgatoximation methods, and, therefore, it is a good example to be
proposed in [24]. studied here.

The rest of this paper is organized as follows. In Section Il, we In order to illustrate the importance of error distribution
illustrate the importance of error distribution control in behawontrol, we approximate the nonlinear functigte) (Fig. 2)
ioral modeling by an example of the switched-current memony interval [-50 pA, 50 4A] by both polynomial and spline
cell. In Section Ill, we review the background for wavelet apbases, which are the most widely used basis functions in analog
proximation theory, then introduce the basic principle of tharcuit modeling [12], [13]. For each approximation method,

@)
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Fig. 1. A switched-current memory cell. (a) Circuit schematic for a switched-current memory cell. (b) Discrete-time system model for the swigsited-c
memory cell.
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Fig. 2. Nonlinear functionf(e) for the switched-current memory cell by Fig. 3. Simulation result by SPICE and behavioral model with sinusoidal input
SPICE. +50 pnA.

coefficients for these basis functions are obtained throu
the least-square error approach [27]. Then, given a sinusoi%
input of amplitude+50 A (large signal input), we simulate
the switched-current memory cell using these two models an
reach the results in Fig. 3. Note that, the behavioral simulation
is quite accurate for large signal input. Now, we decrease the
sinusoidal input amplitude t&-5 A (small signal input) and

15 basis functions are respectively employed and the unkno\l?v%haworal model constructed by either polynomial or spline

aﬁproximation cannot predict the circuit behavior under small
Qnal input accurately. Table | summarizes the simulation error
or various sinusoidal input amplitudes. The absolute error in
T%ble | is defined as

T 2
t) — Ymodel (1)) dt
MM:%gmmﬂ>mHmn

= @

re-simulate the memory cell, resulting in the output responadereyspicr(t) is the simulation result by SPICE\odel ()
in Fig. 4. Comparing Fig. 3 with Fig. 4, one would find that thes the result by the behavioral model, ajid 7] is the overall
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TABLE |
SIMULATION RESULT FOR THESWITCHED-CURRENT MEMORY CELL
Input signal amplitude __Absoluteerror __Relative error .
Polynomial Spline Polynomial Spline
+54A (small signal input) 1.66x107 1.06x107 6.64% 4.26%
*204A 2.12x107 2.07x107 2.12% 2.07%
£35uA 1.62x107 1.81x107 1.29% 1.43%
+50uA (large signal input) 1.55x107 1.70x107 1.15% 1.27%
6 X 10° | [ll. BACKGROUND FORWAVELET APPROXIMATION THEORY
T b SPICcE A. Wavelet Basis Functions
k -== Polynomial
41 i ] i —— Spline The wavelet basis functions can be constructed by many
] l ! ! . means [17], but in this paper, we will use the spline wavelets
g 2 | ! 1 1 developed in [24] because they were proved to have a high
g " l_l ‘ convergence rate. Letf2[0, L] be the Sobolev space, which
3 of U W m basically contains all functions with square integrable second
5 1 Vi n i i order derivatives [26]. We first introduce the following function
3 2| , ‘ P ‘ e subspaces:
) )
4 !. !‘ | | '* V_1 =
span { O m(E = Dol =D oo
. ‘ ‘ ‘ ©0,0(t), 0,1(t), ., p0,L—4(t), po,L—3(L — 1)
0 0.2 0.4 0.6 0.8 1 Wy =
Time (Sec.) x 10° span{ ¥y (t),—1< K <2/ -2}, J>0
Vi=ViieW;, J>0 (4)
Fig. 4. Simulation result by SPICE and behavioral model with sinusoidal input o .
+5 pA. where the definitions of functions) (¢), 72(t), wo,—1(%),
{(,007K(t)./0 S KZ L—4}, (,007L_3(L—t) and
. o L o . iJ/J,K(t);l <K<2/-2,J>0} are gven below.
;lmulgtmn interval in time domain. Similarly, the relative errospan{fh far.., fn} is & function set formed by all linear
is defined as combinations of functionsfy, fo,..., f;y and @ stands for
the direct sum.
T 5 In (4), functionsn, (t) andr-(t) are used to handle the non-
Errg = Jo [yspice(t) — Ymodel ()] dt. (3) homogeneity of the boundary data

o lospice(e)” d mo) =0 -3

7 4 1
ma(t) =2t4 — 265 + gt?l -5t )3+ gt 2)1 (5
A close studying on Table | indicates that the absolute mod-

eling errors for various sinusoidal input amplitudes are almo here

identical. However, the relative modeling errors for small signal m t", ift>0 ©6)
input are about three to six times as those for large signal input. + 0, otherwise.
This simple example demonstrates two important issues in bfh . .
havioral modeling. e boundary scaling functions are
3, 11, 3 5
a) The behavioral model developed by conventional polyno- po,-1(t) =pu(t) = St — R+t §(t -3
mial or spline approximation cannot achieve the same ac- 3 3 3
curacy for various input/output amplitudes. - Z(t 25+ g(t —3)3
b) As a criterion for system-level simulation, the relative vo,1—3(t) =pp(L — ) )

error is stricter than the absolute one in evaluating the ac- ) ) ) )

curacy of behavioral models. Therefore, it is more desind the interior scaling functions are

able to keep the relative modeling error being uniformly vox(t)=p(t—K), 0<K<L—14 8)
distributed over various circuit input/output values. i

where
The above two observations motivate us to propose the 1, 2 5 5
wavelet approximation with nonlinear companding for errop(t) = ~t3 — 3 (t=1)3 +(t—-2),
distribution control in behavioral modeling, which will be 92 |

