
Learning Context-aware Policies from Multiple
Smart Homes via Federated Multi-Task Learning

Abstract—Internet-of-Things (IoT) devices deployed in smart

homes expose users to cyber threats that can cause privacy

leakage (e.g., smart TV eavesdropping) or physical hazards

(e.g., smart stove causing fire). Prior work has argued that to

effectively detect and prevent such threats, contextual policies

are needed to decide if access to an IoT device should be

allowed. Today, however, such contextual access control policies

need to be manually generated by IoT developers or users

via preinstallation or runtime prompts. Both approaches suf-

fer from potential misconfigurations and often fail to provide

coverage over the space of policies. In this paper, our goal is to

build a machine learning framework to automatically learn the

contextual access control policies from the observed behavioral

patterns of users in smart homes. Designing such a learning

framework is challenging on two fronts. First, the accuracy is

constrained by insufficient data in some smart homes and the

diversity of IoT access patterns across different smart homes.

Second, since we rely on usage patterns of IoT devices, users will

have privacy concerns. We address these challenges in designing

LoFTI, a federated multi-task learning framework that learns

customized context-aware policies from multiple smart homes

in a privacy-preserving manner. Based on prior user studies,

we identify six general types of features to capture contextual

access patterns. We build a simple machine learning model with

temporal structure to achieve a good trade-off between accuracy

and communication/computation cost. We design a custom data

augmentation mechanism to address the issue of unbalanced data

in learning (i.e., few negative vs. normal samples). We show that

LoFTI can achieve low false positives/false negatives, reducing the

false negative rate by 24.2% and false positive rate by 49.5%,

comparing with the state-of-the-art single-home learning and all-

home learning mechanism.

I. INTRODUCTION

While Internet-of-Things (IoT) devices are widely deployed
and used in smart homes to benefit people’s lives, these devices
can also pose severe threats due to their ability to interact with
the physical environment (especially for families with baby,
people with disabilities, or elderly people who live alone).
An increasing number of reported IoT breaches [1], [3], [4],
[5], [6], [7], [8], [9], [10] have shown that devices, such
as smart TV/camera/heater/stove/window/door/light/speakers,
can cause privacy leakage and physical hazards in smart
homes. For example, studies show that Samsung smart TVs are
susceptible to an eavesdropping attack (privacy leakage) called
Weeping Angel [5] and that smart stoves can be remotely
controlled to cause fires (physical hazards) [3].

To prevent privacy leakage and physical hazards, prior
work [11], [12], [17], [19], [21] has argued the need for
contextual information to decide if an access to an IoT device
should be allowed or blocked. Today, such contextual access
control policies [11], [12], [17], [19], [21] are preinstalled by

developers/users or created via runtime prompts. However,
such manually generated policies are easy to misconfigure
and fail to provide coverage over all the contextual policies
needed. For example, multiple contextual variables, including
temperature, humidity, CO2 and whether the user is asleep,
can impact the policy for opening the window in a smart
home. If we rely on developers or users to preinstall the
contextual policies, it is hard to determine key factors for
a particular smart home. Similarly, runtime prompts with
multiple contextual information will place a heavy burden on
the users as users need to answer such prompts each time the
context changes (e.g., temperature/humidity changes).

A promising alternative is to build a machine learning
framework to automate and simplify the process of generat-
ing contextual access control policies for IoT devices. The
machine learning framework will learn the contextual policies
from the historical records of contextual IoT access, and use
the learned contextual policies to decide to allow or block a
particular IoT access in the future.

However, there are two goals that are hard to simultaneously
achieve in designing such a machine learning framework:
accuracy and privacy. To see why, consider two strawman
solutions. On one extreme, if each home relies on its own his-
torical records (single-home learning), some smart homes may
have insufficient data to learn an accurate contextual access
control model. On the other extreme, to avoid this insufficient
data issue, we could collect all the historical records of all
smart homes in a centralized place (e.g., AWS/Azure/Google
cloud) and learn one model (all-home learning). However,
such one model for all homes may not be accurate since
different smart homes can have diverse contextual access
patterns. Also, this all-home learning mechanism requires the
historical data of a smart home to be transferred out of the
smart home (e.g., to the cloud), and will raise privacy concerns
for the users.

To address the insufficient data issue, diversity issue and
privacy concerns, our insight is that we can leverage a
recent advance in distributed machine learning - Federated
Multi-Task Learning (FMTL) [22]. To address the insufficient

data issue, the multi-task learning mechanism can learn the
common part of the contextual policies from the historical
records from all homes. To address the diversity issue, the
multi-task learning mechanism can learn the unique part of
the contextual policies for each smart home by assigning a
customized learning task to each home. To address the privacy

concerns, we leverage the federated learning mechanism. At
a high level, a federated learning mechanism is an iterative



learning process. In each iteration, federated learning performs
a local learning step on the raw data within each smart home,
then synthesize the model parameters obtained in each local
learning to build the contextual access control model at a
centralized place (e.g., cloud backend). Since the raw historical
data is processed locally within the smart home and is never
sent out, it offers better data privacy.

In this paper, we design LoFTI- a framework to Learn
contextual access policies via Federated multi-Task learning
for IoT devices in multiple smart homes. LoFTI includes an
edge computing node (e.g., an IoT gateway) in each smart
home and a centralized backend server. The basic workflow
of such a learning framework includes four steps. In the first
step, each edge computing node will collect the IoT access
and contextual information records to construct a historical

dataset. In the second step, the edge computing node will
extract a set of key features from the dataset to capture the
contextual IoT access patterns. Then, the learning framework
will build a machine learning model and push the model to
the edge computing nodes and the centralized backend server.
After that, the learning framework will use the federated multi-
task learning to learn the model across the edge computing
nodes and centralized backend server in a distributed and
iterative manner.

However, there are several practical challenges in designing
LoFTI. The first challenge is how to define a set of key
features for contextual IoT access, given a wide range of
information that can be collected in smart homes. The second
challenge is how to build a ML model with high accuracy

and low communication/computation cost, as complex models
tend to be more accurate but need to compute and transmit
more model parameters across the edge computing nodes and
the backend server. The third challenge is, since the number
of benign access is often much greater than the number of
malicious access, how to address such unbalanced dataset.

We explore the design space of LoFTI in terms of feature ex-
traction, model building and dataset construction and address
the challenges above. We generalize 6 types of key features
to capture the contextual IoT access patterns and demon-
strate their effectiveness in distinguishing benign/malicious
IoT access. We build a simple SVM-based model with extra
temporal structures to achieve high detection accuracy and low
communication/computation cost. We provide a specialized
data augmentation mechanism to balance the contextual access
historical record dataset. We show that LoFTI framework can
achieve high accuracy (FNR is 0.024 and FPR is 0.086) while
addressing user’s privacy concerns by guaranteeing that raw
IoT data will be stored locally within each smart home.

II. MOTIVATION

In this section, we first walk through a number of IoT
breaches causing privacy leakage and physical hazards. Then
we demonstrate why contextual policies are needed to prevent
such breaches. Finally, we show why the current approaches
that manually generate contextual policies are prone to mis-
configuration and lack coverage.

