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ABSTRACT

This paper presents the design of a novel architecture called
CARE (Content-Aware Redundancy Elimination) that en-
ables maximizing the informational value that challenged
networks offer their users. We focus on emerging applica-
tions for situational awareness in disaster affected regions.
Motivated by advances in computer vision algorithms, we
propose to incorporate image similarity detection algorithms
in the forwarding path of these networks. The purpose is to
handle the large generation of redundant content. We outline
the many issues involved in such a vision. With a Delay-
Tolerant Network (DTN) setup, our simulations demonstrate
that CARE can substantially boost the number of unique
messages that escape the disaster zone, and it can also de-
liver them faster. These benefits are achieved despite the
energy overhead needed by the similarity detectors.

Categories and Subject Descriptors: C.2.2 Network Pro-
tocols: Routing protocols

Keywords: Challenged Networks, Informational Value, Net-
work Architecture, Image Similarity.

1. INTRODUCTION

Network infrastructures have evolved significantly in the
last decades to provide high bandwidth, reliable, and highly
available infrastructures that form the foundation of many
everyday activities. Nevertheless, we have witnessed several
real-world events and scenarios — natural disasters (earth-
quakes, fires, tornadoes), military on-field deployments, flash
crowd events (e.g., SuperBowl) — where such foundational
assumptions about connectivity, throughput, and reliability
are shattered [9, 22]. While these scenarios may differ in
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their spatial and temporal magnitudes, a common character-
istic is that the communication infrastructure is intrinsically
damaged or limited in capacity; we refer to these collectively
as challenged networks.

In parallel, we see a technology trend where everyday
computing devices, such as smartphones, tablets and laptops
have made it extraordinarily easy for people to generate a
great deal of content, such as photos and videos. Further-
more, evidence from user studies [13] shows that the na-
ture of events that result in challenged networks often causes
anxious users to generate even more redundant content then
usual, exactly at a time when the communication infrastruc-
ture is damaged.

Such challenging scenarios require us to radically rethink
the role that the communication infrastructure needs to serve.
We argue that in such challenged environments the funda-
mental role of a network is not to optimize any specific per-
formance or availability metric (e.g., bandwidth or latency).
Rather, the goal of the network should be to maximize the in-
formational value that it offers its participants. Having thus
recast the role of the network, we need to revisit abstractions
for the different network entities such as hosts and routers.

Our observation here is that this informational value ulti-
mately relates to what the users really care about rather than
the bits that the network delivers. Consequently, we believe
that we need to look to other domains of computer science
(e.g., machine learning, NLP, computer vision) that allow us
to obtain a semantic understanding of the text, image, and
video content generated by users in challenged networks.
Furthermore, by integrating these as first-order mechanisms
in our networking “stacks”, we can de-prioritize or eliminate
semantically redundant content to optimize the amount of
useful information delivered. We refer to this as the CARE
(Content-Aware Redundancy Elimination) paradigm.

As a specific example of such a challenged network where
users can generate redundant content, we focus in this paper
on photos taken within a disaster. Specifically, we observe a
recent upsurge in the use of online social networks, as well as
the emergence of new web applications, that aggregate data
(e.g., flood levels, location of help, wounded victims, etc.)
and share it via annotated maps [1, 11, 12]. These can both
assist victims and enable ordinary citizens to involve them-



selves in the emergency response effort. These emerging
situational awareness (SA) applications assume that those
inside the disaster zone can actually connect to the Internet.
All too often this is not the case because the usual communi-
cation infrastructure can be compromised by the disaster [5,
4]. This motivating application helps us to start understand-
ing the challenges involved in realizing our CARE paradigm
idea in practice, namely the tradeoffs, and the scenarios un-
der which this paradigm brings benefits.

Our focus on photos enables us to leverage the many ad-
vances in the field of computer vision over the last decade,
specifically methods that accurately identify whether two
images are similar based on their content [18, 20, 19]. We
propose the idea of using image similarity detectors in the
forwarding path of networks. We believe that this paradigm
has broad uses in challenged networks and applications such
as participatory sensing, massive photo sharing, storage and
syncing. Furthermore, the advent of software routers may
even offer a plausible roadmap for implementing such algo-
rithms in routers.

