
EZ-PC: Program Committee Selection Made Easy

Vyas Sekar
Carnegie Mellon University

vsekar@andrew.cmu.edu

This article is an editorial note submitted to CCR. It has NOT been peer reviewed. The author takes full responsibility for this
article’s technical content. Comments can be posted through CCR Online.

ABSTRACT
Selecting a technical program committee (PC) for a conference or
a workshop can be an intimidating and time consuming process.
PC selection needs to balance several potential considerations; e.g.,
industry vs. academic participation, inclusion of under-represented
communities, ensuring coverage over topic areas, among others.
This paper presents the design of an open-source tool called EZ-
PC which formulates these considerations as a simple constraint
satisfaction problem to help PC chairs systematize this selection
process. We report on some of the features we have incorporated
and our experience in using the tool.

1. INTRODUCTION
A necessary and critical step in putting together a technical pro-

gram for a conference is to select a high quality program committee
(PC). The goal of the PC is to review submissions, provide expert
reviews, and ultimately converge on the best possible technical pro-
gram for the given conference or journal.

Selecting a PC entails balancing a wide range of requirements
and practical considerations, including:

• Topic coverage: Given the growing breadth of many technical
fields and the emergence of sub-areas of interest, most technical
conferences span a broad range of topics. The technical pro-
gram chairs need to ensure that there is sufficient representation
from different areas. A lack of expertise in a particular sub-area
affects the ability to judge the novelty and correctness of the sub-
missions and also means that the chairs may have to seek several
out-of-band reviews. This may further impact the process, as
these experts may not have a full view of the overall submission
pool for calibration.

• Representation from diverse groups: PC chairs often strive to en-
courage participation from diverse and under-represented com-
munities. This is especially important to broaden participation
and provide valuable experience to members of the community
in organizing top-quality conferences. These may include both
geographical considerations (e.g., avoid a US-centric PC) and
seniority factors (e.g., ensure there is a good mix of senior, mid-
career, and junior members of the community).

• Avoiding over-representation from specific groups: An equally
important concern is over-representation from specific subgroups.
For instance, it is useful to avoid having too many members from
the same institution as it may make it hard to find expert reviews
when considering institutional conflicts. Similarly, it may also
be useful to ensure that specific sub areas (e.g., “hot” topics) are
not over-represented to avoid inducing a systematic bias in the
program composition.

• PC Size: Depending on the expected number of submissions
and the intended workload, one also needs to keep the PC size
manageable. A small PC may make for more engaged discus-
sions and better calibration of the PC members to the rest of the
submission pool, but raises the risk of PC fatigue and overload.
A large PC on the other hand may help distribute the load and
may make it easier to meet some of the coverage constraints de-
scribed above, but incurs the risk of weaker discussions.

• Iterative process: A practical logistical constraint is in the avail-
ability of candidate PC members and their responses. Even if
we optimistically assume a response rate of ≈ 75%, this means
that the PC selection process will proceed in multiple rounds as
the chairs learn of candidates’ availability. Thus, we also need
to ensure that these are satisfied over this iterative process.

Based on anecdotal evidence, we believe that the process that
PC chairs attempt to address these aforementioned considerations
is largely manual. While this is not entirely unreasonable to handle
manually (e.g., even the largest PCs for single track conferences we
know of have≈ 70 members), it is quite tedious and may invariably
introduce one or more potential blind spots in terms of the coverage
and representation concerns.

To simplify the PC chairs job of balancing these considerations,
we developed a simple open-source toolkit called EZ-PC1 to sys-
tematically formulate these factors and automate the PC selection
process [1]. In a nutshell, EZ-PC expresses these constraints as a
simple integer linear program (ILP) and uses off-the-shelf solvers
to find feasible solutions. We do not intend to claim that EZ-PC’s
design is novel or technically interesting; it is simply a useful tool
to codify the typical considerations that PC chairs face.

In the rest of this short editorial, we describe the design of EZ-
PC and our preliminary experience in using it to automate the PC
selection process.

2. EZ-PC FORMULATION
In this section, we formally specify the various considerations in

PC selection and describe the Integer Linear Program (ILP) formu-
lation we use in EZ-PC.

Inputs: We begin by describing the inputs into EZ-PC and then
describe how use these inputs to generate the ILP formulation.

• Features: Recall that there were different considerations that
need to be covered; e.g., Areas of interest, Geographical con-
straints, Underrepresented communities, Seniority etc. We model
each of these considerations as a binary feature. Let F denote
the set of all binary features and let f ∈ F refer to a specific fea-
ture from this set. Note that these features need not be orthog-

1Wordplay intended!