IoT devices are susceptible to privacy leakage and physical

hazards: Table I shows a list of recently reported IoT
breaches. A number of breaches are related to privacy leakage.
For Nest cameras, the attacker can steal the private video/im-
age and demand subscribe. For Samsung smart TVs, the
attacker can remotely turn on audio recording (via backdoor
access) for eavesdropping. Other breaches can cause physical
hazards in smart homes. For example, the attacker can open
smart doors or smart windows to break into the house. Besides,
the attacker can control heaters to overheat the bedroom, or
control the stove to cause fire, or remotely control smart toilets
to cause water overflow, especially dangerous for families with
babies, people with disabilities and the elderly. An interesting
case shows that the attacker can even use a drone to turn
off smart light to cause a blackout of a house. From these
breaches we can see that a wide range of IoT devices are
being used to cause privacy leakage or physical hazard. This
is due to the fact that IoT devices can interact with the physical
environment around them.

1

Smart Window

“High”

Benign

Attack

Temperature

“Low”

“Open”

“Open”

Fig. 1: Benign/malicious smart window scenarios.

Contextual policies are needed: Another interesting observa-
tion from the above IoT breaches is that- from a single device
perspective, the attackers are accessing these IoT devices
similar to how a normal user access these IoT devices. For
example, the attacker can turn on the camera or open the
smart window just like a normal user. Therefore, it would be
hard to distinguish attacker’s access from user’s access if we
only monitor a single device. To prevent privacy leakage and
physical hazards, current approaches [11], [12], [17], [19], [21]
rely on access control policies with contextual information to
decide if an action of an IoT device should be allowed or
blocked. In Figure 1, we present a motivating example to show
how contextual policy can prevent physical hazards or privacy
leakage. A user will access and open the smart window when
temperature is high. The attacker, however, will not follow
such benign context -“temperature is high” and will open the
window to break into the house even when the temperature is
low. Therefore, if there is a contextual policy that only allows
the access to open the window when the temperature is high,
this policy is able to prevent the attack.

1

Smart WindowTemperature Humidity AC ON/OFFCO2 Density

Fig. 2: Complex interactions across smart windows, AC

units and the environment.

2



Device IoT Breach Attack Type
Nest Camera Attacker steal private video/image and demand subscribe [10] Privacy leakage
Multiple Smart Doors Attacker open smart door to break into the house [4] Physical hazards
Multiple Smart Heaters Attacker can control the heater to overheat the bedroom [8] Physical hazards
Samsung Smart TV Attacker can remotely turn on audio recording for eavesdropping [5] Privacy leakage
Multiple Smart Stoves Attacker can control the stove to cause fire [3] Physical hazards
Multiple Smart Window Attacker can open the smart window to break into the house [7] Physical hazards
Philips Hue Smart Light Attacker can use drone to turn off smart light to cause a blackout [6] Physical hazards
Multiple Smart Toilets Attack can remotely control smart toilet to cause water overflow [9] Physical hazards

TABLE I: Recently reported IoT breaches.

Current approaches to generate contextual policies are

easy to misconfigure and lack coverage: There are two
approaches to generate contextual policies. The first approach
is to preinstall contextual policies specified by developers
or users [17], [21]. The second approach is to use runtime

prompts with contextual information to let the user make the
allow/block decision [15], [17], [19]. Both approaches heavily
relies on the knowledge and effort of the developers/users to
anticipate the malicious behaviors. Thus is easy to misconfig-
ure and have poor coverage over all contextual policies needed,
causing high FPs/FNs. For example, in Figure 2, whether the
smart window will be opened depends on multiple factors
include temperature, humidity, CO2 density and whether AC
is on/off, and such context can be different between smart
homes. Suppose a handcrafted policy is preinstalled to block
the access to the smart window when the temperature is
above preconfigured thresholds, such thresholds can be easily
misconfigured and result in high FPs/FNs. Then, suppose there
are runtime prompts with temperature, humidity, CO2 density
and whether AC is on/off, such context can be different every
time the smart window is accessed. Considering the number
of IoT devices in a smart home, there could be hundreds of
prompts per day and cause the user to be unable or unwilling
to handle all the prompts.

III. SYSTEM OVERVIEW

In this section, we present an overview of our learning
framework - LoFTI. We start by defining the threat model.
Threat model: The goal of the attacker is to access IoT
devices to cause privacy leakage or physical hazards. As shown
in Figure 3, the IoT devices have user APIs (e.g., open/close
window) for common usage and developer APIs (e.g., mod-
ify the firmware) for developing functionality. We make the
following assumptions about the attacker’s capability:

• The attacker can access all the user APIs (e.g., via
weak/flawed authentication or backdoor).

• The attacker cannot access the developer APIs to modify
the firmware (e.g., via code injection). Such access is
easy to distinguish from user access and can be prevented
by network defense. Therefore, the attacker cannot spoof
the status of the IoT device (e.g., report that the window
is closed while it is opened) as this requires firmware
modification.

Our goal: We aim at learning contextual access control poli-
cies from the historical records in smart homes. Specifically,
suppose the history of IoT accesses with the corresponding
context and action is given (e.g., temperature, humidity, the
state of the AC and the actions performed on the smart window

1

User APIs

Developer APIs

Authenticate
Open Window
Close Window
Check Open/Close Status

Modify firmware

Fig. 3: Two different levels of attacker’s capabilities.

Learning framework

F(Context, Action) → Block/Allow

Temperature Humidity AC Smart Window Label
32℃ 60% off open benign
16℃ 20% on open malicious

…

History

Context Action

Fig. 4: The goal of the learning framework.

in Figure 4). The learning mechanism will learn a function
F , so that the F can decide to allow or block an access in
the future based on the corresponding context and action. For
example, in Figure 4, the history shows that the user will open
the window when the temperature and humidity are high (i.e.,
feels hot), and attack will open the window even when the
temperature and humidity are relatively low. Then our goal
is to learn function F to decide to block/allow the access to
open the window based on the temperature and humidity in
the future.Strawmans for learning framework

1

Issue 1: Insufficient data Issue 2: Privacy concerns

All-home learning

IoT Security 
Gateway

IoT Security 
Gateway

!", $" !%, $%

!, $ compute F

IoT Security 
Gateway

!", $" compute '"

IoT Security 
Gateway

!%, $% compute '%

Single-home learning

Issue 3: Diversity

Fig. 5: Two strawman solutions and the issues.

Based on the goal of the learning framework, there are
two strawman solutions - single-home learning and all-home
learning, as shown in Figure 5.
Strawman 1 - Single-home learning: This strawman solution
let each home use its own historical records to learn its own
contextual policies. However, some smart homes may have
insufficient data to effectively learn the contextual policies.
For example, in Figure 6, there are two smart homes with
smart windows. The user will open the smart window when
feels hot in terms of high temperature and humidity. The
attacker, however, will open the smart window even when
temperature and humidity are low. Each point in Figure 6 is
a benign access (blue point) or malicious access (red point)
to the smart window. The first row shows the training result

3



and second row shows the testing result for the single-home
learning mechanism. In this case, each home learns its own
model (the blue line). Also, we can see that all the blue and
red points under the line in the second row for home 2 are
misclassified, showing that the FPs and FNs for home 2 is
high. This is because home 2 suffers from insufficient data

with only 12 data points for training, while home 1 has 60
data points for training.

Fig. 6: Insufficient data issue.