A related rethinking of network abstractions was the ef-
fort in attempting to name content [14, 16] and perceptual
content [6]. While the broader utility of such mechanisms
in an Internet-wide context is questionable [10], we believe
that the challenged networking scenarios we consider offer a
plausible, even if niche, application scenario where content
naming has value. That said, we find that existing naming
abstractions are still quite rigid; they provide a “binary” no-
tion of whether the content is identical or not, be it at the
byte-level [14] or multimedia-signal level [6]. We make a
case for a more flexible abstraction that ties into the notion
of informational value to gracefully handle the limited host
and network resources.

In summary, this paper makes the following contributions:

e We propose the CARE paradigm to maximize the infor-
mational value delivered in challenged networks, present
a detailed discussion of issues and tradeoffs that rise, and
discuss its operating regimes.

e As a concrete example, we propose to integrate image
similarity detection algorithms into the forwarding path
of Delay Tolerant Networks (DTN) to enable content-
aware traffic reduction. Our architecture augments a DTN
stack with a capability that is compatible with existing
DTN protocols.

e We present a preliminary exploration of these issues us-
ing a DTN simulator, and study a sample disaster sce-
nario. We show that our system enables three existing
DTN protocols to dramatically increase the number of
unique photos that ultimately escape the disaster zone,
and reduce their delivery times.

2. DATA

We use two real-world image datasets for quantifying re-
dundancy, and study semantic redundancy vs. byte-level
compression techniques:

San Diego fire (SDfire): Contains 84 pictures taken by a
professional photographer who wandered around one of the
affected towns both during the fire event in 2007 and af-
terwards.The pictures depict a variety of scenes including
burning homes, damaged homes and cars, firefighters, po-
licemen, etc. This dataset serves as an example to the data
and redundancy that could be generated by a single person.

Haiti earthquake: Contains 415 pictures taken during and
after the Haiti earthquake in January 2010 by the volunteers
of a medical assistance organization called Team Rubicon
[2]. The photos cover a wide range of subjects including
wounded people, damaged buildings, vehicles, etc., captured
by a team of roughly 10 people.

2.1 Quantifying Redundancy

To objectively evaluate the extent of redundancy in our
data and to evaluate how well similarity detection performs,
we need a notion of ground truth regarding the similarity of
these images. We consulted experts who have experience in
disaster events to help us with manual labeling of the data.
We worked with members of our city’s Disaster and Fire
Commission, and the local Amateur Ham Radio Club . We
built a tool that allows the labeler to view 2 images side by
side and rate the similarity on a scale from 0 (entirely dis-
similar) to 5 (most similar). After our consultants labeled
the data, we mark two images as similar if the average score
of all labelers is over 3.

To quantify the amount of redundancy in our datasets, we
use the notion of a minimum set cover, which quantifies the
minimum number of non-similar photos that need to escape
the disaster zone in order to cover all of the information
about events within it. Using this definition and our labeled
data, we find that the redundancy in SDfire and Haiti datasets
is 53% and 22%, respectively. This means, for example, that
by sending less than half the photos in the SDfire data, we
can convey all of the unique information.

2.2 Do Byte-Level Methods Suffice?

A natural question is whether existing byte-level compres-
sion methods can capture the redundancy in these datasets.

We consider two methods — gzip-based compression and chunk-

level compression [21, 7]. For gzip, since each image is al-
ready in a compressed encoding, we consider compressing
the entire set of images (i.e., tar + gzip), and use the default
window of 15 bits. For the chunk-based compression, we
vary the chunk size to explore the tradeoff between chunk
size and redundancy.

Method | Haiti | SDfire
tar+gzip 7.7% 5%
Chunk-based, 64B 2.2% 0.9%

Chunk-based, 512B | 0.67% | 0.04%
Chunk-based, 2KB 0.6% 0%
Ideal/Content-Aware 22% 53%

Table 1: Redundancy elimination gained using different
methods on the Haiti and SDfire datasets.




