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Abstract

In this paper, we analyze network traffic behavior by de-
composing header traffic into control and data planes to
study the relationship between the two planes. By comput-
ing the cross-correlation between the control and data traf-
fics, we observe a general ‘similar’ behavior between the
two planes during normal behavior, and that this similarity
is affected during abnormal behaviors. This allows us to
focus on abnormal changes in network traffic behavior.
We test our approach on the Network Intrusion Dataset

provided by the Information Exploration Shootout (IES)
project and the 1999 DARPA Intrusion detection Evaluation
Dataset from theMIT Lincoln Lab. We find that TCP control
and data traffic have high correlation levels during benign
normal applications. This correlation is reduced when at-
tacks that affect the aggregate traffic are present in the two
datasets.
Keywords— Network traffic analysis, cross-correlation

function, abnormal behavior, anomaly detection, long-
range dependence.

1 Introduction

It is common in today’s computer networks to have traf-
fic abnormal behaviors such as attacks, failures, and mal-
functions. Such abnormal behaviors negatively impact the
network’s operation and security, and cost financial losses1.
Network traffic analysis is important, as it helps to detect
these abnormal behaviors in a timely manner. However, the
continuous emergence of diverse set of applications and the
large amount of network traffic hinder the process. This
requires continuous characterization/modeling of normal

1The CSI/FBI annual Computer Crime and Security Survey addresses
the amount of financial losses [1].

and/or abnormal behaviors, which is difficult to achieve,
specifically for normal behavior.
Detection schemes based on the continuous characteri-

zation of abnormal behavior resulting from attacks are typ-
ically known as signature based detectors [6]. Detection
schemes based on characterizing normal behavior are typi-
cally known as anomaly based detectors [6]. We use a less
general approach than network anomaly based detection.
We look for violations of specific behaviors that affect the
aggregate traffic behavior as opposed to violations that are
carried in the content of one or few packets, where signature
based detection techniques are used to detect the latter type.
A description of a bad behavior affecting the aggregate traf-
fic behavior (e.g., number of TCP SYN packets, data traffic
rate) is predefined on a heuristic basis at the detection sys-
tem. Such approaches that look for specific behaviors are
referred to by some (e.g., [3]) as network based behavioral
approaches.
We propose to detect such network violations through

network traffic analysis. One of the main characteristics
of our work is that we decompose network header traffic
into control and data planes. This enables us to reduce
the amount of traffic to look at as data traffic generation
is based on control traffic generation. Hence, we anticipate
that the two traffic groups should have ‘similar’ behaviors
during benign normal applications. In addition, since cer-
tain network abnormal behaviors appear mainly at the con-
trol plane, we expect the behavior of the control and data
traffic to differ during these abnormal behaviors. We com-
pute the cross-correlation function between the control and
data traffics to study the similarity between different groups
of traffic during normal behavior and their dissimilarities
during abnormal behavior.
We report our results on the Network Intrusion Dataset

provided by the Information Exploration Shootout (IES)
project [2] and the 1999 DARPA Intrusion detection Eval-
uation Dataset from the MIT Lincoln Lab [4]. We found
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that certain types of network attacks affecting the aggre-
gate traffic decrease the correlation between the control and
data traffics in the bidirectional traffic between the enter-
prise LAN and the external network.
Previous work in network and host anomaly based detec-

tion have looked into analyzing the observed data (e.g., net-
work traffic, system calls, etc). However no available study,
to the best of our knowledge, has looked at the control and
data planes separately. The closest one to us that we are
aware of, is the work done by Kompella et. al in [3]. They
introduce a new data structure, Partial Completion Filters
(PCF), to detect partial completion2 and scanning attacks.
They look at the aggregate traffic behavior, count the num-
ber of SYN packets, and compare it to the count of FIN
packets for a given destination or source host. PCF differs
from our approach: it is more specific since it looks only
at the relation within the control traffic (i.e., the SYN and
FIN packets) as opposed to the relation between the control
and data traffic. This implies its detection would be faster
since it processes a much smaller number of traffic packets;
but its detection capability and scope is much less than ours,
since it only looks at control packets.
The rest of the paper is organized as follows: Section 2

explains our methodology in decomposing network traffic
into control and data and the techniques we use to detect
abnormal behavior. The datasets used in the study are de-
scribed in Section 3 along with the needed analysis and pre-
processing. We examine the effect of abnormal behaviors
on the cross-correlation function between the control and
data traffic sequences in Section 4. Conclusions are pre-
sented in Section 5.