3
presented in detail in Sections I11-VI. g E=3)L+ (-4 )
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Fig. 5. Wavelet basis functions in subspace, . Fig. 6. Wavelet basis functions in subspatg.
1.2

The functions defined in (5)—(9). construct the bases of the sub-
spaceV_; in (4). Fig. 5 displays those wavelet basis functions 1H
for subspacé’_; C H?[0,10]. Note that all wavelet bases are | i
located in a finite interval, i.e., wavelet basis functions have ~ ®®| ||| i i H |
compact support. This is the key difference between wavelet og|| ||/ [I11 | ]! A ‘
bases and other global support basis functions such as polyno-
mial ones. ‘
Now, consider the subspat€; in (4). The boundary wavelet o2l
functions are

|
4 \/ ‘1 \Y/ \
A

f
LA \IUA L
FAVAVAVAVATAY

OVAVANVAR
IAVARVARYA |
e

dX AKX
VWWWWIAY

oL /

N VYV VYV
-0.2¢ |

/

(t)

(t) =1 (271) !
P20 _3(t) =thn [27(L —1)] 04, 2 4 6 8 10
P20 _a(t) =tho [27(L —1)] (10)

Fig. 7. Wavelet basis functions in subspate.

where
56 B. Adaptive Scheme
Yoo(t) = — 5o (149 (E+2) + 9 (t +1)] One of the main advantages of the wavelet approximation is
182 that there exists an adaptive scheme, which relies on the mul-
Yt = - 157 tiresolution analysis in wavelet theory [17], [22], [24]. Using

1 1 the adaptive technique, those wavelet basis functions, which are
x |9(t) + ﬁd’ (t+1)+ 1_31/’ (t+2)| (1) needed for approximating the given nonlinear function, can be
o _ employed automatically. It, in turn, improves the approximation
and the interior wavelet functions are efficiency significantly. The spline wavelets in [24] consist of a

2 .
Do) = (2J _ K), 1<K<2 —4 (12) closed subspace df <[0, L]:

Vi=sVoieWod Wi @ ---d Wy
where
Vi=Vi_1®W;

w@:—gﬂmmféum_n_gwm_m. (13) Vo Vo C Ve (14)

The functions defined in (10)=(13). construct the bases of thé1€re the notatior stands for the direct sum.
subspacéV; in (4). Figs. 6 and 7 show the wavelet basis func- As illustrated in [22], [24], the magnitude of the wavelet co-

tions for subspace, ¢ H2[0, 10] andW; c H2[0, 10] re- efficients inW; indicates whether a refinement, by increasing

spectively. Comparing Fig. 6 with Fig. 7, one would find that, a&1€ Wavelet space level, is needed or not. For example, define
the wavelet subspace lev&increases, high-level wavelet basidhe maximum relative magnitude of the wavelet coefficients in

functions in subspac#; have high order singularities. Here,"” 7 @S
singularity means the fast changing of the function waveform, Max |(qu
which also implies the high frequency components in the fre- Ry = W (15)

quency spectrum of the function. Therefore, as more high-level
wavelet basis functions are included, the approximation ernmhereMax |CZJ| is the maximum magnitude of the wavelet co-
can be reduced. efficients inW;, andMax |C; | is the maximum magnitude of all
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wavelet coefficients. IR ; is greater than a given error tolerance Discretize (17) at some interior collocation points

e, we increase the wavelet space leveto J’, whereJ’ > J  {z1,29,...,2x; N > M}, then (17). can be written in a
[22], [24]. familiar form

More importantly, because of the local support of wavelet
bases, not all basis functions in higher wavelet spatgsare C-F=Y (18)

needed in order to achieve more accuracy. Actually, only basi

functions, whose local positions require high accuracy, shodfd'®"®

be included [21], [22], [24]. In other words, suppose that func- C=[C, Cy - Cuy] (19)
tion f(z) is defined in intervalA, B], then the adaptive algo- Wy(z1) Wi(ws) - Wi(zy)

rithm divides the overall intervgl4, B] into a set of sub-inter- Wo(z1) Walws) - Wal(zy)

vals [Cy, (5], [C2,Cs], ..., [Cn=1,CnN], whereC; = A and F = ) ) ] ) (20)
Cy = B. In each sub-interval, a proper wavelet sp&ce is : : : :

adaptively assigned for approximatirig. Because the wavelet W (z1) War(w2) -+ Wy (2n)

space levell employed in each sub-interval is different from Y=[y(z1) ylz2) --- yl(zn)]. (21)

each other, the modeling error distribution, consequently, is reg- ) )
ulated. From this viewpoint, the wavelet approximation has tlﬂ%’r each value;, y(;) can be found by a transistor-level sim-
potential to control the error distribution, which is not affordablélator such as SPICE. Then, the optimal solution for (18) with
by other approximation methods with global support bases, el§ast-square error is given by [27]
the polynomial approach. -1

However, the above adaptive algorithm presents some limita- C=Y-F-(F-F7) (22)
tions in analog circuit modeling. Itis shown in (10)—(13) that thgnere7 denotes the operation of transpose.
wavelet bases ifiV; are generated if we compress those basis
functionsin lower level spadd’;_, by one time. Consequently, B. Wavelet Approximation for High-Dimensional Functions
the singularity of the wavelet basesli; is doubled, compared
with th,at inWj_q. the that the singularity of basis functions enerated from tensor products of low-dimensional
_do_esnt change c_:ontlnuo_usly_ when the wavelet space léve%ases [28]. For example, it{Wi(x):i=1,2,..., M}
is increased. lIt, in turn, implies that the approximation errqr

) ! . . . ar one-dimensional wavelet bases, then functions
doesn’t change continuously either, because the smgularltygﬁ

High-dimensional wavelet basis functions can be

. . . . . i(x) - Wi(y);i,5 =1,2,..., M} construct a set of two-di-
},r\:qaz;/t?cl)?]t [bla75]|s[;ulr]m?;;]s er‘;[f rX]smaes;ézs:tr Ctﬁzarz'ggyeﬁlrgagﬁgor ensional wavelet basis functions. In genera{;-aimensional
cannot be regulated smoothly from one sub-intef@al C. ;1] nonlinear function withK input variableg =1, 22, ..., 2K}
to its neighborhoodC; 11, C;+2] or [C;—2, C;_1]. The disclo- y=f(z1,22,...,2K) (23)
sure of the above limitation motivates us to develop a new non-
linear companding method for error distribution control, whichan be expressed by wavelet expansion
is described detailedly in Sections IV-VI.