Table 1 shows that byte-level approaches cannot capture
the redundancy in the two image datasets from disaster sce-
narios — compression technique fails because images in JPEG
format are already compressed, and byte-level fails because
small photometric differences may result in significantly dif-
ferent byte-level encoding.

3. CARE ARCHITECTURE

One typical networking scenario that can occur in a disas-
ter affected region is depicted in Fig. 1. Here, the network
infrastructure has been damaged and users inside the disas-
ter area can only communicate with each other via ad hoc
or pairwise contact opportunities. A rescue vehicle inter-
mittently visits the disaster area, and any node that comes
in contact with this vehicle has the opportunity to transfer
messages to it. The rescue vehicle can transport messages
outside of the disaster area and deliver them to the public In-
ternet. We assume that a variety of devices (cellular phones,
smartphones, laptops) will be present in the disaster area.
The devices will have a heterogeneous set of network ca-
pabilities (WiFi, bluetooth), compute power (ranging from
low power embedded devices to multi-core processors), stor-
age capacity (from the 100s of Mbytes of a regular phone to
the 100s of GBytes of a laptop) and battery life (from a few
hours to days). In practice, this means that nodes can estab-
lish point-to-point communications, can store large amounts
of information for each other, and have a good amount of
compute power to pre-process the data they receive.
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Figure 1: Example of a typical disaster scenario.

We propose a software architecture in which devices, in
absence of network infrastructure, can enable a DTN stack
— a sort of disaster mode for phones and laptops. A DTN
stack gives us mechanisms to discover neighboring nodes,
identify the available communication media, and to pack-
age, store and carry messages of others. In order to handle
the compounding affects of image redundancy coupled with
limited opportunities to transmit data outside the disaster re-
gion, we propose to use the message content to drive for-
warding decisions. We thus propose a system called CARE
(Content Aware Redundancy Elimination) which augments
the DTN stack by adding a capability that can be incorpo-
rated on top of any DTN routing protocol. Fig. 1 illustrates

this idea in which images in a message buffer are evaluated
for similarity before they are assembled into a DTN bundle
and transmitted.

The DTN stack leaves open the choice of routing protocol,
and while many protocols exist, we focus on a few represen-
tative algorithms. Epidemic routing [24] simply replicates
messages on each contact of two nodes. Prophet [17] only
forwards messages towards a node if it believes the next hop
increases the chances of final delivery of the message, using
their history as an indicator for likelihood of reaching the
destination. Spray and Wait [3] is a quota-based approach
for replication that limits the maximum number of copies of
a message in the network. All of these protocols replicate
messages in the hopes that one of the copies will succeed in
reaching the destination, while seeking to control the num-
ber of replicas of any given message. Our proposal is com-
plementary to these since we seek to control replicas that
arise because two different messages are similar, hence we
propose adding it on top of any DTN protocol.

There are two chances to carry our content-aware redun-
dancy elimination. The first is local redundancy elimination;
when the same user takes multiple photos of the same scene,
we detect image similarity within the user’s buffer and de-
prioritize copies before a transmission opportunity presents
itself. The second is when two nodes meet. Before exchang-
ing buffer contents, the two nodes swap lists of photo ids,
and they only transfer those which the other does not have.
We assign order to the exchange, so that after the first node
receives the new photos from the second, it performs the re-
dundancy tests locally. Once completed, it only sends the
non-redundant photos to the second node, alongside with the
updated ids. This process incurs more transmissions, how-
ever they are very small and potentially save both computa-
tion and transmission of photos, which are much more en-
ergy consuming.

3.1 Image Similarity Metrics

We experimented with several well-studied image simi-
larity methods in order to explore the balance between ac-
curacy and performance, and suggest a hybrid method that
tries to leverage the advantages of each while minimizing
their drawbacks.

Scale-invariant feature transform (SIFT) [18] is an algo-
rithm that finds and extracts features that are invariant to im-
age translation, scaling, and rotation, and some illumination
changes. This method is widely used in object recognition
and image stitching applications due to its accuracy, but has
a relatively high complexity.

A perceptual hash (pHash) [20] is an easy-to-compute fin-
gerprint of a file derived from the content, having the prop-
erty that two similar images result in similar hashes.