Strawman 2 - All-home learning: Another strawman so-
lution is to use the historical records of all homes to learn
one contextual access model. The issue for such all-home
learning mechanism is that some smart home may have diverse

contextual access patterns. For example, in Figure 7, we use
the same dataset as described in the single-home learning
case. The diversity here is that, comparing with the user in
home 1, the user in home 2 has less tolerance to hot, and will
open the window at a lower temperature/humidity. However,
the all-home learning mechanism will learn the same decision
boundary for home 1 and home 2. Therefore, the contextual
policy (decision boundary) learned lacks customization and
result in high FPs for home 2, as shown in the second row of
Figure 7.

Fig. 7: Diversity issue.

Our insight: We can apply Federated Multi-Task learning
[22] to address the above insufficient data, privacy and diver-

sity. The high-level process of Federated Multi-Task learning
is shown in Figure 8. In step 0, the cloud backend will initiate
the model F and task correlation ⌦. In step 1, the cloud
backend will send the model parameter wi to each smart home
i. In step 2, the edge node in smart home i will calculate the
local model parameter update �wi based on local data Xi and

model parameter wi. In step 3, the edge node in smart home i

will send the model parameter update �wi back to the cloud
backend. In step 4, the cloud backend will update the task
correlation ⌦ and the model F based on updates from all
smart homes {�wi}. Then step 1, 2, 3 and 4 will be executed
for multiple iterations until the model F converges.

Edge 
Gateway

Edge 
Gateway

Step 0: Initiate model ! and task correlation Ω

Step 1: Send model 
parameter wi to node i

Step 2: Calculate�wi based on 
local data Xi and received parameter wi

Step 3: Send �wi to backend

Step 4: Update Ω and F based on update from all nodes {�wi }

…

k
iterations

Fig. 8: Federated Multi-Task learning workflow.

Federated Multi-Task learning can address insufficient data

issue because the model F is learned from the data {Xi}
from each smart home in a distributed manner. The diversity

issue is addressed as each smart home is considered as a
individual learning task, and the task correlation ⌦ can capture
the diverse correlations (e.g., distinguishing common part and
unique part) and allow each task to be customized. There will
be less privacy concerns for the user as the raw data Xi for
smart home i is kept locally within each smart home, only
model parameters {�wi} is transmitted to the cloud backend.

Step 1. Dataset construction Step 2. Feature selection

Step 3. Building model

SVM/CNN/LSTM

Step 4. Federated Multi-Task Learning 

Edge 
Gateway

Edge 
Gateway

Edge 
Gateway

Challenge 2: trade-off between accuracy and communicate/computation cost

Challenge 3: unbalanced data Challenge 1: key features to capture contextual IoT access patterns

Fig. 9: Basic building blocks for LoFTI.

In this paper, we design LoFTI- a framework to Learn
contextual access policies via Federated multi-Task learning
for IoT devices in multiple smart homes. LoFTI includes an
edge computing node (e.g., an IoT gateway) in each smart
home and a centralized backend server. There are several
building blocks for LoFTI, as shown in Figure 9. The first
building block is the dataset construction process for each
edge computing node to collect the IoT access and contextual
information records. The second building block is the feature

extraction process for each edge computing node to extract a
set of key features from the historical record dataset. The third
building block is building the ML model and push the model to
the edge computing nodes and the centralized backend server.
After that, the learning framework will use the federated multi-
task learning to learn the model across the edge computing

4



nodes and centralized backend server in a distributed and
iterative manner.
Challenges: There are several challenges in designing LoFTI:

Defining key features to extract contextual IoT access

patterns: Given the wide range of information in smart homes,
it is hard to define a set of key features that are expressive
enough to extract various contextual IoT access patterns. For
example, a naive solution may use MAC/IP address of an IoT
devices as a key feature, which are not effective and similarity
in IP address can even be noise to the learning framework.
Building model with high accuracy and low computa-

tion/communication cost: More complex ML models (CNN,
RNN, LSTM) often have higher accuracy as they can encode
more information than less complex models (Naive Bayes,
SVM). However, complex machine learning models also result
high computation/communication cost, especially in a dis-
tributed learning framework like LoFTI. It is hard to achieve
a good trade-off between accuracy and cost.
Addressing unbalanced contextual IoT access records:
In reality, the historical records for privacy leakage/physical
hazards are much fewer comparing with benign IoT access
records. For example, there can be more than 10000 records in
100 smart homes about user opening the smart window in the
historical records, with less than 100 records about attacker
opening the smart window. As a result of such unbalanced
dataset, the decision boundary will be pushed towards the
attack space and result in high FNs.

We will show how LoFTI addresses the above challenges
in Section IV.
Adversary against LoFTI: In this part, we discuss the poten-
tial attacks against LoFTI itself. An attacker can be inside the
cloud backend or perform man-in-the-middle attack to observe
the data sent to the cloud backend. For such attackers, LoFTI’s
federated learning mechanism ensures that the attacker is
not able to observe the raw IoT data in smart homes. An
attacker can be inside a smart home and perform adversarial
machine learning techniques trying to corrupt LoFTI’s model.
For such attackers, LoFTI’s multi-task learning mechanism
ensures that each smart home will learn a customized model
so the corrupted data in one smart home will have little impact
on other smart homes. An attacker may be able to observe the
model parameters sent to the cloud backend and infer private
information from the model parameters. In this paper, we show
that many sensitive IoT information (e.g., device location,
firmware version) can be masked without impacting LoFTI’s
detection accuracy (Section V). To fully address this type
of attacker, we envision that techniques such as differential

privacy can be incorporated with LoFTI in the future. Finally,
we assume that there are mechanisms that prevent the model
parameters being modified by attacker and the edge computing
node is secured.

IV. LOFTI DESIGN

In this section, we discuss the design of LoFTI. Specifically,
we discuss (1) how to select key features that are expressive
enough to capture various contextual IoT access patterns, (2)

how to build a learning model to achieve a good trade-off
between accuracy and computation/communication cost; and
(3) how to construct contextual IoT access dataset to address
the unbalanced dataset issue.

A. Defining key features for contextual IoT access

LoFTI framework extracts a set of key features from the
historical record dataset to capture the contextual IoT access
patterns. Given a wide range of information we can collect
from IoT devices, it is challenging to identify the salient
features.

To address this challenge, we leverage the concept of
contextual integrity (CI) [20], which claims that appropriate
information flows (i.e. IoT accesses, in our case) are the
ones that conform with the contextual norms. Here contextual

norms refer to five independent parameters: data subject,
sender, recipient, information type, and transmission principle.
Now the issue is how to define the contextual norms that
should regulate IoT accesses.

Previous efforts [11], [12], [14], [15], [19], [21], [24] have
manually crafted different sets of contextual norms and have
shown that they are closely related with IoT accesses; however,
their definitions have not been very consistent. In this paper,
we summarize and generalize these contextual norms into six
types:

User: The user context norm is defined as the role of
the person who is accessing the IoT device. Roles can be
parent, child, household employee (e.g. a babysitter), or visitor.
The user context norm corresponds to the sender in the CI,
capturing who initiated an IoT access.

Device: The device context norm is a combination of
device type and device instance identifier. Device type is a
combination of device class (e.g., camera), device vendor (e.g.,
D-Link) and device SKU (Stock Keeping Unit, e.g., DCS-
932L). The device context norm corresponds to the recipient

in CI, capturing which device is being accessed.
Time of the day: The time of the day context norm is

a combination of hour of the day, minute of the hour and
second of the minute. This context norm corresponds to the
transmission principle in CI, capturing the time condition
under which the IoT access should be allowed.