M1 M2 MK
Yy = o OLl 12,..., 1K
IV. BEHAVIORAL MODELING BY WAVELETS ,12:‘1 ,22::1 iKzz:l
In this section, we first develop the wavelet collocation [Wih(a1) - Wi(2) - Wi (aK)] - (24)

method for approximating one-dimensional nonlinear func- L N
tions, then extend the proposed method to high-dimensioﬂ\g‘ re{Ciiz,..ix;il = 1,2,... . ML;..5iK = 1,2,

1° : "
functions MK} are unknown coefficients and

{Wh (a1) - W3 (a2) - W/ () ij = 1,2, Mj} are
K-dimensional wavelet bases [28]. Equation (24) shows that a

_ i ) K-variable nonlinear function is approximated by the linear
Without loss of generality, we assume that the nonlinear fungg mpination of M1 - M2-.- MK K-dimensional wavelet

A. Wavelet Approximation for One-Dimensional Functions

tion for approximation is denoted by basis functions. The overall number of unknown coefficients,
therefore, isM1-M2--- M K. Those unknown parameters can
y = f(x). (16)  pe obtained by a similar approach as that for one-dimensional

) L _ cases, i.e., discretizing (24) atN1 - N2.---NK
According to the wavelet approximation theory [17], functloraN1 > M1 NK > MK) interior collocation points
f(e) can be expanded by - L -

{zl1,210,...,21N1;.. ;2K 2Ky, ..., a KNk} then
Y solving the corresponding linear equation to find the
y= Z C; - Wi(x) 17) IeasF—square error sollutlon. . _
e It is worth mentioning that the above nonlinear function ap-

proximation scheme can be practically used when the function
where {C;;i=1,2,...,M} are unknown coefficients, dimension is notvery large. For bottom-up verification, which is
{Wi(z);4=1,2,... M} are wavelet basis functions, and is  essentially what this paper focuses on, the analog design space
the total number of basis functions that have been employedhas already been fixed and the nonlinear function in (23) does
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not include design parameters as input variables. In such cases, '°
the dimension of the nonlinear function is small and, therefore, 9
the expansion in (24) can be efficiently applied.

N

V. ERRORDISTRIBUTION CONTROL BY COMPANDING

AN

In this section, we propose a nonlinear companding technique
to regulate the error distribution, so that the modeling error can
satisfy the system-level simulation requirement. For example,
the relative error is equalized at different circuit input/output
values.

&)
\\

Companding Domain ()
\

N w »
\

A. Algorithm of Nonlinear Companding 1 7

According to the wavelet approximation theory [17], the ap-
proximation error depends on the singularity of wavelet basis Input Domain (x)
functions. Singular basis functions are capable of capturing the
high frequency components ¢fx), and thereby improve the Fig. 8. Concave function for nonlinear companding.
approximation accuracy. Hence, the modeling error distribution

o
o

can be modified if the singularity of wavelet bases is changet¥1, 72, - - -, #x } to the K-dimensionalCompanding Domain
This idea can be realized by a nonlinear companding algorittif1: l2: - - -, [x }- Then, the principles introduced in this section
introduced in the following. can be applied straightforwardly.

Assume that function f(z) is defined in interval ~NOt€ that the actual basis functions, which are useq to repre-
[z4,25]. We call [z4,25] the Input Domain On the Sentf(z)in(25) are{W;lg(z)];i=1,2,..., M}.The singu-
other hand, we artificially define the wavelet basis functiorg"ity of Wilg(x)] will be changed ifg() is modified. There-
{W;(l);i=1,2,...,M} in another domair{l_, 5], which fore, by using proper compan_dmg funct[()n: g(x)_, we can
is called theCompanding DomainThe relation between thef_orce the modellng error dIStI‘IbutIOI‘! sausfy certain specmc_a—
Input Domainand theCompanding Domaiis determined by a tions requ|red by the systgm-level S|mul_at|9n. The mechanism
nonlinear companding functidn= g(z). Now, with nonlinear of the nonlinear companding for error distribution control and

companding, the original wavelet expansion in (17) is modifid@#€ method of constructing the companding functions will be
to presented in the following.