2 Methodology: Decomposing Network Traf-
fic into Control and Data

We decompose the network header traffic in a given time
interval into control and data planes to be able to observe
any dissimilarities between the traffic in these two planes.
Such dissimilarities are an indication of abnormal behav-
ior in that time interval. We decompose the header traffic
into control and data because we assume that data traffic
generation is based on control traffic generation. In fact
we focus on enterprise LANs, where control traffic are the
packets that set, maintain, or tear down a connection, and
data traffic are those packets that are concerned with the ac-
tual transmission of data. Thus, during normal behavior the
two traffic groups should be correlated. This correlation is
expected to be affected by network abnormal behaviors that

2Partial completion attacks are also known as claim-and-hold attacks.
The attack basically attempts is to claim a resource and hold it by not re-
leasing it, hence denying service to legitimate user (e.g., TCP SYN flood-
ing attacks) [3].

manifest themselves mainly at one of the two planes (typi-
cally the control plane) and not the other.
We only consider TCP traffic as it constitutes the major-

ity of Internet traffic, and it can be easily decomposed into
control and data planes using the flag and sequence numbers
fields in the TCP packet’s header. Packets having any of the
following flags are treated as control packets: SYN, FIN, or
RST. In addition, pure acknowledgment packets that have
empty sequence number fields are also treated as control
packets. All other TCP packets are treated as data packets.
To observe the effect of abnormal behaviors on the sim-

ilarity between the control and data traffic, we develop an
anomaly based detector that compares the two traffic groups
and measures their dissimilarity. We first extract from the
packets arriving at the network traffic monitor a set of dis-
crete time sequences. This is done by aggregating different
packet header-related features over a suitable aggregation
interval. These discrete time sequences will enable us to
apply our method of comparison. We list four issues that
need to be identified to develop the anomaly based detector.
They are:

1. The aggregation interval from which features are ex-
tracted.

2. The set of extracted features to be used in the compar-
ison.

3. The size of the time-window over which the compari-
son takes place.

4. The method of comparison.

The aggregation interval to extract features from the
packets header is selected based on the packet rate of the
traffic, such that the packet count variability (variance) is
high. This implies that the aggregation interval should not
be too small nor too large, as either will result in low vari-
ability.
Features are extracted by counting a set of packet header-

related fields that are originating or destined to a certain
host(s) over the selected aggregation interval to produce
several time sequences. We refer to these features as count-
features. The count-features that we have used include: the
number of packets, the number of bytes, and the number of
different addresses. We select these features for the simplic-
ity and their usage by others.
The size of the time-window over which the comparison

takes place depends on the method of comparison. How-
ever, there are generally two bounds:

1. A lower bound to have a large enough time-window
to notice the similarity between the control and data
during normal benign traffic.



2. An upper bound in order to notice an abnormal behav-
ior with a short duration in the traffic and not miss it
due to being suppressed by the remaining background
traffic.

These two bounds are related to the traffic rate, the higher
the traffic rate is; the tighter the two bounds would be. In
selecting this window, there is a trade-off between reducing
the false positive rate by selecting a large window and re-
ducing the false negative rate by selecting a small window.
In addition, selecting a small window is useful in narrowing
down the time interval where the abnormal behavior took
place. A sliding period (e.g., 1% of the window’s size) is
used to slide the window to have faster detection of abnor-
mal behavior rather than waiting for the next whole window
to pass.
Next we describe one of the methods of comparison that

we have conducted, which is anomaly detection through ob-
serving the time variation of the cross-correlation function
between the control and data traffic sequences.