Environment variables: The environment variables context
norm is a list of variables describing the physical environment
of a smart home, such as temperature, humidity, CO2 density,
etc. This context norm corresponds to the transmission princi-

ple in CI, capturing the environmental conditions under which
the IoT access should be allowed.

Device states: The device states context norm is a list of
variables describing the states of the IoT devices. Examples of
such states include smart window opened, camera turned on,
and smart oven turned off. This context norm also corresponds
to the transmission principle in CI, capturing the conditions of
device states under which the IoT access should be allowed.

Action: The action context norm is an operation to be
performed by the IoT device by the access, such as open

the smart window and turn on the camera. This context norm

5



corresponds to the data subject in the CI, capturing the subject
of the IoT access.

Let’s denote the user as u, the device as d, the time as t,
the environment variables as {e}, the devices’ states as {s}
and the action as a. Then the context norms for LoFTI can be
expressed as (u, d, t, {e}, {s}, a).

Next, we demonstrate the expressiveness of LoFTI’s contex-
tual norms by showing a list of contextual IoT access patterns
LoFTI can capture, as shown in Table II. In the first scenario,
a visitor watches a video recorded on the camera (privacy
leakage). In this case, the three key features – the user’s role
as a visitor, the device camera, and the action of playing the

recorded video – are captured. In the second scenario, a family
member takes shower at night, and the key feature time is
captured. Similarly, in the third scenario – opening a window
when it is hot – the key features temperature and humidity are
captured. The fourth scenario covers a cooking activity and the
key features – the states of microwave oven and fridge – are
captured.

B. Building a model with high accuracy and low computa-

tion/communication cost

Considering the distributed learning nature of federated
multi-task learning, building a machine learning model for
contextual IoT access raises challenging trade-offs between
model accuracy and computation/communication cost.

To understand these trade-offs, we start by exploring the
design space for building a machine learning model. At a
high level, the machine learning model can be considered as a
function F that takes the contextual norms (u, d, t, {e}, {s}, a)
as input x and outputs a binary decision, i.e., whether to block
or allow the action a given the context norms.

There are several options to build such a function F ,
ranging from a simple SVM model to more complex CNN
(Convolutional Neural Network) and LSTM (Long Short-Term
Memory) models. We discuss how these models perform in
terms of model accuracy and computation/communication cost

in detail below.

ht

xt

lt

yt

wx+b

SVM

ht

xt

lt

yt

CNN

F(wx+b)

ht-1

lt-1

yt-1

F(wx+b)

ht

xt

lt

yt

RNN

F(wx+b)

ht-1xt-1ht-1

ht-k

lt-k

yt-k

F(wx+b)

ht-1

xt

lt-1

yt-1

LSTM

F(wx+b)

ht-1xt-kht-k

ht

xt

lt

yt

F(wx+b)

gt-1

Forget 
Gate

…

Input

Prediction

Label

Loss

Fig. 10: Comparing the structures of different machine

learning models.

To understand the trade-off, it is useful to look into the
structures of different machine learning models, as shown in
Figure 10. Given input xt at time t, a (linear) SVM model
makes a prediction ht with a simple function F as wx + b.
The model then minimizes the loss lt between the predictions

{ht} and labels {yt} by adjusting the parameters w and b in
the learning stage to train an accurate function F . CNN models
also follow this process, except that they adopt a more complex
function F = f(...f(wx + b)), where F is a composition
of multiple (possibly) non-linear functions (e.g., a sigmoid
function). The issue with SVM and CNN is that they have
no “memory”, i.e. the prediction ht completely depends on
input xt at the current time t, and cannot encode patterns in
history. In contrast, RNN models use previous prediction ht�1

as an input (along with other input xt) to compute the current
prediction ht, thus capturing the sequential patterns in history.
However, this model “forgets” very fast as the impact of prior
predictions decrease exponentially [18] with each iteration.
LSTM addresses this issue by adding a forget gate to encode
a wide range of predictions ht�k to ht�1. The forget gate can
learn to determine how much impact a previous prediction
ht�i should have on the current prediction ht.

Accuracy: Complex models such as LSTM are relatively
more accurate as they are able to encode more information
than simpler models such as SVM; and more generally, as the
models get more complex, their accuracy gets better. However,
it is not clear how much information needs to be encoded for
contextual IoT access patterns to achieve a satisfying level of
accuracy.

Computation/communication cost: Since federated multi-
task learning works in a distributed manner, different machine
learning models will have different impact on the computation
and communication cost. The computation cost includes the
CPU and memory consumption on each edge computing node
and on the cloud back-end server. The communication cost
includes the bandwidth consumption and latency introduced
when transmitting the model parameters between the edge
computing nodes and the cloud back-end server.

To achieve high accuracy and low communication/compu-
tation cost, we can build a simple model with an additional
structure that captures the key contextual IoT access patterns.
A simple model helps reduce communication/computation cost
and a carefully designed additional structure to capture the key
contextual IoT access patterns, cuts down the accuracy gap.

More specifically, from Figure 10, we observed that the
main difference between a simple model (SVM) and a complex
model (RNN and LSTM) is how the temporal information
(long-term memory and short-term memory) is captured. The
key question here is how much temporal information is needed
for capturing contextual IoT access patterns. To answer this
question, we make two domain-specific observations:

Short-term correlation is needed to capture contextual

IoT access patterns: We observe that all the device states
and some discrete environment variables at a given time t

are highly correlated with the corresponding device states and
discrete environment variables at a time t � 1. For example,
if a camera state transits from off to on, this short-term
correlation from time t� 1 to time t is needed. The intuition
behind this observation is that all the device states and some
discrete environment variables are internally following certain
state machines, and in a state machine, the next state is highly

6



Pattern u d t {e} {s} a
Visitor watch camera video record visitor camera ... ... ... play video record
Take shower at night family shower 21:35:24 ... ... turn on shower
Open window when feeling hot family window ... temperature=35�C; humidity=60% ... open window
Use stove when cooking family stove ... ... microwave on; fridge opened turn on stove

TABLE II: Exemplar contextual IoT access patterns that can be captured by LoFTI’s contextual norms.

dependent on its previous state.
Long-term correlation can be aggregated: For environ-

ment variables and device states, capturing the specific long-
term sequence in history is not necessary. The aggregated
environment variables and device states can be as effective.
For example, considering the contextual access pattern that “a
user feels hot in the last hour and opens the smart window”.
Here, the action of open the smart window is only related
with the average temperature and humidity in the last hour,
not specific temperature or humidity sequence.

ht

xt

lt

yt

wx+b

SVM

ht-k

lt-k

yt-k

wx+b

ht-1

xt-1

lt-1

yt-1

LoFTI

wx+b

xt-k

ht

xt

lt

yt

wx+b

gt-1

…

Input

Prediction

Label

Loss

Short-term
correlation

Long-term 
aggregation

Temporal structure

Fig. 11: LoFTI model.