M . . .
B B. Mechanism of Nonlinear Companding
y=f()=flg7 D] =D Ci-Wi(l)
i=1

The mechanism of nonlinear companding can be illustrated

M either ininput Domainor equivalently inCompanding Domain
:Zci'wi [9(z)] (25) 1) Analysis of Companding in Input DomaifEquation

im1 (25). implies that the process of nonlinear companding is
equivalent to transforming a set of wavelet basis functions
{W;(1);4=1,2,...,M} initially in Companding Domain
to their counterparts{W; [¢(z)];i=1,2,...,M} in Input
Bomain Then, the companded basis functidig [¢(z)] are
employed to expand the nonlinear functigiiz) in Input
Domain The first-order derivative ofV;[g(x)] is

wherez = ¢g~1(I) is the inverse function of = g(z), and
wavelet coefficientC;;i = 1,2,..., M} can be obtained by
the collocation method illustrated in Section IV. The nonline
function! = g(z) defined ininterva[z 4, z 5] should satisfy the
following constraints.

a) g(zxa)=1la=z4andg(zp) =l = zp.

b) Function/ = ¢(z) is monotonically increasing. dW; _ dwi -~ dl _ awi (x); i=1,2,...,M. (26)
Hence, function = g(x) establishes a one-to-one mapping dx i dex dl / .
between thénput Domainand theCompanding Domainlt is Equation (26) demonstrates that the derivativBpf!) is scaled
worthy mentioning that these two constraints are sufficient, bloy ¢’ (x) after nonlinear mapping. Since the derivative of a func-
not necessary, conditions for constructing a companding furimn indicates its singularity, (26) thus implies that the singu-
tion. For example, a monotonically decreasing function magrity of the original wavelet basis functiod$V; /dl is changed
also be suitable for nonlinear companding. For the reasoninflnput Domain For example, consider the concave function
simplicity, we only discuss those companding functions satis—= g(z) = 10 - (e%?* — 1)/(e? — 1) (displayed in Fig. 8),
fying the proposed two constraints in this paper, since similathich is defined in interval0, 10]. Fig. 9 gives the waveforms
results can be reached in other cases. of a set of wavelet basis functions with uniform level in @@m-

The nonlinear companding algorithm discussed abopanding Domainand their equivalent counterpartdimput Do-
can be easily extended to high-dimensional funenainare depicted in Fig. 10. Comparing Fig. 9 with Fig. 10, one
tions. Considering a function with/K input variables would notice that the companded wavelet basis functions near
{z1,29,...,2x}, we define a set of nonlinear functionsz = 10 have higher order singularities than that nea= 0.

{l; = gi (z1,22,...,2x);1=1,2,...,K} to establish a Such a feature can be explained as a result of the nonlinear
one-to-one mapping from th& -dimensionallnput Domain mapping, because the first-order derivatiyex)|,_,, > 1 and
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g'(2)],—o < 1. Therefore, when the companded wavelet basis

functions are used to represent functifiz:) in Input Domain L o
the singular bases near= 10 have the potential to approximate, 1€ above equation indicates that the derivativefaf)
f(x) more accurately since they contain more high frequenty Scaled byl/¢'(x) after nonlinear mapping, and conse-
components. quently, the _smgularlty of the original function is changed

The above analysis indicates that from the viewpoint 8¢ Companding DomainFor example/ = g(x) is given
wavelet basis functions, the modeling error in one interval cih F19- 8 and functionf(z) is a sinusoidal one d?p'Cte,d In
be reduced by increasing the singularity of wavelet bases in thag- 11 The Compg_ndeq SIHUSOI.daI funcndr{g— (0] in
region. According to (26), the singularity of wavelet bases fs°mpanding Domains displayed in Fig. 12. Note that the
proportional tog/(z), i.e., the greater the first-order derivative®li9inal function f(z) has been compressed near= fi but
¢'(x) is, the more singular the wavelet bases will be. TherefofgkPanded near = 10. The companded functiof ls— ()]
we shall increase the value gff(x-) in those regions where high then becomes increasingly singular near 0 an/d very smooth
modeling accuracy is required. nearl = 10, since the first-order derlvatlvla/g (2)]|z=0 > 1

2) Analysis of Companding in Companding Do@Nd1/g'()]z=10 < 1. As aresult, when functioff [!J_l(l)_] IS
main: Considering (25), one would find that the proces_gepr_esented bywave_letexpansmnWlth un_lform level (displayed
of nonlinear companding is also equivalent to transformidg Fig. 9), the modeling error nedr= 0 will be greater than
the function f(z) initially defined in Input Domaininto its at near = 10, because waveforms nefar= 0 contain more
counterpart f[g~'(1)] in Companding Domain Then, the high frgquency components and they are more difficult to be
companded functionf [971(1)] is expanded by wavelets @PProximated than the smooth waveforms rlear10.

(Wi(l);i = 1,2,...,M} in Companding DomainThe In summary, we can rgduce the modeling errorin one interval
first-order derivative off[g="(1)] is given by _by s_moothlng the_ functl_()[f(a:) m_that region. Equation (27
implies that the singularity of (x) is reversely proportional to
df _df dz _df 1 _ f(z) (27y ¢'(2),i.e., the greater the first-order derivatiyéx) is, the less
dl — dv dl  dv 4L '

9(®) |oeg10) singular the functiory (z) will be. Therefore, we shall increase
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Fig. 13. Absolute approximation error by the concave function. Fig. 14. Convex function for nonlinear companding.

10'

the value ofy’(z) in those regions where high model accuracy
is needed.

Actually, the idea of nonlinear companding is not a new
one, but has already been widely used in communication [29],
audio magnetic recording [30] and analog circuit design [31],
[32]. Although the mechanism for those three applications and
our analog circuit modeling is different, the motivation for
companding is the same, i.e., to improve the signal-to-noise
ratio (SNR) at small signal region with the cost of a little
lose of accuracy at large signal region. Consequently, the
SNR at any input/output amplitude is kept above a minimum ‘ ‘

Absolute Approximation Error

acceptable level. In case of analog circuit modeling, we can
regard the exact waveform to be approximated as signal and ¢’ . L o
the approximation error as noise.