2.1 Anomaly detection: Time Variation of
Cross-Correlation

We observe the effect of abnormal behaviors on the sim-
ilarity between the control and data traffic sequences, for
different count features, by estimating the cross-correlation
function between the two sequences. We use the correla-
tion function as they are used in many fields such as pattern
recognition to compare between different objects or signals.
LetXi and Yi represent a count feature sequence for the

control and data traffic, respectively. Define XN,n0 and
YN,n0 , where each one is a vector of size N starting at
element n0 and ending at element n0 +N − 1. The cross-
correlation function ρXY is then computed using a corre-
lation window of size N and as a function of the starting
element n0 by:

ρXY (N,n0) =
< XN,n0 − µXN,n0

,YN,n0 − µYN,n0
>

||XN,n0 − µXN,n0
|| · ||YN,n0 − µYN,n0

||

=
ΣN−1i=0 (Xi+n0 − µXN,n0

)(Yi+n0 − µYN,n0
)q

ΣN−1i=0 (Xi+n0 − µXN,n0
)2ΣN−1i=0 (Yi+n0 − µYN,n0

)2
,

where µXN,n0
and µYN,n0

, are the estimated means of
XN,n0 andYN,n0 , respectively.
The cross-correlation function ρXY ranges between −1

and 1, where a high value near 1 indicates high correlation,
a low positive value near 0 indicates low correlation, and
a value equal or less than 0 indicates no correlation in our
case study.

3 Datasets

3.1 The Network Intrusion Dataset

We obtained the network intrusion dataset provided by
the Information Exploration Shootout (IES) project [2]. The
network traffic is collected at the gateway connecting an en-
terprise LANwith the external network (Internet) using tcp-
dump. Only header information of the packet that passed by
the network interface of the gateway was captured by tcp-
dump. This included the communication between the en-
terprise LAN and the external network, and the traffic com-
munication within the LAN. The filters of tcpdump were
specified to only collect TCP and UDP packets but we only
consider TCP packets.
To protect the identity of the hosts that were communi-

cating with each other while the network traffic was col-
lected, the IP address of each external host is anonymized.
All internal hosts, however, are anonymized to a single IP
address to ensure the privacy of the network by not reveal-
ing the network topology. This makes the analysis of the
traffic communication within the LAN part very limited.
The dataset consists of four files3, the first is believed to

be free of attacks and the rest contain attacks that were sim-
ulated and stored, each file containing instances of a sin-
gle different attack behavior. The three attacks stored in
the files are: TCP SYN flooding Denial of Service (DoS),
Password Guessing, and Port Scanning. Each file has 16-20
minutes of traffic, and the average total bit rate in the four
files, based on our calculations, is on the order of 1 Mbps.
Although the attacks are inserted by the providers of the
dataset, their times and targets are not provided.

3.2 The 1999 DARPA Intrusion detection
Evaluation Dataset

We obtained the 1999 DARPA Intrusion detection Eval-
uation Dataset from the MIT Lincoln Lab [4]. The network
traffic in this dataset is synthetically generated on an iso-
lated testbed by simulation. To provide realistic background
traffic, a traffic model is developed based on actual network
activity observed at a number of locations, including sites
monitored by the Air Force Information Warfare Center,
data collected directly from an active Air Force Base net-
work and information gathered by Lincoln Labs staff from
selected location. The traffic model included a range of
application, such as FTP, HTTP, telnet, POP3 and SMTP
Email, SQL queries, ICMP and finger traffic, SSH sessions
and IRC connections. Based on the observed traffic pat-
terns, each of the application-level protocols is modeled in-
dependently.

3There is actually an additional fifth file, but it is surprisingly almost
identical to the second file, therefore, we do not consider it.
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Figure 1. Packet counts of incoming, outgo-
ing, bidirectional, and intraLAN of Base file
of the IES dataset. Aggregation interval: 10
seconds.

The traffic generation process was automated by execut-
ing scripts on selected hosts that initiated connections and
provided interaction among those hosts and other network
nodes. The traffic model was used to determine when con-
nections would be established. For each protocol or service
the model consisted of a set of mean arrival rates, collected
in 15 minute intervals, and those rates were used in each
interval to generate Poisson connection arrivals. The traf-
fic generation system was run each weekday for five weeks.
Three weeks of training data were collected from March 1
toMarch 20, 1999 and two weeks of test data were collected
fromMarch 29 to April 10, 1999. The average total bit rate,
based on our calculations, is on the order of 50 Kbps
The network traces generated during the first and third