GIST [19] is a method used for scene detection using per-
ceptual dimensions, such as openness and roughness to cap-
ture the dominant spatial structure of a scene. It has the po-
tential to be useful in disasters involving fires, floods, or tor-
nados, since photos from such events could be of scenes with



amorphous elements (such as a spreading fire) that don’t
have clearly well defined edges (something that is important
for methods such as SIFT).

Each of these methods individually has a threshold param-
eter that determines their FP and FN. We studied the accu-
racy of the algorithms against our ground truth labels (from
Sec. 2), and found that SIFT performed best (FN of 0.48
with FP of 0.01). GIST resulted in a low FN of 0.30 but a
relatively high FP of 0.15. pHash was accurate only when
the photos were very similar, resulting in a very high FN of
0.83 but a low FP of 0.01.

Next, we ran the algorithms on two different machines,
1.6 GHz 2 GBytes RAM Atom-based and an 8-core 2.8 GHz
12 GBytesRAM Xeon-based. We found that on both plat-
forms SIFT is the most expensive algorithm to run with an

average execution time (over all the photos in our two datasets)

being 150 slower than that of pHash while GIST is 50x
slower than that of pHash.

Given the tradeoff between accuracy and computational
overhead, we can construct a hybrid method that leverages
the advantages of each algorithm, while enabling low com-
putation complexity. For example, we start with pHash, and
use it only to identify whether two images are similar. Since
it has a low FN rate, when pHash identifies that the images
are not simialr, we defer it to a more accurate but costly
method, such as SIFT.

We note that our design can accommodate additional algo-
rithms. For example, a trivial meta-data filter can flag photos
that are taken too far apart (either temporal or spatial dis-
tance) as not similar. Additionally, there are other methods
for similarity between images that can be considered, rang-
ing from simple color-histograms [23] to complicated face
and object recognition. We expect that such methods can
further improve the accuracy of the similarity detection, but
also come at the cost of computation overhead.

3.2 Is all of this worth doing?

The idea of eliminating redundant images is intuitively
appealing. However putting this in the forwarding path in-
curs certain costs and the question as to whether or not this
is worth doing will depend upon the details of the disaster
scenario, overhead, energy, accuracy, and so on. There are
key research efforts needed to evaluate the implications of
such a proposal and the complex tradeoffs it induces, in or-
der to be able to answer the question “under what condi-
tions does this make sense?”’. We focus on two key perfor-
mance metrics for CARE. The coverage is defined as the
number of unique messages delivered to the SA application,
and we seek to increase the coverage as compared to tradi-
tional DTN forwarding. Our second metric is the latency
with which these unique messages are delivered. If these
images contain life-critical information (e.g., about where
fire protection or medical help is needed) then early delivery
could save lives or limit damage. We now discuss the costs
and tradeoffs that impact the performance of our system, and
we describe what’s needed to understand these factors.

Overhead: Computer vision algorithms for image similar-
ity detection create computational overhead that will use up
energy. On the one hand, given that oftentimes a device’s
battery lifetime is less than the duration of the disaster event,
the energy used by CARE will cause it to run out of battery
sooner which in turn impacts coverage. On the other hand,
energy is saved with CARE because redundant images are
not transmitted, and saving on transmissions could prolong
device lifetime. A broad range experiments are needed to
understand this tradeoff, and to quantify what level of over-
head we can incur while still enjoying the benefits of CARE.

Imperfection in similarity detection: All image similarity
detectors can make mistakes. A false positive (FP) occurs
when two images are identified as similar, but in fact are
not. This is a bad mistake to make, from the point of view of
disaster recovery, because it means that a unique image will
get dropped. Thus FPs reduce the improvements in coverage
that CARE typically brings. A false negative (FN) occurs
when the algorithm fails to realize that two images are sim-
ilar; the impact of this mistake is only that an opportunity
for traffic reduction is lost. When unnecessary messages are
forwarded, the latency of delivering unique messages could
increase, thereby lowering the usual latency gains of CARE.
These tradeoffs imply that some image similarity detectors
may not be worth using if their FP or FN rates are high
enough as to undo the usual benefits that CARE brings.