[}

Input Domain (x)

C. Constructing the Companding Function Fig. 15. Absolute approximation error by the convex function.
It has been shown in Sections V-A and B that we shall in-
crease the value @f (z) in those regions where high modeling as shownin Fig. 14. Applying nonlinear companding with
accuracy is needed. such a companding function, we approximate the sinu-
a) If the modeling error is required to be decreasing in in- ~ Soidal function in Fig. 11 by wavelet bases in Fig. 9. The
terval[A, B], theng’(z) should be increasing i1, B]. absolute approximation error is depicted in Fig. 15. Now,

In this case, a concave function, such as the exponential  the error near = 10 is about 50 times as that near= 0,

function, can be chosen for companding. For example, let  @s specified in our requirement.
The concave and convex functions discussed above are two

| = 10 0.2z kinds of basic functions for nonlinear companding. More com-
=g(@) =5 (" -1) @8) i i i
e?—1 plicated functions can be constructed by these two basic ones.

as shown in Fig. 8. Applying nonlinear companding Wit'_é:“or example, if the modeling error is required to be decreasing in

h dina funci imate the Si 0, 5] and increasing ifb, 10], then we can build a companding
such a companding function, we approximate the SNy, i, with the combination of one concave and one convex
soidal function in Fig. 11 by wavelet bases in Fig. 9. Th

. ; . . N nction. Define
absolute approximation error is depicted in Fig. 13. Note
that the error neat = 0 is about 50 times as that near I = g(x)

= 10, which is consistent with our requirement.
b) Contrarily, if the modeling error is needed to beincreasirwhich is depicted in Fig. 16. We approximate the sinusoidal
function in Fig. 11 with such a companding function. The ab-

_ 5-sign(z—5) . -
—T-ln(l+2|$—o|)+o (30)

in interval [A, B], then ¢’(z) should be decreasing in

[Af] Ir; th'st. case, abcon;:ex fur]:cnon, suchd_as t:‘:e IO%’olute approximation error is displayed in Fig. 17. Note that the
Z;plneqlcletmc lon, can be chosen for companding. For €% nean: = 5 is only 5% of that neaz = 0 andx = 10.

The above discussion has given a qualitative analysis on how
to define a proper companding functién= g(z) to reduce

10
I=g(z) =~ -In(1+0.62) (29) the modeling error in some specific regions. Unfortunately,

In
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f Fig. 18. A forward Eular integrator composed of two switched-current
1000 A~ ~ q f memory cells. (a) Circuit schematic for a forward Eular integrator. (b)
\ VSN A /\ A\ Discrete-time system model for the forward Eular integrator.
RN /\ . / \| '

. ” pressed as an explicit merit function. In Section VI, we will
: | [l } ‘ ‘ ’ show how to construct proper companding functions step by
‘ | [ step in two circuit examples.

Absolute Approximation Error

D. Comparison With Conventional Wavelet Approximation

: As described in Section Ill, the adaptive algorithm in the
Input Domain (x) conventional Wayel_et approximgtion theory cannot regulate the
modeling error distribution continuously. On the other hand, the
Fig. 17. Absolute approximation error by the combination of concave arﬂ)onlme?r fun(_:t'ori = g(z) in the propos_ed compa_mdlng a_\p-
convex functions. proach is continuous and smooth so that it can modify the singu-
larity of wavelet basis functions, and consequently the modeling

o . . error distribution, continuously. Therefore, while the adaptive
the quantitative relation between modeling error and the com- " . : . I

. : . : gorithm is very useful in many other applications, the non-
panding function = g(xz) is unavailable, because the exa : . . ) S

. : : inear companding technique is more efficient for analog circuit
error is determined by not only the functién= g(z) but also . . C .

. . . odeling, where continuous error distribution is required.

many other factors, such as the singularity of the function to
be approximated, the singularity of the wavelet basis functions
that are employed, etc. In practical applications, we can buiitl Application of Companding in Behavioral Modeling

the companding functioh= g(z) by three steps.

) _ _ _ .. The wavelet collocation method with nonlinear companding
Step 1) Specify the requirements on modeling error distribpz , pe easily applied in analog circuit modeling. Taking

tion. For instance, the relative simulation error is Q4 antage of the effectiveness of the nonlinear companding

be equalized. _ , technique, we can equalize the relative modeling error at var-
Step 2) Based on those requirements developed in SteRglys input/output amplitudes by cutting the absolute modeling

determine the prototype of the companding functioRyor ot the small signal region and losing a little accuracy at

i.e., whether concave function, convex function ofe |arge signal region. The behavioral model generated by the

their combination should be used. wavelet collocation method can be incorporated into system
Step 3) Refine the prototype 6f= g(x) repeatedly, o that o e| simulation tools, such as MATLAB SIMULINK, to

the exact modeling error meets those requiremenfgyiy the overall system performance. Note that, without those

given in Step 1. behavioral models, it is impossible to afford the verification
Step 3 can be carried out automatically by an optimizatiaf an entire analog/mixed-signal system containing a large

process, if the modeling requirements are mathematically exsamber of components.
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Fig. 19. Fourth-order lowpass Butterworth filter.
VI. BEHAVIORAL MODELING EXAMPLES (31) is minimized, we haVEE”Rhnput:iS A=

In this section, two circuit examples, a fourth-order switched- .d: EZTR |énpuic::_l:50 uAr SO tgat_th((aj minimum
current filter and a VCO, are examined to demonstrate the effec- and equalized relative error Is obtained.

tiveness of the proposed wavelet collocation method in analogStep 2) I?]u'ld tlhe_ prot_otyﬁ)e_funcnorOurhgoafl Is to er?ualflze
behavioral modeling. the relative simulation error. Therefore, when func-

tion f (e) in Fig. 2 is expanded by wavelets, the
A. Switched-Current Filter absolute approximation error neae= 0 A should
be smaller than that near = +50 pA. We build
a companding function with the combination of
concave and convex functions, which is similar
to (30) Define the prototype function in interval
[-5%x1075,5 x 107°] as

In the past one decade, switched-current technique [25] has
been considered as a promising technique for the monolithic
implementation of mixed analog and digital VLSI. Due to the
high-speed switching behaviors, general purpose circuit simu-
lators such as SPICE always consume a large amount of com-

putation time in simulating those switching networks. In recent 5 % 10-5

years, the modeling and simulation methodology for switched. = ¢ () = - 75 % 10°5) -sign (z)-In (1 + p |z]) (32)
current circuits has also gained much attention [12]-[14]. In this P

subsection, we model the switched-current filter circuit by the wherep is a parameter controlling the nonlinearity
proposed wavelet collocation method and compare it with other of the function and its value is to be determined by
conventional approximation techniques. an optimization process in Step 3.