weeks do not include any attack. The second week contains
several attacks for training purpose and the last two weeks
of the testing data contain 201 instances of about 56 types
of attacks. These attacks are listed in a separate file with
related information, such as start time, duration, destined
host, attack name, etc.
There are four main categories of attacks as described

in the attack files: Denial of Service (DoS), User to Root
(U2R), Remote to Local (R2L) and Probes. More than 10
different attacks are simulated among each of these four cat-
egories. We note that the categorization is based on the at-
tacker’s intent, i.e., the effect that the attack leaves on the
system rather than the way that the attack manifested itself
in the observed system [5].
The dataset consists of many sets, and we look only at
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Figure 2. Packet count of bidirectional traf-
fic of Tuesday of week 1 of the 1999 DARPA
dataset. Aggregation interval: 500 seconds.

the tcpdump data that was collected by a sniffer located at
the external side of the LAN. The tcpdump data contains all
of the traffic generated inside the LAN destined to the out-
side world and all of the traffic generated outside the LAN
destined to it. As in the IES dataset, we only consider here
TCP header traffic.
A main contrast between this dataset and the IES dataset

is that it is synthetically generated on an isolated testbed by
simulation. This implies that its normal traffic is guaran-
teed to be free of attacks, however, it does not represent real
network traffic accurately.

3.3 Analysis of Datasets

In this section, we plot the time sequences of the packet
and different address counts as a visual way to observe the
level of similarity between the control and data traffic in
different directions of the traffic.
For this purpose, we use large aggregation intervals, 10

seconds in the IES dataset, and 500 seconds in the 1999
DARPA dataset, to make the graphs easier to visual. The
two intervals are selected based on the traffic durations in
the files that are considered in the two datasets, 20 minutes
in the IES dataset, and 10 hours in the 1999 DARPA dataset.
Figure 1 shows the time sequences for the packet count

for the base file4. We notice that the control and data traffic
sequences at the incoming traffic (top-left) and the outgo-
ing traffic (top-right) do not vary similarly. However, when

4The base file has only instances of normal traffic, no attack traffic is
simulated.
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Figure 3. Packet count of bidirectional traf-
fic of Thursday of week 2 of the 1999 DARPA
dataset. Aggregation interval: 500 seconds.

the two traffic sequences are combined in the bidirectional
traffic (bottom-left), the variation is similar. This should be
expected, since an increase in the control outgoing traffic
(e.g., visiting a website) should cause an increase in the in-
coming data and not in the outgoing data traffic (e.g., down-
loading website’s content), and vice versa. The variation of
the control and data traffic sequences is also similar in the
intraLAN traffic (bottom-right). These similarities indicate
that the criteria used in decomposing the traffic into control
and data traffic is successful. In the incoming traffic (top-
left), the data traffic rate is higher than the control traffic
rate, whereas in the outgoing traffic (top-right), the control
traffic rate is higher than the incoming traffic rate. This is
also expected, since at an end user most of the downstream
traffic is data traffic, whereas the upstream traffic has more
control traffic than data traffic. Finally, in the intraLAN traf-
fic (bottom-right), the packet count has zero values some-
times. This is because there is no internal communication
over the corresponding 10-second aggregation interval.
Figure 2 shows the bidirectional traffic of Tuesday of

week 1 in the 1999 DARPA dataset. The traffic of this day
is free of any attacks, hence, we also notice the similar vari-
ation between the control and data traffic sequences. The
effect of a TCP SYN flooding attack on the similarity be-
tween the control and data traffic sequences is shown Fig-
ure 3. The figure shows the time sequences of the packet
count for the bidirectional traffic for Thursday of week 2
in the 1999 DARPA dataset, which has instances of normal
traffic along with attack traffic. We notice that the control
and data traffic sequences vary similarly most of the time
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Figure 4. Different address counts of bidirec-
tional of Base file of the IES dataset. Aggre-
gation interval: 10 seconds.

except for certain points (e.g., around 11:00 am) where an
attack has occurred.
Figure 4 shows the time sequences for the different ad-

dress count for the bidirectional traffic on the base file in the
IES dataset. We remind the reader that the whole enterprise
LAN is represented in the dataset by one anonymized ad-
dress. Therefore, the different address count here really rep-
resents the number of external hosts communicating with
the LAN plus the single internal address. We notice a simi-
lar variation between the control and data traffic sequences,
however, not as the one shown in the packet count case. We
also examine the byte count behavior, and found it to have
a similar behavior to the packet count. Except that for the
byte count, the data traffic is about one order of magnitude
higher than the control traffic. This is because data packets
have much more bytes than control packets.