Connectivity Opportunities: At one extreme, when con-
nectivity opportunities are plentiful, there is no real need for
CARE (other than perhaps saving some energy) because all
content can be delivered. At the other extreme of almost no
contacts, nothing can be delivered anyway, regardless of the
protocol. CARE will be useful in a range between these two
extremes, a range which we plan to explore and make sure it
is large enough.

Redundancy: We anticipate that more redundancy brings
greater benefits, although the rate at which benefits increase
with growing redundancy needs to be quantified.

4. DISASTER SCENARIO SIMULATION

We simulate a disaster event in a way that enables us to
vary the many parameters in our system, so that we can un-
derstand the range of settings in which CARE brings benefits
and to understand tradeoffs. We used the Opportunistic Net-
work Environment (ONE) [15] simulator, a DTN simulator,
and added an implementation of CARE on top of epidemic
routing, Prophet and Spray-and-Wait. We present some ini-
tial and promising results for a sample disaster scenario.

4.1 Scenario Settings

We simulate a 12 hour-long disaster scenario in a neigh-
borhood in Pittsburgh, USA, a city that is included in the
ONE simulator, with a detailed map of all the roads and
bus routes. The covered area is roughly of 10 x 8 miles.
We consider a scenario with 60 people randomly located in-
side the disaster area, in which there are 3 designated “hot
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Figure 2: Number of uniquely delivered photos over simulation time using 50% redundancy

zones” from which photos are important to the rescuers — 2
small zones of 0.4 mi? each, and a larger zone of roughly
2.5 mi2. A single rescue vehicle travels back and forth be-
tween the disaster area and a communication gateway (e.g.,
satellite) that is located 6 miles outside the disaster area and
is connected to the public Internet. The rescue vehicle drives
at a speed of 25-54 Km/hr and spends roughly the same
amount of time in the disaster zone as outside it. If a per-
son gets within 20 meters of the rescue vehicle, it can up-
load its buffer contents (if there is enough remaining power).
Contact opportunities with this vehicle are the only way data
from inside the disaster zone can reach the public Internet.

People walk at a speed uniformly distributed in the range
of 3—7 Km/hr. They move in a point-of-interest map-based
shortest path traversal, meaning each person selects a des-
tination point inside the disaster area and finds the shortest
path using roads to get there. Once the person reaches a des-
tination it stops for 5 minutes, and then repeats this process
to walk to another location.

At any given point in time, we assume that each hot-zone
has 5 unique scenes that are of interest to people that tra-
verse it. Whenever a person enters a hot-zone, she takes up
to 5 (selected randomly) redundant photos of a scene (cho-
sen randomly from the 5 possible scenes), each photo is of
size 300KB. Different people that traverse the hot-zone can
possibly take photos the same scene, resulting in cross-node
redundancy. However, photos from different hot-zones and
photos taken more than 15 minutes apart are never redun-
dant. We further assume that each person will not take more
than 50 photos from the same hot zone over the entire exper-
iment lifetime.

Each person has a WiFi-enabled device, that transmits at
10 Mbps with a maximal range of 20 meters, simulating a
smartphone. It has a limited buffer of 100MB used for stor-
ing photos, and a limited energy, enabling at most F,,,.
hours of operation without any transmissions. When trans-
mitting, the device consumes 2 Jouls/sec of the battery [8],
which is roughly 0.015% of the battery capacity when set-
ting Eqe = 12h. The overhead of using CARE is the
cost of comparing photos plus the cost of comparing meta-

information regarding the photos that exist in each person’s
buffer. We assume the energy consumed by this overhead,
on a per photo basis, is a percentage of the standard trans-
mission energy consumed for a packet. We set this value to
10% of the transmission cost, and plan to further analyse the
effect of the overhead in future work.

For Spray-and-Wait we set the quota to 12 (20% of the
number of people), and for Prophet we set update interval to
60s and the probability computation parameters to o = 0.25
and S = 0.98 (these parameters set the update rates of the
router’s probability tables [17]).