1) Overview of Modeling MethodologyFig. 1 shows the  Step 3) Refine the prototype functioWith merit function
circuit schematic of a switched-current memory cell, which (31) and prototype function (32), we optimize pa-
is the basic building block of switched-current circuits. Com- rameterp by Golden Section Search method [27].
bining two memory cells, a forward Eular integrator is obtained As long as the minimum value of (31) is reached,
in Fig. 18. In addition, a fourth-order lowpass Butterworth the optimalp is found and consequently the proper
filter, which consists of four forward Eular integrators, is companding functioh = ¢(z) is determined.
illustrated in Fig. 19. Function f(e) is thus mathematically represented by the

The input-output relation for the basic memory cell isvavelet expansion. The integrator, as shown in Fig. 18, is
modeled in (1) The nonlinear functiof(e) shown in Fig. 2 is modeled by a discrete-time system including a number of static
obtained by SPICE simulation. Now, we apply the nonlinegjonlinear functiong (e) and ideal sample-and-hold blocks. The
companding algorithm to equalize the relative error at varioggurth-order switched-current filter is behaviorally modeled by
input/output amplitudes. a signal flow graph in Fig. 19. Such a signal-flow-graph-based

Step 1) Specify the modeling requirements the current model is simulated by MATLAB SIMULINK to verify the

application, the relative simulation error shouldaccuracy of the proposed models.
be equalized. Such a linguistic specification can 2) Simulation Results of the Memory Celh this section,
be mathematically expressed as an explicit mefibur methods are applied to approximate the nonlinear func-
function. tion f(e) in Fig. 2, which is very simple but helps us to make
2 2 a full comparison between various approximation techniques.
Q= (ETTRllnputzig,#A) + o+ (ETTR|Input=:|:5O;LA) . First, the polynomial and spline approximations are employed
(31) to expressf(e) by 15 basis functions respectively. Second, we
The notation Errgly,,.—4+;,4 represents use the conventional wavelet collocation method with adaptive
the relative simulation error (defined in (3)),scheme to automatically select proper high-level wavelet basis
when the switched-current memory cell idunctions so that the relative simulation error is equalized. As a
stimulated by a sinusoidal input of amplituderesult, 17 wavelet bases are chosen by the adaptive scheme to
+ipA (i =5,10,...,50). After merit function represent functiorf(e). Third, the wavelet collocation method
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Fig. 21. Relative simulation error of different memory-cell models. filter.

with nonlinear companding is applied to approximate functidf modeling switched-current circuits, which consists with the
f(e) by 15 basis functions. Fig. 20 depicts the optimal contheoretical analysis in Section V-D.
panding functior = g(z), after the merit function (31) is min-  3) Simulation Results of the Filtertysing the basic
imized. memory cell model developed above, we create the
We test the developed behavioral models by transient simufégnal-flow-graph-based filter modelin MATLAB SIMULINK.
tions with various sinusoidal input amplitudes. Fig. 21 depic@Uch a discrete-time system model is then simulated by
the relative simulation error, defined in (3), for these modelS/MULINK to verify the modeling accuracy of the entire filter.
Note that the relative error of both polynomial and spline model a) Time domain responséd-irst, we test the filter models
increases as the input current amplitude decreases, which im- by a sinusoidal input of frequency 1 kHz and amplitude
plies that the modeling error distribution is completely uncon- +10pA. Fig. 22 gives the time-domain simulation results
trolled. This observation is consistent with the simulation re-  obtained from SPICE and four kinds of different behav-
sults listed in Table I. On the other hand, the wavelet expansion ioral models. Again, these results indicate that the model
with either adaptive scheme or nonlinear companding is able  developed by the wavelet collocation method with non-
to equalize the relative error at different input/output values. linear companding is the most accurate one in predicting
Moreover, it is shown in Fig. 21 that the modeling error of the circuit behaviors.
nonlinear companding technique is less than that of the adapb) Frequency domain respons8econd, the filter model is
tive scheme, although the wavelet basis functions employed by tested with sinusoidal inputs of amplitudd 0 A at dif-
the latter method are more than those employed by the former ferent frequencies. Fig. 23 depicts the frequency response
approach. From this point of view, the nonlinear companding  obtained from SPICE and four kinds of different behav-
method is more efficient than the conventional adaptive scheme ioral models. Note that the model expressed by wavelet
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TABLE 1
COMPUTATION COST FORMODELING AND SIMULATING 4TH ORDER SWITCHED-CURRENT FILTER
Modeling/Simulation approach Computation time (Sec.)
SPICE Transient (SPICE) simulation in time domain [0, Sms] 380
SPICE simulation to compute f (0) at collocation points 39.6
Wavelet model with — - - p
. . Optimize companding function & compute wavelet coefficients 22.6
nonlinear companding - -
Transient (behavioral) simulation in time domain [0, Sms] 2.8
expansion with nonlinear companding works much bette v
than the other three ones.
¢) Simulation speedWe build behavioral model and run l Ly =1ImA
behavioral simulation on a Pentium 11I-550 computer. Vou Low