Based on the two observations above, our idea is to add
an extra temporal structure on top of simple SVM model, as
shown in Figure 11. The extra temporal structure captures the
short-term correlation and long-term aggregation. The detailed
pseudo code of the temporal structure is given in Figure 12.
To capture the short-term correlation, we apply word2vector

processing on device states and discrete environment variables
from time t� h to time t, and generate vectors of 2-grams to
capture the short-term correlation between two adjacent times
(Line 10 in Figure 12). To capture the long-term correlation,
we aggregate the continuous environment variables from time
t � h to time t by its average value (Line 13 in Figure 12),
and we aggregate the discrete device states and environment
variables from time t�h to time t by the appearance number of
2-grams (Line 10 in Figure 12). In this way, LoFTI’s temporal
structure captures the short-term correlation and aggregated
long-term correlation.

Next, we compare LoFTI and LSTM in terms of compu-
tation cost and communication cost. In distributed machine
learning, the computation cost is measured by the number of
CPU FLOPS, and the communication cost is measured by the
number of model parameters transmitted in each iteration.

We start with LSTM’s computation cost. In LSTM, there
are 8 matrix-matrix multiplications per layer per time-step.

1 Input: {xt�h, ..., xt�1, xt} is the sequence of features
2 t is current time, h is history time window
3 m is the number of key features
4 {env} is the environment variable set
5 {state} is the environment variable set
6 Output: gt is the temporal aggregation
7 for i 1 to m
8 if xt,i 2 {env} or xt,i 2 {state}
9 if xt,i is discrete

10 gt,i = word2vector({xt�h,i, ..., xt�1,i})
11 end
12 if xt,i is continuous
13 gt,i = mean({xt�h,i, ..., xt�1,i})
14 end
15 end
16 end

Fig. 12: LoFTI’s temporal structure.

Suppose N is the number of features, M is the hidden unit
size, L is the minibatch size. Each matrix-matrix multiplication
is A⇥B, where A is a matrix of size M⇥N and B is a matrix
of size N ⇥ L. The matrix-matrix multiplication A⇥ B uses
ML(2N�1) CPU FLOPS. Suppose r is the number of layers
and h is the number of timesteps. Then, the total FLOPS for
LSTM is r ⇤ h ⇤ 8 ⇤ML(2N � 1).

Next we calculate the FLOPS for LoFTI. We know that the
total FLOPS for a linear SVM is proportional to the number
of parameters. Suppose N is the number of features and h is
the number of timesteps for long-term aggregation for LoFTI
(we set it equal to the LSTM’s timesteps). In LoFTI’s model,
it takes N ⇤ h FLOPS to calculate the temporal structure and
2 ⇤ N FLOPS to calculate the model parameters. Therefore,
the total FLOPS for LoFTI is 2⇤N +N ⇤h. It is obvious that
LoFTI’s computation cost is much less than LSTM.

Next, we compare the communication cost of LoFTI and
LSTM. Since FMTL only transmit parameters, the communi-
cation cost is propotional to the number of model parameters.
The number of model parameters of LSTM is given by:
4⇤(N ⇤M+M

2), where N is the number of features and M is
the number of hidden unit. The number of model parameters of
LSTM is given by: 2⇤N , where N is the number of features.
Therefore, it is obvious that the communication cost of LoFTI
is lower than LSTM.

In summary, LoFTI reduces the computation cost by ap-
plying a simple model with a concise temporal structure. We
will provide an evaluation comparison of LoFTI and LSTM in
terms of the computation/communication cost in Section V.

C. Addressing unbalanced contextual IoT access records

A straight forward approach to construct the dataset is
to collect the benign and malicious contextual IoT access
records as it is. However, while benign users are frequently
accessing the IoT devices, attackers only need a few accesses
to cause privacy leakage or physical hazards. This means
that the number of benign IoT accesses will be much larger

7



than the number of malicious IoT accesses, i.e., the dataset is
unbalanced. Therefore, the decision boundary will be pushed
towards the attack samples and causing high FNs. A straw-
man solution to balance the dataset would be to copy the
attack samples and construct a repetitive dataset. However,
the repetitive attack samples cannot capture the variation of
attacks and fails to provide coverage. A general approach in
machine learning to address unbalanced data is called data

augmentation [25]. The idea is to introduce variance in the
samples to balance out data and improve coverage. However,
common data augmentation mechanisms, including cropping,
rotation and flipping are closely tied to image representation
(as it has originated from computer vision community), and are
not applicable for processing the contextual access abstraction
for IoT devices.

Therefore, we designed a customized data augmentation

approach for processing the contextual access abstraction for
IoT devices. Specifically, we provide two mechanisms:

Context random sampling: The context random sampling
mechanism is inspired by the cropping of an image. But in-
stead of selecting a region of the image (considering locality),
our mechanism selects a subset of the environment variables
and device states with a fixed ratio r (commonly set to 10%
to 20% in sampling papers [16]). The idea is to perform
random sampling on the environment variables and device
states to narrow down the correlation between environment
variables/device states and IoT access with certain action.

Adding contextual noise: The second mechanism is adding
noise to the context. This is similar to adding noise to an
image, but instead of adding noise to pixels, LoFTI adds noise
to the environment variables of the attack sample. The idea is
to increase the coverage of environment variables in attack
samples. However, deciding how much noise to add can be a
challenge. If too much noise is added, the attack sample may
deviate to the benign space and cause FNs. If too little noise
is added, the coverage will be low. To address this issue, we
provide a mechanism to automatically decide the amount of
noise being added. The first step is to estimate a rough decision
boundary L. Then, for each attack sample, we calculate the
distance metric d to the rough boundary. LoFTI ensures that
the noise added to the attack sample does not exceed ✏d, where
✏ is a constant within (0, 1) range. In this way, LoFTI provides
a heuristic-based method to ensure that the noise is bounded
and can increase the coverage without increasing the FNs.
The effectiveness of LoFTI’s data augmentation mechanism is
shown in Section V.

V. EVALUATION

In this section, we evaluate LoFTI and show that:
• LoFTI achieves high detection accuracy and low FPs and

FNs when compared with single-home learning and all-
home learning, reducing FNR by 24.2% and FPR by
49.5%.

• LoFTI achieves high coverage over the contextual poli-
cies needed when compared with current approach to
manually generating contextual policies.

Cases Device Attack Type
1 Camera Private video leakage [10] privacy leakage
2 Smart Door Break-in when user is asleep [4] physical hazards
3 Heater Bedroom overheating [8] physical hazards
4 Smart TV Eavesdropping [5] privacy leakage
5 Stove Fire hazards [3] physical hazards
6 Smart Window Break-in [7] physical hazards
7 Smart Light Blackout [6] physical hazards
8 Smart Toilets Water overflow [9] physical hazards

TABLE III: Test cases for malicious IoT access based on

reported IoT breaches.

• LoFTI’s key features are effective for detecting malicious
IoT access causing physical hazards or privacy leakage.

• LoFTI’s simple SVM-based model with temporal struc-
ture can achieve a good trade off between accuracy and
communication/computation cost.

• LoFTI’s data augmentation effectively addresses the un-
balanced data issue.

• LoFTI can detect new attacks not in the dataset, if there
are historical records about the IoT device being attacked.

A. Dataset

To evaluate LoFTI, we use a public large-scale IoT historical
record dataset - CASAS [2] with real IoT deployment in
more than 400 smart homes in cities including Kyoto, Paris,
Milan, etc. The type of IoT devices in the dataset including
smart TV/DVD, smart oven/fridge/microwave, smart door/so-
fa/bed/cupboard, motion/power/temperature sensors, etc. The
CASAS dataset includes historical records about how normal
human users are interacting with these IoT devices in typical
smart home setting. To test how well LoFTI can detect
physical hazards and privacy leakage, we constructed a list
of physical hazards and privacy leakage cases based on IoT
breaches in news reports [1], [3], [4], [5], [6], [7], [8], [9],
[10], as shown in Figure 13. We add these cases randomly to
each of the 400 smart homes.