Minimize: PCSize , subject to

PCSize =
∑
c∈C

selectc (1)

MinPCSize ≤ PCSize ≤MaxPCSize (2)

∀f ∈ F :
∑
c∈C

Ic,f × selectc ≥MinCoveragef (3)

∀f ∈ F :
∑
c∈C

Ic,f × selectc ≤MaxCoveragef (4)

∀g ∈ G :
∑
c∈g

selectc ≤ GroupUpperg (5)

∀c ∈ Responses : selectc = Availabilityc (6)
∀c : selectc ∈ {0, 1} (7)

Figure 1: ILP for the PC selection problem

onal and in fact will not be so by design; e.g., the geographical
and topic characteristics are not orthogonal dimensions.

• Candidates: We assume that the PC chairs have prepared (man-
ually or otherwise), a set of candidate PC members C. Let c ∈ C
refer to a specific PC candidate. Each candidate c’s attributes
with respect to the features of interest needs to be populated; we
use the binary indicators Ic,f to denote if the candidate c has
the binary feature f “on”. For instance, if the feature is a spe-
cific sub-area (e.g., TCP) and the candidate is an expert in this
topic then this indicator will be set to 1. We can similarly model
geographical properties (e.g., Asia vs. EU vs. US) and indicat-
ing whether the candidate is from a specific under-represented
group.

• Coverage requirements: As discussed earlier, for each feature
of interest, we have two kinds of constraints on the coverage.
First, for each type of feature we have a minimum coverage level
MinCoveragef denoting the minimum number of PC mem-
bers who satisfy this particular feature; e.g., at least 5 junior
members and at least 4 people from region X. Second, we also
want to avoid over-representation from specific groups. To this
end, we introduce an optional upper bound on the coverage as
well denoted as MaxCoveragef which denotes the maximum
number of PC members satisfying this feature.

• Group constraints: Some organizations (e.g., large research labs
or large research universities) may invariably have a large rep-
resentation on the PC. To avoid this, we introduce the notion of
group constraints that allow us to specify an upper bound on the
number of members from a specific group. We have a set of
user-defined groups G. For each group, g ∈ G, we have an up-
per bound on the number of candidates from that group that can
simultaneously be on the PC GroupUpperg .2

• PC size: Recall that to balance the reviewing workload, we also
want to have a minimum PC size depending on the number of ex-
pected submissions and the expected number of reviews per pa-
per. Let MinPCSize denote this minimum PC size. Similarly,
we want to make sure the PC is not too large; let MaxPCSize
denote the maximum possible PC size we want to have.

2We could have also modeled these as features and used the
MaxCoverage constraints to capture these group constraints.
Since these types of groups were limited in number, it was more
convenient to express these separately rather than a new feature
per-group.

• Availability and prior selection: As chairs send invitations and
candidates indicate their availability or unavailability, we may
need to iteratively re-run the EZ-PC tool and update the selec-
tion based on these candidate constraints. To this end, we also
have to maintain an updated record of the availability of the dif-
ferent candidates as they respond. Let Responses denote the
set of candidates who have already provided responses and let
Availabilityc denote the expressed availability (or lack) as a
binary indicator. We use these indicators to also denote candi-
dates who have already been selected and marked as available
in previous rounds to ensure that they continue to be selected in
subsequent rounds.

ILP Formulation: Given these inputs, next we describe how we
formulate PC selection using an ILP as shown in Figure 1.

We introduce the decision variables selectc ∈ {0, 1} to capture
the decision process if a particular candidate c has been selected to
serve on the PC. Our goal is to set some of these to 1 to select the
actual PC to meet the constraints described earlier. We use a simple
objective function, which is to minimize the total PC size subject
to several constraints modeling the coverage, group, and availabil-
ity considerations. This objective ensures that the solver program
prefers a smaller PC subject to the other constraints, including the
minimum PC size.

Our constraints naturally map to the considerations we raised
earlier. Eq (1) models the PC size as the sum of the select deci-
sion variables. Eq (2) models the upper and lower bounds on our
PC size. (PCSize is a convenient temporary variable for clarity; we
can write the entire formulation in terms of the select decision vari-
ables alone.) Eq (3) and (4) model the coverage requirements per
feature of interest in terms of the indicators and the decision vari-
ables. (Note that the I values in the equations are constants rather
than variables, which makes our problem a simple integer linear
program.) Eq (5) ensures that for each group, we have a limit on
the number of simultaneous candidates chosen from that group. Fi-
nally, to capture the iterative process, we introduce the availability
constraints for the candidates who have previously responded (i.e.,
in Responses) in Eq (6). This ensures that the subsequent runs of
the ILP will honor the previous selection and unavailability rather
than creating a solution from scratch that may violate some of these
constraints. In general, in the first round of invitations, the set of
Responses will be empty and these constraints can be ignored;
here, we show the general formulation. Finally, we have the binary
constraints on each decision variable.