Table Il outlines the computation cost for both modeling | s L
and simulation. It is shown that SPICE simulation for Vi V-1 _I_Cvc0=5nF o—l Vines =2V

such a switching filter is extremely expensive. On the Converter
other hand, the overall computation time for both behav- J_- - -

ioral model generation and behavioral simulation equaf- 24. A voltage-controlled oscillator (VCO).

t0 39.6 4+ 22.6 + 2.8 = 65 seconds, which is less than

20% of the SPICE simulation time. In this example, the ou
fourth-order switched-current filter is constructed by Y
8 identical memory cells. The behavioral model of the
memory cell is extracted only once. Such a modeling

-
procedure is not expensive, because the memory cell _[_ L,

is a very small circuit block, as shown in Fig. 1. Then, V,, R =5k -

the same memory cell models are repeatedly applied to VW E I:

build the entire filter model, which provides significant V
behavioral simulation speed-up. From this point of view,

the benefit of generating behavioral models for basic
circuit building blocks is clearly demonstrated. -

B. VoItage-ControIIed Oscillator (VCO) Fig. 25. \oltage—current converter in VCO.

VCOs are essential circuit components in phase-locke
loops, which are basic analog building blocks used extensivel
in many analog and digital systems. Transistor-level simulatiol 8.

x 10°

(e.g., by SPICE) of PLL circuit results in impractical run-times, 2 6l

because the acquisition procedure of a PLL circuit will take 3

a large number of clock cycles [33]. In order to improve the & 4+

simulation speed, it is necessary to extract the behavior: £ 2/

model for each component of the PLL circuit. Based on thost L«; N;Z/N/?/% {

behavioral models, high-level simulation can be executec 5 ° U7

efficiently to verify the overall PLL performance. In this part, 2 =
we model the VCO by different wavelet collocation methods 5 =

so that a full comparison can be made between the propost
nonlinear companding algorithm and those conventiona ——
wavelet approximation techniques. Input Voltage Vin (V) 5 -5 Output Voltage Vout (V)

1) Overview of Modeling MethodologyFig. 24 shows the Fig. 26. Input-output relation for tHg—I converter by SPICE.
simplified model of a relaxation oscillator. The detailed imple-
mentation for thel/’—I converter block is depicted in Fig. 25,nonlinear due to the nonlinear features of the operation amplifier
whereVi, is the input voltage and.,..; is the output current. If and transistors in Fig. 25. In this example, we first expand the
all components in Figs. 24 and 25 are ideal, the oscillation frepput—output relation of th&—I converter by wavelets. Then,
quency is given by [33] we simulate the overall VCO in time domain to obtain its oscil-
I T 1 Vi lation frequencies under different input voltages.

bias out in . . .
B Al B (Ibias - f) - (33)  2) Modeling Errors inV'—I Converter: The SPICE simula-

veo * VThres veo * VThres tion result for various input voltagg,,, output voltage/;,, and

However, the exact oscillation frequency does not compbutput current’,,; of the VV—I converter is given in Fig. 26. It is
with such a simple formulation, when nonideal behaviors asiown that the output currefy,; depends not only on the input
considered. For example, the relation betwggp and will be voltagel,.;, but also on the output voltadé, due to the finite

f vco —
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output impedance of the transistor. In the following, we illus- 00 ] o Adepie SohomeiCompandig)
trate how to construct the proper companding functions step by -4+ Wavelet (With Adaptive Scheme)
step to approximate the nonlinear functibp: = f(Vin, Vout)- 0.025 | | -8~ Wawelet (With Companding) :
Step 1) Specify the modeling requirements this example, 5
the relative simulation errof,., should be equal- & 002
ized. Considering (33) one would find §
2 0.015} 4
o 7
df veo _ -1 (3 4) _g * ’1' ‘\‘
dIout Cvco . VThres § 00ty l,' “\
’ \‘
A
\ |
and 0.005 \
o o .ol - *. ‘
‘ o )
dfvco _ dIout (35) 0_5 0 5
C{SLZSV_’TI::‘:S Thias — Tout Input Voltage Vin (V)
dfveo _ d (Ibias - Iout) (36) Fig. 27. Relative simulation error by three wavelet expansion methods.

fvco Ibias - Iout

. L . i i lVout =g (Vout)
Equation (36) indicates that the relative simulation 10 - [exp [pvout - (Vout + 5)] — 1]
error of f,., is actually determined by the relative =
error of the tern{7y,;as — Tout ). Therefore, the mod-
eling requirements are equivalent to equalizing the
relative error of Iyias — Iout ). Such alinguistic spec-
ification can be mathematically expressed as an ex-
plicit merit function

-5 39
€xXp (10pVout) -1 ( )

wherepy; andpy, , are two parameters controlling
the nonlinearity of the functions and their values are
to be optimized in Step 3.
Step 3) Refine the prototype functiongvith merit function
N ) (87) and prototype functions (38). and (39) we
I, 1k, optimize py;, and py,,, by Levenberg-Marquardt
Q= Z < It}l,SPISEp’ | t|M0de1) (37) method [27]. As long as the minimum value of (37)
i=1 s ToutISPICE is reached, the optimal values pf. andpy. . are

) _ ) found and consequently the proper companding
where N is the total number of collocation points functionsly, = g (Vi) andiy,., = g (Vo) are