B. Accuracy

In this part, we measure the accuracy of LoFTI, and
compare LoFTI with the state-of-the-art single-home learning
approach and all-home learning approach.

The accuracy is evaluated by the FNR (False Nega-
tive Rate), FPR (False Positive Rate) and F-Score. The
FPR describes the occurrence of False Positives, defined as
FPR = FP

FP+TN . The FNR describes the occurrence of False
Negatives, defined as FNR = FN

FN+TP . The F-Score reflects
the detection performance combing FP and FN, defined as
FScore = 2⇤Precision⇤Recall

Precision+Recall , where Precision = TP
TP+FP and

Recall = TP
TP+FN .

Approach FNR FPR F-Score
Single-home 0.0832 0.1697 0.8867
All-home 0.0318 0.3409 0.8534
LoFTI 0.0241 0.0857 0.9378

TABLE IV: Overall.

Table IV shows the overall FNR, FPR and F-Score com-
paring single-home learning, all-home learning and LoFTI.
The overall result shows that LoFTI achieves low FNR/FPR
and high F-Score, reducing FNR by 24.2% and FPR by

8



Case1

0

0.5

1

FN
R

Case2

0

0.5

1
Case3

0

0.5

1
Case4

0

0.5

1
Case5

0

0.5

1
Case6

0

0.5

1
Case7

0

0.5

1
Case8

0

0.5

1
Single-home
All-home
LoFTI

0

0.5

1

FP
R

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

F-
Sc
or
e

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

Fig. 13: Comparing single-home learning, all-home learning and LoFTI.

49.5% when compared with the best results from single-home
learning and all-home learning approaches.

Next, we compare single-home learning, all-home learning
and LoFTI case by case. Figure 13 shows the FNR, FPR and
F-Score for each case in Table III for single-home learning,
all-home learning and LoFTI. The first row depicts the FNR,
the second row depicts the FPR for different cases. The last
row depicts the F-Score combining the impact of FP and FN.
From the result, we can see that single-home learning result
in high FNR in case 1, 3 and 6. All-home learning result in
high FPR in case 1, 3, 4, 5, 6, 7 and 8. From Figure 13, we
can see that single-home learning and all-home learning either
result in high FNR or high FPR, and LoFTI achieves low FPs
and FNs across all the test cases.

Case 1 2 3 4 5 6 7 8
LoFTI >All>Single X X X
LoFTI >Single>All X X X X X

TABLE V: Detailed analysis for the test cases.

Table V shows the detailed analysis for the test cases.
We rank single-home learning, all-home learning and LoFTI
by the F-Scores they achieve in each case. For case 1,2
and 3, LoFTI achieves higher accuracy (F-Score) than all-
home learning than single-home learning. This is because the
insufficient data issue has a major impact in these cases. To
confirm this, we counted the number of IoT access records
relevant for distinguishing malicious/benign access in each
home (e.g., if malicious access is turn on Camera, we count
all the access to Camera). We found that, in case 1,2 and 3,
the average relevant IoT access records in each smart home
is less than 200, and some smart home have less than 50
relevant IoT access records. This explains the insufficient data

issue in case 1,2 and 3. For case 5 to 8, LoFTI achieves
higher accuracy (F-Score) than single-home learning than all-
home learning. This is because the diversity issue has a major
impact in these cases. For example, in case 6, different users in
different smart homes will open their window under different
temperature/humidity; in case 5, different users in different
smart homes have different interaction patterns with their
smart fridge/microwave oven/cupboards before they turn on
the oven. In summary, LoFTI achieves low FPs and FNs
comparing with single-home learning and all-home learning.

Device Policy
Camera If user is at home, block the access to turn on the camera
Smart Door When user is asleep, block the access to open the smart door
Smart Heater When temperature > 16�C, block access to turn on heater
Smart TV No policy found
Smart Stove No policy found
Smart Window No policy found
Smart Light From 6pm to 8am, smart light can be turned on
Smart Toilets No policy found

TABLE VI: Contextual policies from user study [17]

C. Comparison with manually generated policies

In this part, we compare LoFTI with the current approach
to manually generate contextual policies. Specifically, we
compare with an user survey [17] that asks 425 users to
allow/block IoT accesses (e.g., turn on the camera) based on
context norms (e.g., time of the day, whether user is at home
or not).

To compare with this approach, we collect all the policies
(user made allow/block decisions) in the user study [17] that
are related with the IoT devices listed in our dataset, as shown
in Table VI. We then convert the user generated policies into
context-based rules and carefully maps the context from the
user study to the corresponding context in our dataset. For
example, we map the context that “user is asleep” in the
user study to the context that “smart bed is occupied” in our
dataset. We then apply the converted context-based rules on
our testing dataset and measure the FNR and FPR. We provide
no comparison for smart TV, smart window, smart stove and
smart toilet, as we cannot find user generated policies for them
in the user study.

Case1

0

0.5

1

FN
R

Case2

0

0.5

1
Case3

0

0.5

1
Case7

0

0.5

1
Policy from User
LoFTI

0

0.5

1

FP
R

0

0.5

1

0

0.5

1

0

0.5

1

Fig. 14: Comparing user policy from survey and LoFTI.

For the rest 4 types of IoT devices - camera, smart door,
smart heater and smart light, Figure 14 shows the FNR and
FPR comparing user policy generated from survey and LoFTI.
In case 1 and case 2, the FNR and FPR for user policy
generated from survey and LoFTI are similar. This is because

9



the scenario is relatively simple. In case 3, the FNR and FPR
for user policy are higher for two reasons. First, user policy
generated from survey would set a fixed value for temperature,
which is not precise and not customized for different smart
homes. Second, user policy generated from survey fails to
cover other environment variables that also impact the access
of smart heater, e.g., humidity. In case 3, the FNR and FPR
for user policy are much higher because it captures the wrong
context. The user policy from survey depend on time as context
to guide the access of smart light. However, in CASAS dataset,
we observed that it is the movement of human sensed by
motion sensors that guides the access of smart light. This
is a typical case of misconfiguration by manually generated
contextual policies.

1 2 3 4 5 6 7
0

0.5

1

FN
R

Lo
FTI

No U
se

r

No D
ev

ice

No T
im

e

No E
nv

iro
nm

en
t

No D
ev

ice
 Stat

es

No A
ctio

n
0

0.5

1

FP
R

Fig. 15: Effectiveness of LoFTI’s key features.

D. Effectiveness of LoFTI’s key features

In this part, we evaluate how effective the key features
generalized by LoFTI in terms of distinguishing benign and
malicious contextual IoT access. To do so, we set the value
fields of each key features to default value and measure how
much the FNR and FPR will increase, as shown in Figure 15.
The result shows that if any of the 6 types of key features
defined by LoFTI is set to default, the FNR and FPR will
increase. Therefore all 6 types of key features are effective in
distinguishing benign and malicious contextual IoT access. We
can also see that environment variables and device states cause
the highest increase in FNR and FPR. This is not surprising as
environment variables and device states are critical features to
capture the context. Here the “user” feature is not causing
a high increase in FNR and FPR. This is because of the
CASAS dataset, where there are not many homes recorded
with multiple users.