4 Anomaly detection: Time Variation of
Cross-Correlation

We report the effect of several attacks in the two datasets
on the similarity between the control and data traffic se-
quences by computing the cross-correlation function. We
only consider the bidirectional traffic, since the control and
data traffic do not vary similarly at the incoming and out-
going traffic. In addition, we do not consider the intraLAN
traffic as it has long periods of non activity, which limit the
analysis.
We first select a count aggregation interval of 1 sec-



ond for both the IES and 1999 DARPA datasets. This se-
lection is based on the average traffic rate in each of the
two datasets, 448 packets/second and 32 packets/second, re-
spectively. Second, since the attack durations in the IES
dataset are not provided, we use an arbitrary correlation
window of 100 seconds with a sliding period of 1 second to
compute the cross-correlation of the different counts of the
bidirectional control and data. In the 1999 DARPA dataset,
the attacks’ execution durations range from very few sec-
onds to about half an hour. However, the effect of the at-
tack on the network traffic is typically longer. Therefore,
we use three correlation windows to compare how they de-
tect attacks with different durations. We use a 500, 1000,
and 2000 second correlation windows with a sliding period
of 1% of the window’s size (i.e., 5, 10, and 20 seconds).
We report our results on the IES dataset first, then the 1999
DARPA dataset.
Figure 5 shows the time variation of the cross-correlation

function between the bidirectional control and data packet,
byte, and different address counts of the base file in the
IES dataset. The x axis represents the start of the cor-
relation window. One can observe from the figure, that
the cross-correlation functions of the packet count (top)
and byte count (middle) vary similarly. This similar vari-
ation is expected due to the direct relation between the two
counts. The cross-correlation function of the packet count
has higher values since the packet count is less dependable
on the application used. The range of the cross-correlation
function is between 0.2 − 0.8 for the packet count and
0.1 − 0.7 for the byte count. The range for the different
address count is higher and is between 0.7− 0.9. The pos-
itive correlation levels in Figure 5 agrees with the similar-
ity between the packet, byte, and different address counts
of the control and data traffic sequences shown in Figure 1
(bottom-left), and Figure 4. These observations will be use-
ful in detecting attacks that manifest themselves mainly at
the control traffic plane.
The same graphs are produced for the three attack files

and are shown in Figures 6-8. One can see that the byte
and packet counts vary similarly as well. The effect of the
attacks can be seen in the parts of the graph where the cross-
correlation function goes below the threshold, and below 0
in some cases. These drops can be interpreted as an attack in
that interval and helps in zooming into where the attack has
most probably taken place. We are not able to fully verify
the accuracy of the detection method since the attacks are
not labeled in the IES dataset.
The level of drop at the three counts varies depending on

the type of attack. It can be seen from Figures 7 and 8,
which represent the effect of the password guessing and
scanning attack, respectively, that the correlation of the dif-
ferent address count is not affected when compared with the
effect of correlation between the control and data traffic at
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Figure 5. Time variation of the cross-
correlation function between the bidirec-
tional control and data packet, byte, and dif-
ferent address counts for Base file in the IES
dataset. Aggregation interval: 1 second, Cor-
relation window: 100 seconds, Sliding pe-
riod: 1 second.
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Figure 6. Time variation of the cross-
correlation function between the bidirec-
tional control and data packet, byte, and dif-
ferent address counts for Attack 1 file in the
IES dataset. Aggregation interval: 1 sec-
ond, Correlation window: 100 seconds, Slid-
ing period: 1 second.
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Figure 7. Time variation of the cross-
correlation function between the bidirec-
tional control and data packet, byte, and dif-
ferent address counts for Attack 2 file in the
IES dataset. Aggregation interval: 1 sec-
ond, Correlation window: 100 seconds, Slid-
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the byte count. This because the two attacks were only car-
ried by one host, as described in [2]. The correlation at the
packet count is less affected by the attacks when compared
with the byte count, specifically at the scanning attack. This
indicates the importance of looking at both counts to de-
tect abnormal behavior. The correlation of the different ad-
dress count at Figure 6, which represents the TCP SYN
DoS attack, was affected a bet by the attack since the at-
tack involved spoofing IP addresses. Using other additional
counts, e.g., the count of different destination ports, to com-
pare the effect of attacks on the correlation between the con-
trol and data would be useful in detecting certain types of
attacks, e.g., port scanning attacks.
For our results on the 1999 DARPA dataset, we only dis-