4.2 Results

We present results for the main performance metrics, namely
the ability to deliver more unique messages, and to achieve
lower latency, while being robust to the overhead needed by
CARE. The settings we used resulted in an overall redun-
dancy of 50% with roughly 216 unique photos. This corre-
sponds to the redundancy that exists in our Haiti dataset. We
note that this is quite a low estimation of the redundancy we
expect to find in a real-world scenario.

Fig. 2 shows the number of unique messages that reach the
communication gateway with and without CARE for the dif-
ferent routing protocols. The stairs in the plots are exchanges
of messages between the rescue vehicle and the communica-
tion gateway.

The figures clearly show that all protocols benefit from
adding the CARE layer, with Spray-and-Wait managing to
deliver almost 30% more unique photos with CARE than
without it, and Prophet managing to deliver 21% more pho-
tos. The improvement in coverage is smaller for the Epi-
demic protocol (5%), because there is enough bandwidth and
energy for the nodes to push numerous messages through,
including both unique ones and replicas. However, Epidemic
with CARE manages to deliver all photos almost an hour be-
fore Epidemic without CARE.

Furthermore, we repeated these simulations with 85% re-
dundancy and found that Epidemic with CARE delivered
nearly 14% more unique photos than without CARE. The
reason for this is that as the number of photos in the system
increases, the flooding behavior of Epidemic routing sends



CARE Non-CARE
Time | Epidemic | Prophet | S&W | Epidemic | Prophet | S&W
1h 36 13 17 25 9 14
2h 121 57 61 97 35 49
4h 216 201 173 207 128 140
6h 216 216 201 211 159 157
8h 216 216 210 211 176 163
10h 216 216 211 211 178 164
12h 216 216 211 211 178 164

Table 2: Latency of delivered photos, showing the number
of unique photos delivered within each given delay

too many replicas during those few contact opportunities,
thereby impeding delivery of unique photos. Prophet ex-
hibited the largest improvement having 73% more delivered
photos with CARE than without it. Overall, these show that
as the redundancy increases, CARE better controls the flow
of unique information.

To understand the latency improvement obtained by adding
CARE, Table 2 shows the number of unique photos deliv-
ered within the first  hours. CARE enables all protocols to
deliver the photos earlier than they would be operating with-
out CARE. For example, within 6 hours, Prophet can deliver
216 with CARE, but only 159 without it. Coupled with the
CARE mechanism, Epidemic and Prophet manage to deliver
all 216 messages, while Spray-and-Wait delivered nearly all.
Without CARE, none of the protocols manage to deliver all
unique photos.

Finally, in order to evaluate the robustness of these im-
provements to the energy overhead incurred by the image
processing algorithms, we performed the same simulations
with the CARE overhead set to 50%. We found that even
when more energy is consumed by image comparison, the
number of photo transmissions is reduced by up-to 60% when
CARE is used, which in turn saves energy. The balance
between these energy-draining and energy-saving functions
was such that we still saw roughly the same improvements
(5—30%) in CARE as with the 10% overhead. These results
are encouraging since they indicate that we can use sophis-
ticated algorithms such as SIFT, rather than the cheaper but
less-accurate pHash and GIST.

S. CONCLUSION

We propose a method for maximizing the informational
value that users obtain from challenged networks by allow-
ing contextual similarity to be used as a prioritization method
in the forwarding path.

Our focus on photos in disaster networks is motivated by
the confluence of multiple trends, namely disaster response,
image processing algorithms, new networking paradigms and
powerful handheld devices. We believe that the use of the
Web to provide SA during disasters is a trend that will con-
tinue to gain momentum — especially since the Internet has
already proven effective in disaster response. This makes
such scenarios a great motivating example for our proposed
networking paradigm.

Image processing is rapidly moving forward with better
algorithms and hardware support, and thus the approach we
propose here is likely to become even more viable in the near
future. It is important to understand solutions for detecting
image redundancy, because the next step will be to extend
such ecosystems to support redundancy detection in videos.
In our ongoing work, we are flushing out all the tradeoffs
occurring in such systems, and we seek to understand the
network operating regimes for which CARE brings signifi-
cant benefits.
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