E. Effectiveness of LoFTI’s simple SVM-based model with

temporal structure

In this part, we will show that LoFTI’s simple SVM-based
model with temporal structure can achieve a good trade off
between accuracy and communication/computation cost.

Accuracy: We compare LoFTI with the most simple ma-
chine learning model - SVM and most complex machine learn-
ing model - LSTM, from common machine learning models
considered (including SVM, CNN, RNN, LSTM). As shown
in Figure 16, we evaluate their detection capability by plotting
the ROC (Receiver Operating Characteristic) curve. The x axis

0 0.2 0.4 0.6 0.8 1
FPR

0

0.2

0.4

0.6

0.8

1

TP
R

SVM
LSTM
LoFTI

Fig. 16: ROC curve for SVM, LSTM and LoFTI.

is the TPR (True Positive Rate) defined as TPR = TP
TP+FN ,

and the y axis is the FPR defined as FPR = FP
FP+TN . If the

curve is more close to the (0, 1) point, the corresponding
approach has a stronger detection capability. To generate the
curves, we adjust the regularization parameter c for SVM; we
adjust the regularization parameter c and the window size of
the temporal structure for LoFTI; we adjust the number of
layers r, timesteps h and hidden units M for LSTM. From
Figure 16, we can see that LoFTI can achieve a detection
capability close to LSTM, stronger than SVM. This shows
that LoFTI using simple model with temporal structure can
achieve a good accuracy.

104 106 108 1010

Estimated computation cost (FLOPS)

0

0.5

1

RM
SE

LSTM
LoFTI

102 103 104 105 106 107 108

Estimated communication cost (transmitted parameters)

0

0.5

1

RM
SE

LSTM
LoFTI

Fig. 17: Estimated communication/computation cost.

Computation cost: In this part, we compare LoFTI and LSTM
in terms of computation cost and communication cost. We
measure the RMSE (Root Mean Square Error) in each iteration
for LoFTI and LSTM. Then we estimate the computation
cost and communication cost for LoFTI and LSTM in each
iteration. Therefore, we can estimate how much computation
cost and communication cost are needed to reduce RMSE
(Root Mean Square Error) close to 0 (training complete).

We estimate the computation cost (CPU FLOPS) for LSTM
as r⇤h⇤8⇤M ⇤L⇤(2⇤N�1), where r is the number of layers,
h is the number of timesteps, N is the number of features, M
is the hidden unit size, L is the minibatch size. We estimate
the computation cost (CPU FLOPS) for LoFTI as 2⇤N+N⇤h,
where N is the number of features and h is the time window
span (we set it equal to the LSTM’s timesteps).

We estimate the communication cost (transmitted parame-
ters) for LSTM as 4⇤ (N ⇤M +M

2), where N is the number
of features and M is the number of hidden unit. We estimate
the communication cost (transmitted parameters) for LoFTI as
2 ⇤N , where N is the number of features.

10



Figure 17 shows the result. We can observe that the compu-
tation cost of LSTM is 4 magnitudes higher than LoFTI; while
the communitation cost of LSTM is 2 magnitudes higher than
LoFTI. This result is as expected considering the complexity
of neural network layers and gate structures used by models
such as LSTM.

In summary, LoFTI can achieve a good trade-off between
accuracy and computation/communication cost.

F. Effectiveness of LoFTI’s data augmentation

In this part, we evaluate the effectiveness of LoFTI’s data
augmentation to address the unbalanced data issue. As shown
in Figure 18, we compare the FNR and FPR with different
dataset construction mechanisms including unchanged, repet-
itive and LoFTI’s data augmentation. From Figure 18 we can
see that the unchanged dataset result in high FNR. This is
because the large number of benign samples are pushing the
decision boundary towards the attack samples (to avoid FPs),
and result in high FNR. The repetitive mechanisms cannot
fully address this issue because it still has a poor coverage
over attack samples, so the FNR is still high. LoFTI’s data
augmentation mechanism successfully reduces the FNR while
keep FPR almost at the same level.

Original Repetitive LoFTI
0

0.1

0.2

0.3
FNR
FPR

Fig. 18: Different dataset construction mechanisms.

G. LoFTI’s capability of handling new attacks

Since LoFTI is a supervised learning approach. One inter-
esting question to ask is whether LoFTI is able to detect new
attacks that have never appeared in the training dataset before.

To test LoFTI’s capability of handling new attacks, we use 3
types of new attacks and test them against the model learned
from dataset without samples of these attacks, as shown in
Table VII.

New case Device Attack Type
A Camera Eavesdropping privacy leakage
B Smart Door Break-in when nobody at home physical hazards
C Smart TV Copy watching records privacy leakage

TABLE VII: New IoT attacks for testing.

Figure 19 shows the FNR and FPR for the 3 types of
unknown IoT attacks and their corresponding known attacks.
For case A and case C, we can see that LoFTI still can achieve
a low FNR and FNR. For case B, the FNR and FNR on
unknown IoT attacks are significantly higher. This is because
for case A and case C, the context during the new attack is
different from the context of the benign access. For case B,
the context during the new attack is close to the context of the
benign access.

In summary, LoFTI can detect unknown IoT attacks if the
context during the new attack is different from the context of

the benign access. We also note that LoFTI cannot detect un-
known IoT attacks against an IoT device that has no historical
record of benign and malicious access in all smart homes. In
such case, it is understandable as LoFTI is constrained by the
dataset it can learn from.

CaseA-Case1

0
0.5

1

FN
R

CaseB-Case2

0
0.5

1
CaseC-Case4

0
0.5

1
Unknown attack
Known attack

0
0.5

1

FP
R

0
0.5

1

0
0.5

1

Fig. 19: FNR/FPR on unknown/known IoT attacks.

H. Masking sensitive parameters

The federated learning guarantees that the attacker is not
able to see the raw data in the smart home. However, a strong
attacker who can observe the parameters of the model (e.g.,
via compromising the cloud backend or MITM attack) may
be able to infer certain private information about the smart
homes.

In this part, we perform a test to see if we can mask
some sensitive environment variables in the learning process
to prevent the observation from attackers, without significant
decrease the detection accuracy. In this test, we mask a number
of sensitive information from previous sensitive information
tracking literature [11], [12], [23], including device location,
device manufacturer, firmware version, device IP address, open
ports, zip code and contact list. Then we measure the FNR,
FPR and F-Score before and after the mask operation.

From Table VIII, we can see that the FNR and FPR
before and after masking are the same. It shows that some
of the sensitive information, including device location, device
manufacturer, firmware version, device IP address, open ports,
zip code and contact list, can be masked without significantly
decreasing the detection accuracy. In the next step, we plan to
explore other strategies such as differential privacy to see if
we can mask a wider range of sensitivity information without
significantly decreasing detection accuracy.

Approach FNR FPR F-Score
Before mask 0.0241 0.0857 0.9378
After mask 0.0241 0.0857 0.9378

TABLE VIII: FNR/FPR before/after masking.