(Vi Vi Iiw), Toutlspror IS the output current determined.
value obtained by SPICE anout/yi,qq 1S the 3y simylation ResultsThree wavelet collocation methods
output. current value evalu:_alted by the dgvelqpqﬂ all are applied to expand functid. ., = g (Viu) Of the
behavioral model. After merit function (37) is min-y,_; converter. First, the collocation method with neither
imized, the minimum and equalized relative errogaqtive scheme nor nonlinear companding is employed to
can be obtained. _ express functiodous = f (Vin, Vout) by 420 two-dimensional
Step 2) Build the prototype functionsBased on the re- qyelet hases. Second, we use the conventional adaptive
quirements given in Step 1, our goal is to keeRcheme to automatically select proper high-level wavelet basis
the relative simulation _error of(/hias — fout)  fynctions in those regions where high accuracy is needed. As
constant. As shown in Fig. 26, the value Bi. 5 resylt, 332 two-dimensional wavelet bases are chosen by the
is monotonically increasing wheii;, _and Vout adaptive scheme to represdpt; = f (Vin, Vout). Third, the
increase, andlo,, reaches the maximum value,,njinear companding algorithm is applied to approximate
Lou = 0.8 MAWhenVi, = Voue =5 V. Therefore, = _ ¢y . ) by 200 two-dimensional basis functions.
(Zbias = Lout) = (1 MA — o) IS reversely propor- the pehavioral models developed by these three approaches
tional to Vi, and V.. In order to achieve constanty e tested respectively. Fig. 27 depicts the relative error of
relative error o Iias — Iout), we shall let the abso- g ijjjation frequencyf.., in correspondence with these three
lute error be reversely proportional 1§, andVous  models. Table i1l outlines the computation time by SPICE and
too. It, in turn, means that the concave functiong,ree hehavioral models respectively, which is obtained on a

should be employed for nonlinear compandingeentiym 111-550 computer. Several comments can be made
Similar to the exponential function expressed B ccording to the data in Fig. 27 and Table IIl.
(28), we define two prototype functions in interval

[-5, 5] for compandind/;,, andV;,,,; respectively.

a) When neither adaptive scheme nor nonlinear companding
is applied, the maximum relative error ¢f., is about
1.4% associated with 420 wavelet basis functions. After

lvin =g (Vin) the adaptive scheme is used, proper wavelet bases are au-

_10-[exp[pvin - (Vin +5)] 1] 5 (38) tomatically selected. As such, only the most important
- exp (10pyin) — 1 basis functions are picked up and the overall number of
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TABLE 1lI
COMPUTATION TIME FOR SIMULATING V OLTAGE-CONTROLLED OSCILLATOR IN TIME DOMAIN [0, 200 /5]

V. (V) Computation time (Sec.)

" SPICE No adaptive scheme/companding Adaptive scheme Companding
-5 392 0.2635 1.1401 0.2345
-4 550 0.2546 1.1199 0.2285
-3 472 0.2522 1.0318 0.2467
-2 500 0.2609 0.9949 0.2247
-1 390 0.2376 1.0132 0.2325
0 432 0.2790 1.1697 0.2444
1 386 0.2254 0.8623 0.1941
2 364 0.1637 0.6252 0.1430
3 330 0.1129 0.4523 0.1001
4 329 0.0808 0.2942 0.0697
5 328 0.0794 0.3072 0.0687

wavelet bases is reduced without losing significant accmensional nonlinear functions are considered. Our future re-
racy. Itis shown in Fig. 27 that the adaptive scheme resulisarch work will focus on developing an automatic companding
in 332 basis functions, while the maximum relative erraalgorithm and extending the proposed modeling approach to
of fico IS reduced to 1.1%. Finally, using the nonlineahigh-dimensional function spaces. In addition, it is worth men-
companding algorithm, the maximum relative error is futioning that the nonlinear companding method proposed in this
ther reduced to 0.8%, although the companding algorithpaper can essentially be applied to any other basis functions with
only employs 200 wavelet bases. The above comparisimeal support (e.g., radial basis functions). The detailed discus-
implies that the nonlinear companding algorithm is morsion on this issue will also be incorporated as a part of our future
effective than the conventional wavelet collocation techiesearch.

niques for this VCO example.

b) The computation time needed for behavioral simulation
based on the generated models is much less than that for
transistor-level simulation by SPICE. The total speed-up [1]
is more than two orders in time domain. In addition, due
to the reduced number of wavelet bases, the behavioraj,;
simulation with nonlinear companding model is the most
efficient one, even if the excessive phase for companding[S]

requires additional computation tife

VII. CONCLUSION 4

Efficient system-level simulation of analog/mixed-signal
systems requires simple and accurate behavioral models for in
dividual circuit components. The companding-oriented wavelet
collocation method proposed in this paper is able to reduce théd®l
modeling errors and control the modeling error distribution 7]
continuously based on system-level simulation requirements.
Moreover, the proposed companding scheme can efficiently
reduce the number of base functions, i.e., the number ofyg
coefficients needed to represent the model. It, in turn, improves
the simulation efficiency significantly at the system level. From 0]
this viewpoint, the wavelet collocation method exploits a new
general-purpose approach for modeling analog circuits, as a
counterpart of those conventional techniques. [10]

On the other hand, we also notice two limitations of the pro-
posed wavelet modeling approach. First, the nonlinear confii]
panding function is currently developed by a combination of
manual design and automatic optimization. Second, the cuEZ]
rent model complexity will increase exponentially, if high-di- [13]

1In our behavioral simulation program, the data structure for the behavioral

model with adaptive scheme is more complicated than that for the other tw§l4]
models. For the wavelet model with adaptive scheme, additional information
should be stored to identify those important wavelet basis functions which are
automatically selected. Therefore, in Table Ill, the computation time for the[15]
model developed by adaptive algorithm is even larger than that for the model
with neither adaptive scheme nor nonlinear companding, although the basis
functions employed by the former model are less than those employed by tHa6]
latter one.
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