3. IMPLEMENTATION AND WORKFLOW
In this section, we briefly describe the implementation of the EZ-

PC tool. EZ-PC is currently a simple command line tool written in
Perl that takes as input a few text files (described below) and uses
glpsol [2] as the underlying ILP solver. EZ-PC has very few
dependencies with external libraries, and the only requirement is
to have a working version of glpsol. We used Perl v5.16.3 built
for darwin-thread-multi-2level and glpsol v4.48 installed through
MacPorts [3].

To use EZ-PC, the PC chairs need to populate four key text files
with the following formats:

1. Candidate Feature Values: This is a simple CSV (comma sepa-
rated values) file. The first column specifies the candidate name,
and the remaining columns with a binary indicator (1 or 0) indi-
cating whether the candidate satisfies the feature. (The first row
has the feature names.) For instance,

Name,Area1,Area2,Area3



Alice,1,0,1
Bob,0,1,1
Eve,0,0,1
..

specifies that Alice “covers” Area1 and Area3, while Bob cov-
ers Area2 and Area3, while Eve only covers Area3.

2. Feature Constraints: This is a CSV file specifying features and
their MinCoverage and MaxCoverage constraints, one
per line, with the first column being the feature name and the re-
maining being the min-max values. If there are features without
any constraints, these need not appear in the file. A simple way
to avoid the MaxCoverage is to set it to the MaxPCSize.
Note that the names of the features in this file should match the
first row of the Candidates file above. For instance, to specify
a minimum of three members covering Area1 and Area2, we
would have:

Area1,3,50

3. Availability Constraints: A two-column CSV marking a 0 for a
candidate who has already declined and 1 for a candidate who
has already accepted (i.e., selected in a previous round of EZ-
PC selection). In the first round of PC invitations, this file will
typically be empty. For instance, to specify that Alice has al-
ready agreed and Bob has already declined, we would have:

Alice,1
Bob,0

4. Group Constraints: A space-separated file, with the first col-
umn giving a name for the group, the second column giving the
comma-separated list of group members and the third column
giving the GroupUpper value for this group. Each group
can be arbitrarily large. (Note that groups may overlap.) For
instance, if Alice, Bob, and Eve are from the same organization
XYZ and we do not want more than 2 of them to be simultane-
ously selected, we specify

XYZ Alice,Bob,Eve 2

EZ-PC consists of two basic Perl scripts: (1) to generate the
ILP formulation and the solution and (2) to parse the solution out-
put by the ILP to extract the list of selected candidates from the
solution output.

Scalability: We have encountered almost no scalability problems
in using EZ-PC so far. For a set of 87 candidate PC members with
23 features, and having a minimum of 45 PC members to be se-
lected, the run time was less than 0.5 seconds on a Macbook Pro
with a 2.4 GHz Intel Core i5 processor and 8GB of RAM. We have
tried with other configurations and the run time was consistently
less than 1 second, so we anticipate that scalability will not be a
problem for the typical PC size and types of features we expect.

4. CONCLUDING REMARKS
EZ-PC certainly made our life easier to ensure various types of

coverage constraints and balancing requirements. That said, EZ-PC
is very much an “alpha” stage tool with several quirks reflecting the
need to get working code as our needs demanded. Our wishlist for
features is quite numerous. First on the list is the need suitable data
preprocessing steps (e.g., conversion from spreadsheet into EZ-PC-
compatible text files that avoid special characters in candidate and
feature names). Second, a nice feature to add would be to inform
the chairs why and how the problem might be infeasible when it is.
For instance, when we have PC members who cover a lot of areas,

then the MaxCoverage constraint often gets violated and in this
case we had to manually increase the value to accommodate this.
Having some way to the PC chairs understand the ILP output and
infeasibility scenarios would be a useful addition. Third, EZ-PC
is currently two command line programs and we are planning to
interface it with better web-based or graphical interfaces to make
it more broadly usable. Finally, the process of generating EZ-PC
inputs is manual; one way to automate it is to crawl public resources
(e.g., Google Scholar, DBLP, and recent conference proceedings)
to identify candidates and their areas of expertise rather than have
the PC chairs input these manually.

The latest version of EZ-PC can be downloaded at: http://
users.ece.cmu.edu/˜vsekar/ezpc.html

Acknowledgments
The author would like to thank Dejan Kostic and the ACM CoNext
steering committee for their inputs that motivated the need for and
informed the design of EZ-PC. EZ-PC also benefited from early
conversations with Petros Maniatis.

Please send comments or suggestions on improving the EZ-PC
tool to vsekar@andrew.cmu.edu.

5. REFERENCES
[1] EZ-PC: Download and Documentation. http:

//users.ece.cmu.edu/˜vsekar/ezpc.html.
[2] GLPK: GNU Linear Programming Kit.

https://www.gnu.org/software/glpk/.
[3] The MacPorts Project. https://www.macports.org/.