VI. RELATED WORK

Federated Multi-Task Learning: MOCHA [22] is a novel
learning mechanism that combines federated learning and
multi-task learning. We build LoFTI based on MOCHA [22].
Manually generating contextual IoT policies: A rich body
of previous works are focusing on manually generating con-
textual policies for IoT devices [15], [17], [19]. He et. al. [17]
provide a user study to identify the critical contextual informa-
tion that should guide IoT access in smart homes. FlowFence
[15] and ContexIoT [19] build user-prompt frameworks to
prompt detailed contextual information to let users make better
decisions to block or allow the IoT access. FlowFence focuses

11



on data flow and ContexIoT focuses on control flow. The issue
with manually generating contextual policies is that it is easy
to misconfigure and hard to cover all the contextual policies
needed.
Sensitive information tracking: Another group of related
works [11], [12], [13], [23] propose to prevent privacy leakage
by tracking the sensitive information in mobile applications
for IoT devices. However, this approach requires the source
code of the mobile applications which is often not available.
Also, since the tracking is based on mobile apps, it can
only detect malicious/flawed mobile applications, and cannot
handle malicious IoT access directly from the network (via
weak authentication or backdoor).
Other IoT access control works: SmartAuth [24] provide
an NLP-based approach to check the consistency between the
IoT application description and IoT application source code.
SmartAuth [24] cannot detect malicious access when there is
no consistency issue. ESOs [21] is an integration platform
that enables cross-platform enforcement for contextual IoT
policies. This related work can be combined with LoFTI to
address a broader scope of problems.

VII. DISCUSSION

Beyond smart home: In this paper, we validate LoFTI
using smart home datasets. However, as a distributed learning
framework to learn contextual security policies, we envision
that LoFTI can be applied in other areas beyond smart home
settings, such as industry control systems.
Diverse deployment: In this paper, we assume that the
deployment of IoT devices in the smart homes are similar
or there is a mapping mechanism to mapping different IoT
devices and their states (e.g., bedroom camera in home A can
be mapped to bedroom camera in home B). In CASAS dataset,
the deployment of IoT devices in the smart homes are similar
as many of the smart homes are government supported homes
for elder people. We will explore the mapping mechanism for
diverse deployment in the future.
Model privacy: In this paper, we provide the guarantee that
the attacker is not able to see the raw data in the smart home. A
strong attacker who can see the parameters of the model (e.g.,
via compromising the cloud backend or MITM attack) may
be able to infer certain private information about the smart
homes. However, this put a high bar on the attackers. We
envision LoFTI may combine that other techniques such as
differential privacy to solve this issue.

VIII. CONCLUSION

The IoT devices can pose severe threats to smart homes,
causing physical hazards and privacy leakage. Context-aware
security policies are needed prevent physical hazard and pri-
vacy leakage. We show that it is possible to build a Federated
Multi-Task learning framework to learn the context-aware
security policies from multiple smart homes, while preserving
the privacy of each smart home. In designing LoFTI, we
address the hard trade-off between accuracy and privacy. Our
results are promising and show LoFTI can detect realistic

physical hazards and privacy leakage generated from reported
IoT breaches. Looking forward, LoFTI serves as an interesting
proof-of-concept for learning contextual policies for IoT via
distributed learning.

REFERENCES

[1] Alexa has been eavesdropping on you this whole time.
https://www.washingtonpost.com/technology/2019/05/06/alexa-has-
been-eavesdropping-you-this-whole-time/?noredirect=on.

[2] Casas datasets. http://casas.wsu.edu/datasets/.
[3] Half baked iot stove could be used as a remote controlled arson de-

vice. https://hackaday.com/2017/04/20/half-baked-iot-stove-could-be-
used-as-a-remote-controlled-arson-device/.

[4] Have a smart lock? yeah, it can probably be hacked. https://www.cnet.
com/news/have-a-smart-lock-yeah-it-can-probably-be-hacked/.

[5] How cia mi5 hacked your smart tv to spy on you. https://www.zdnet.
com/article/how-cia-mi5-hacked-your-smart-tv-to-spy-on-you/.

[6] Researchers hack philips hue lights via a drone; iot worm could
cause city blackout. https://www.computerworld.com/article/3139860/
researchers-hack-philips-hue-lights-via-a-drone-iot-worm-could-
cause-city-blackout.html.

[7] Sustainability hacks: Automatic window control. https://hackaday.com/
2011/09/29/sustainability-hacks-automatic-window-control/.

[8] Target attack shows danger of remotely accessible hvac sys-
tems. https://www.computerworld.com/article/2487452/target-attack-
shows-danger-of-remotely-accessible-hvac-systems.html.

[9] The ultimate nightmare: Researchers learn how to hack connected smart-
home toilets. https://bgr.com/2014/06/12/smart-home-toilets-hacked/.

[10] Watch a hacker access nest cameras and demand people subscribe to
pewdiepie. https://www.vice.com/en us/article/xwb8j7/watch-a-hacker-
access-nest-cameras-and-demand-people-subscribe-to-pewdiepie.

[11] I. Bastys, M. Balliu, and A. Sabelfeld. If this then what?: Controlling
flows in iot apps. In CCS, 2018.

[12] Z. B. Celik, L. Babun, A. K. Sikder, H. Aksu, G. Tan, P. McDaniel, and
A. S. Uluagac. Sensitive information tracking in commodity iot. Usenix

Security, 2018.
[13] W. Ding and H. Hu. On the safety of iot device physical interaction

control. In CCS, 2018.
[14] C. Dixon, R. Mahajan, S. Agarwal, A. Brush, B. Lee, S. Saroiu, and

P. Bahl. An operating system for the home. In NSDI, 2012.
[15] E. Fernandes, J. Paupore, A. Rahmati, D. Simionato, M. Conti, and

A. Prakash. Flowfence: Practical data protection for emerging iot
application frameworks. In Usenix Security, 2016.

[16] M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography. Communications of the ACM, 24(6):381–395, 1981.

[17] W. He, M. Golla, R. Padhi, J. Ofek, M. Dürmuth, E. Fernandes, and
B. Ur. Rethinking access control and authentication for the home internet
of things (iot). In Usenix Security, 2018.

[18] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural

computation, 9(8):1735–1780, 1997.
[19] Y. J. Jia, Q. A. Chen, S. Wang, A. Rahmati, E. Fernandes, Z. M.

Mao, A. Prakash, and S. J. Unviersity. Contexlot: Towards providing
contextual integrity to appified iot platforms. In NDSS, 2017.

[20] H. Nissenbaum. Privacy in context: Technology, policy, and the integrity

of social life. Stanford University Press, 2009.
[21] R. Schuster, V. Shmatikov, and E. Tromer. Situational access control in

the internet of things. In CCS, 2018.
[22] V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar. Federated

multi-task learning. In Advances in Neural Information Processing

Systems, pages 4424–4434, 2017.
[23] M. Surbatovich, J. Aljuraidan, L. Bauer, A. Das, and L. Jia. Some

recipes can do more than spoil your appetite: Analyzing the security and
privacy risks of ifttt recipes. In Proceedings of the 26th International

Conference on World Wide Web, pages 1501–1510. International World
Wide Web Conferences Steering Committee, 2017.

[24] Y. Tian, N. Zhang, Y.-H. Lin, X. Wang, B. Ur, X. Guo, and P. Tague.
Smartauth: User-centered authorization for the internet of things. In
Usenix Security, 2017.

[25] A. Zhao, G. Balakrishnan, F. Durand, J. V. Guttag, and A. V. Dalca.
Data augmentation using learned transformations for one-shot medical
image segmentation. In CVPR, 2019.

12