cuss the packet count and one attack behavior due to the
limited space. Figure 9 shows the time variation of the
cross-correlation function between the bidirectional control
and data packet counts for Tuesday of week 1 in the 1999
DARPA dataset, which has no attacks, using three different
correlation windows (500, 1000, and 2000 seconds). As it
can be seen from the figure, the correlation levels are high
over the three correlations windows. The correlation levels
are higher as the size of the correlation window gets larger.
This is because using longer periods in the comparison be-
tween the control and data traffic sequences will suppress
the effect of short-duration dissimilarities. The high corre-
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Figure 8. Time variation of the cross-
correlation function between the bidirec-
tional control and data packet, byte, and dif-
ferent address counts for Attack 3 file in the
IES dataset. Aggregation interval: 1 sec-
ond, Correlation window: 100 seconds, Slid-
ing period: 1 second.

lation levels in the figure agree with the similarity between
the packet count of the control and data traffic sequences
shown in Figure 2.

Figure 10 shows the time variation of the cross-
correlation function between the bidirectional control and
data packet count for Thursday of week 2 in the 1999
DARPA dataset. As it can be seen from the figure around
11:00 am, the correlation level has a sudden drop where it
reaches low values in all of the correlation window sizes.
However, the smaller the window, the narrower the interval
of detection is. Looking at the attacks action times in the
description of the 1999 DARPA dataset, we find that a TCP
SYN flooding attack took place at 11:04 am, which can also
be seen from the control and data packet counts in Figure 3.
Since TCP SYN packets are treated in this study as control
packets, the correlation level between the control and data
traffic sequences is low during the time of the attack.

5 Conclusions

We analyze network traffic behavior by decomposing
header traffic into control and data planes. We focus on
network abnormal behaviors that affect the aggregate traf-
fic behavior. We explain that during normal benign applica-
tions, the generation of data traffic is based on the genera-
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Figure 10. Time variation of the cross-
correlation function between the bidirec-
tional control and data packet count for
Thursday of week2 of the 1999 DARPA
dataset. Aggregation interval: 1 second.

tion of control traffic. Hence, both traffic sequences have
similar time variations. We verify this with the TCP traffic
of both the IES dataset and the 1999 DARPA dataset. The
similarity in time variation between the bidirectional control
and data traffic sequences is affected by certain simulated
attacks in the two datasets. We confirm this effect by re-
peatedly computing the cross-correlation function between
the two sequences over a sliding correlation time-window,
where sudden drops in the correlation levels are caused by
these attacks. This decomposition helps in detecting net-
work abnormal behaviors that manifest themselves mainly
at either the control or data traffic. In our future work, we
will perform additional advanced analysis to take into ac-
count the rate of change in the cross-correlation variation
on real recently collected traffic and examine the aggregate
traffic per destination host.
In parallel work, we also examine the Long-Range De-

pendence (LRD) behavior of the traffic. We observe that the
attacks in the IES dataset cause the incoming control traffic
and/or the outgoing data traffic to fail to exhibit LRD behav-
ior, while the traffic as a whole still exhibits LRD behavior.
These two traffic subgroups, generally, have lower volume
than the incoming data and outgoing control traffics. Hence,
this will lead to significantly reducing the amount of net-
work traffic to consider in detecting network abnormal be-
havior. Our analysis with the 1999 DARPA dataset does not
confirm these observations, as the two traffic subgroups still
exhibit LRD behavior in the presence of attacks. As a re-
sult, more traffic analysis of real collected network traffic
is needed to reach more accurate conclusions regarding the
LRD behavior of the control and data behavior.
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